JAPC  >> Vol. 6 No. 2 (May 2017)

    二氧化钛薄膜催化分解水研究进展
    Progress in Photocatalytic and Photoelectrochemical Water Splitting of TiO2 Thin Films

  • 全文下载: PDF(927KB) HTML   XML   PP.68-74   DOI: 10.12677/JAPC.2017.62009  
  • 下载量: 414  浏览量: 1,317   国家自然科学基金支持

作者:  

汪 涵,夏晓红:湖北大学材料科学与工程学院,湖北 武汉

关键词:
二氧化钛薄膜光催化光电化学性能制备方法产氢TiO2 Thin Film Photocatalytic Photoelectrochemical Property Fabricating Method Water Splitting

摘要:

二氧化钛薄膜被广泛应用于光催化和光电化学分解水产氢。不同的方法制备的二氧化钛薄膜在形貌、结构等各方面存在差异,光催化和光电化学性能也有所不同。本文总结了近年来纯TiO2薄膜及复合薄膜的制备方法及产氢性能,包括水热法、阳极氧化法、磁控溅射法、模板法、原子层沉积法等,并比较了其光电流密度和产氢量。

TiO2 thin films are widely used in photocatalytic and photoelectrochemical water splitting for aquatic hydrogen production. Titanium dioxide films prepared by different methods differ in morphology, structure and properties. In this paper, various preparation methods have been summarized, such as hydrothermal method, anodic oxidation method, magnetron sputtering method, template method and atomic layer deposition method, which are used for fabrication of TiO2 thin films. Photocurrent density and hydrogen production of the thin films were compared.

文章引用:
汪涵, 夏晓红. 二氧化钛薄膜催化分解水研究进展[J]. 物理化学进展, 2017, 6(2): 68-74. https://doi.org/10.12677/JAPC.2017.62009

参考文献

[1] Fujishima, A. and Honda, K. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38.
https://doi.org/10.1038/238037a0
[2] Ni, M., Leung, M.K.H., Leung, D.Y.C. and Sumathy, K. (2007) A Review and Recent Developments in Photocatalytic Water-Splitting Using TiO2 for Hydrogen Production. Renewable Sustainable Energy Reviews, 11, 401-425.
https://doi.org/10.1016/j.rser.2005.01.009
[3] Wolcott, A., Smith, W.A., Kuykendall, T.R., Zhao, Y. and Zhang, J.Z. (2009) Photoelectrochemical Water Splitting Using Dense and Aligned TiO2 Nanorod Arrays. Small, 5, 104-111.
https://doi.org/10.1002/smll.200800902
[4] Yang, Y., Liu, G., Irvine, J.T.S. and Cheng, H.M. (2016) Enhanced Photocatalytic H2 Production in Core-Shell Engineered Rutile TiO2. Advanced. Materials, 28, 5850-5856.
https://doi.org/10.1002/adma.201600495
[5] Liu, B. and Aydil, E.S. (2009) Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells. Journal of American Chemical Society, 131, 3985-3990.
https://doi.org/10.1021/ja8078972
[6] Zhang, S., Gu, X.Q., Zhao, Y.L. and Qiang, Y.H. (2015) Enhanced Photoelectrochemical Performance of TiO2 Nanorod Arrays by a 500℃ Annealing in Air: Insights into the Mechanism. Journal of Electronic Materials, 45, 648-653.
https://doi.org/10.1007/s11664-015-4166-x
[7] Wang, X.J., Zhang, S.S., Yao, X.B., Wang, H.J., Yu, H., Shen, Y.X., Li, Z.H., Zhang, S.Q. and Peng, F. (2016) Branched Hydrogenated TiO2 Nanorod Arrays for Improving Photocatalytic Hydrogen Evolution Performance under Simulated Solar Light. International Journal of Hydrogen Energy, 41, 20192-20197.
https://doi.org/10.1016/j.ijhydene.2016.09.029
[8] Wang, G.M., Wang, H.Y., Ling, Y.C., Tang, Y.C., Yang, X.Y., Robert, C., Fitzmorris, C.C., Zhang, J.Z. and Li, Y. (2011) Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Letter, 11, 3026- 3033.
https://doi.org/10.1021/nl201766h
[9] Ge, M.Z., Cao, C.Y., Huang, J.Y., Li, S.H., Zhang, S.N., Deng, S., Li, Q.S., Zhang, K.Q. and Lai, Y.K. (2016) Synthesis, Modification, and Photo/Photoelectrocatalytic Degradation Applications of TiO2 Nanotube Arrays: A Review. Nanotechnology Reviews, 5, 75-112.
https://doi.org/10.1515/ntrev-2015-0049
[10] Chiarello, G.L., Zuliani, A., Ceresoli, D., Martinazzo, R. and Selli, E. (2016) Exploiting the Photonic Crystal Properties of TiO2 Nanotube Arrays to Enhance Photocatalytic Hydrogen Production. ACS Catalysis, 6, 1345-1353.
https://doi.org/10.1021/acscatal.5b02817
[11] Fernandez-Domene, R.M., Sanchez-Tovar, R., Sanchez-Gonzalez, S. and Garcia-Anton, J. (2016) Photoelectrochemical Characterization of Anatase-Rutile Mixed TiO2 Nanosponges. International Journal of Hydrogen Energy, 41, 18380-18388.
https://doi.org/10.1016/j.ijhydene.2016.08.012
[12] Ma, Y., Wang, X.L., Jia, Y.S., Chen, X.B., Han, H.X. and Li, C. (2014) Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations. Chemical Reviews, 114, 9987-10043.
https://doi.org/10.1021/cr500008u
[13] Huang, P.C., Sung, C.C., Chou, A.H., Kao, J.Y. and Hsu, C.Y. (2016) Preparation and Characterization of TiO2 Photocatalyst Thin Films Using Radio Frequency Sputtering. Journal of Computational Theoretical Nanoscience, 13, 982- 988.
https://doi.org/10.1166/jctn.2016.4902
[14] Li, A.L., Wang, Z.L., Yin, H., Wang, S.Y., Yan, P.L., Huang, B.K., Wang, X.L., Li, R.G., Zong, X., Han, H.X. and Li, C.(2016) Understanding the Anatase-Rutile Phase Junction in Charge Separation and Transfer in a TiO2 Electrode for Photoelectrochemical Water Splitting. Chemical Science, 7, 6076-6082.
[15] Sutiono, H., Tripathi, A.M., Chen, H.M., Chen, C.H., Su, W.N., Chen, L.Y., Dai, H.J. and Hwang, B.J. (2016) Facile Synthesis of [101]-Oriented Rutile TiO2 Nanorod Array on FTO Substrate with a Tunable Anatase-Rutile Heterojunction for Efficient Solar Water Splitting. ACS Sustainable Chemistry & Engineering, 4, 5963-5971.
https://doi.org/10.1021/acssuschemeng.6b01066
[16] Yao, H.Z., Fu, W.Y., Liu, L., Li, X., Ding, D., Su, P.Y., Feng, S. and Yang, H.B. (2016) Hierarchical Photoanode of Rutile TiO2 Nanorods Coupled with Anatase TiO2 Nanosheets Array for Photoelectrochemical Application. Journal of Alloys and Compounds, 680, 206-211.
https://doi.org/10.1016/j.jallcom.2016.04.133
[17] Cao, F.R., Xiong, J., Wu, F.L., Liu, Q. Shi, Z.W., Yu, Y.H., Wang, X.D. and Li, L. (2016) Enhanced Photoelectrochemical Performance from Rationally Designed Anatase/Rutile TiO2 Heterostructures. ACS Applied Materials & Interfaces, 8, 12239-12245.
https://doi.org/10.1021/acsami.6b03842
[18] Hoyer, P. (1996) Formation of a Titanium Dioxide Nanotube Array. Langmuir, 12, 1411-1413.
https://doi.org/10.1021/la9507803
[19] Wang, W.H., Dong, J.Y., Ye, X.Z., Li, Y., Ma, Y.R. and Qi, L. (2016) Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting. Small, 12, 1469-1478.
https://doi.org/10.1002/smll.201503553
[20] Fujishima, M., Nakabayashi, Y., Takayama, K., Kobayashi, H. and Tada, H. (2016) High Coverage Formation of CdS Quantum Dots on TiO2 by the Photocatalytic Growth of Preformed Seeds. Journal of Physical Chemistry C, 120, 17365-17371.
[21] Liu, C.J., Yang, Y.H., Li, W.Z., Li, J., Li, Y.M. and Chen, Q.Y. (2016) A Novel Bi2S3 Nanowire @ TiO2 Nanorod Heterogeneous Nanostructure for Photoelectrochemical Hydrogen Generation. Chemical Engineering Journal, 302, 717-724.
https://doi.org/10.1016/j.cej.2016.05.126
[22] Chan, C.H., Samikkannu, P. and Wang, H.W. (2016) Fe2O3/CdS Co-Sensitized Titania Nanotube for Hydrogen Generation from Photocatalytic Splitting Water. International Journal of Hydrogen Energy, 41, 17818-17825.
https://doi.org/10.1016/j.ijhydene.2016.08.026
[23] Fan, W.Q., Yu, X.Q., Lu, H.C., Bai, H.Y., Zhang, C. and Shi, W.D. (2016) Fabrication of TiO2 /RGO/Cu2O Heterostructure for Photoelectrochemical Hydrogen Production. Applied Catalysis B: Environment, 181, 7-15.
https://doi.org/10.1016/j.apcatb.2015.07.032