MP  >> Vol. 7 No. 3 (May 2017)

    两对相邻等质量的四体共圆中心构型
    Four-Body Co-Circular Central Configurations with Two Pairs of Adjacent Equal Masses

  • 全文下载: PDF(384KB) HTML   XML   PP.37-43   DOI: 10.12677/MP.2017.73006  
  • 下载量: 284  浏览量: 517   国家自然科学基金支持

作者:  

马明俊,邓义杨:四川大学数学学院,四川 成都

关键词:
四体共圆问题中心构型等腰梯形Four-Body Co-Circular Problem Central Configurations Isosceles Trapezoid

摘要:

Cors和Roberts在2012年的文章[1]中证明了:在四体共圆中心构型中,若两对相邻质点的质量相等,则该共圆中心构型一定是等腰梯形。但是证明方法很复杂,本文采用有向面积方法并结合相对距离坐标给出了一个简洁证明。

In 2012, Cors and Roberts [1] showed that the four-body co-circular central configuration is an isosceles trapezoid when two pairs of adjacent masses are equal. However, their proof is very complicated. In this paper, we give a simpler proof by using the method of oriented areas and mutual coordinates.

文章引用:
马明俊, 邓义杨. 两对相邻等质量的四体共圆中心构型[J]. 现代物理, 2017, 7(3): 37-43. https://doi.org/10.12677/MP.2017.73006

参考文献

[1] Cors, M. and Roberts, E. (2012) Four-Body Co-Circular Central Configurations. Nonlinearity, 25, 343-370.
https://doi.org/10.1088/0951-7715/25/2/343
[2] Wintner, A. (1941) The Analytical Foundations of Celestial Mechanics. Princeton Math. Series 5. Princeton University Press, Princeton.
[3] Cayley, A. (1841) On a Theorem in the Geometry of Position. Cambridge Mathematical Journal, 2, 267-271.
[4] Dziobek, O. (1900) Über Einen Merkwürdigen Fall des Viclkörpronlems. Astronomische Nachrichten, 152, 32-46.
https://doi.org/10.1002/asna.19001520302
[5] Perez-Chavela, E. and Santoprete, M. (2007) Convex Four-Body Central Configurations with Some Equal Masses. Archive for Rational Mechanics and Analysis, 185, 481-494.
https://doi.org/10.1007/s00205-006-0047-z
[6] Deng, Y., Li, B. and Zhang, S. (2017) Four-Body Central Configurations with Adjacent Equal Masses. Journal of Geometry and Physics, 114, 329-335.
https://doi.org/10.1016/j.geomphys.2016.12.009