MS  >> Vol. 7 No. 3 (May 2017)

    HA-DAP水凝胶的制备及其对内皮细胞生物学行为的影响
    Preparation and Its Influence of HA-DAP Hydrogel on the Biological Behavior of the Endothelial Cells

  • 全文下载: PDF(591KB) HTML   XML   PP.323-330   DOI: 10.12677/MS.2017.73044  
  • 下载量: 103  浏览量: 139   国家自然科学基金支持

作者:  

许方亭,崔园园,陈俊英,黄 楠:西南交通大学材料学院材料先进技术教育部重点实验室,四川 成都

关键词:
水凝胶透明质酸内皮细胞Hydrogel Hyaluronic Acid Endothelial Cells

摘要:

制备不同多巴胺反应浓度的透明质酸水凝胶,研究其对内皮细胞粘附行为、增殖能力与活性的影响。通过紫外可见光谱(UVVis)检测透明质酸与多巴胺反应后是否有酚羟基特征吸收峰,通过扫描电镜观察水凝胶的断面形貌,通过溶胀平衡法测试水凝胶的溶胀率,通过荧光染色法和CCK-8细胞增殖活性检测手段对HA-DAP (HA:透明质酸,DAP:多巴胺)水凝胶表面内皮细胞生长行为进行评价。结果显示,成功制备出不同多巴胺反应浓度的透明质酸水凝胶,透明质酸水凝胶的孔洞直径在30~120 μm,随着多巴胺浓度增加,凝胶孔洞直径呈减小趋势。同时,多巴胺反应浓度为3 mg/ml的透明质酸水凝胶的细胞相容性(内皮细胞粘附,内皮细胞静态培养1天、3天数量、形态和活性)优于其他样品。

The ideal biomaterials surface for vascular contacting should be endothelialization ability. To im-prove the inducing endothelialization ability of material surface, this research focuses on a new technique of hyaluronic acid-dopamine (HA-PDA) hydrogel. Several bio-functional HA-PAD hydrogel made of dopamine and hyaluronic acid in different ratios were fabricated. The catechol was determined by ultraviolet-visible (UVVis) spectroscopy at 280 nm. The cross-sectional morphology of the hydrogels was observed by scanning electron microscopy (SEM), and the swelling rate of the hydrogels was measured by the swelling equilibrium method. The morphology and quantity of cells on the surface were detected by rhodamine staining and CCK-8. The results showed that the HA-DAP hydrogel made of dopamine and hyaluronic acid in different ratios was successfully constructed. The pore size of HA-DAP hydrogel was 30 - 120 μm, and the pore size of hydrogel decreased with the increase of dopamine concentration. HA-DAP3 (hyaluronic acid: 10 mg/ml, dopamine: 3 mg/ml) provided favorable cell compatibility according to the endothelial cells adhesion, proliferation and its biological activity based the CCK-8 measurements. We hope that HA-DAP hydrogel can provide more helpful exploration and application for promoting endothelialization on cardiovascular stents.

文章引用:
许方亭, 崔园园, 陈俊英, 黄楠. HA-DAP水凝胶的制备及其对内皮细胞生物学行为的影响[J]. 材料科学, 2017, 7(3): 323-330. https://doi.org/10.12677/MS.2017.73044

参考文献

[1] Venkatraman, S., Boey, F. and Lao, L.L. (2008) Implanted Cardiovascular Polymers: Natural, Synthetic and Bio-Inspired. Progress in Polymer Science, 33, 853-874.
[2] Kalinczuk, L., Demkow, M., Mintz, G.S., Cedro, K., Debski, A., Ciszewski, M., Ciszewski, A., Kruk, M., Karcz, M., Warminski, G., Pregowski, J.,Chmielak, Z., Witkowski, A., Lubiszewska, B. and Ruzyllo, W. (2009) Impact of Different Restenting Strategies on Expansion of a Drug-Eluting Stent Implanted to Treat Bare-Metal Stent Restenosis. Journal of the American College of Cardiology, 104, 531-537.
[3] Avci-Adali, M., Ziemer, G. and Wendel, H.P. (2010) Induction of EPC Homing on Bio-Functionalized Vascular Grafts for Rapid in Vivo Self-Endothelialization—A Review of Current Strategies. Biotechnology Advances, 28, 119-129.
[4] Shintani, S., Murohara, T., et al. (2001) Mobilization of Endothelial Progenitor Cells in Patients with Acute Myocardial Infarction. Endothelial Progenitor Cells in MI, 103, 2776-2779.
[5] Tibbitt, M.W. and Anseth, K.S. (2009) Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture. Biotechnology and Bioengineering, 103, 655-663.
[6] Rufaihah, A.J. and Seliktar, D. (2016) Hydrogels for Therapeutic Cardiovascular Angiogenesis. Advanced Drug Delivery Reviews, 96, 31-39.
[7] Fujita, M., Ishihara, M., Morimoto, Y., et al. (2005) Efficacy of Photocrosslinkable Chitosan Hydrogel Containing Fibroblast Growth Factor-2 in a Rabbit Model of Chronic Myocardial Infarction. Journal of Surgical Research, 126, 27-33.
[8] Lee, K.Y., Peters, M.C. and Mooney, D.J. (2003) Comparison of Vascular Endothelial Growth Factor and Basic Fibroblast Growth Factor on Angiogenesis in SCID Mice. Journal of Controlled Release, 87, 49-56.
[9] Jha, A.K., Mathur, A., Svedlund, F.L., et al. (2015) Molecular Weight and Concentration of Heparin in Hyaluronic Acid-Based Matrices Modulates Growth Factor Retention Kinetics and Stem Cell Fate. Journal of Controlled Release, 209, 308-316.
[10] Lei, Y., Rahim, M., Ng, Q., et al. (2011) Hyaluronic Acid and Fibrin Hydrogels with Concentrated DNA/PEI Polyplexes for Local Gene Delivery. Journal of Controlled Release, 153, 255-261.
[11] Kim, J., Kim, I.S., Cho, T.H., et al. (2007) Bone Regeneration Using Hyaluronic Acid-Based Hydrogel with Bone Morphogenic Protein-2 and Human Mesenchymal Stem Cells. Biomaterials, 28, 1830-1837.
[12] Kim, J., Park, Y., Tae, G., et al. (2009) Characterization of Low-Molecular-Weight Hyaluronic Acid-Based Hydrogel and Differential Stem Cell Responses in the Hydrogel Microenvironments. Journal of Biomedical Materials Research Part A, 88, 967-975.
https://doi.org/10.1002/jbm.a.31947
[13] Stern, R., Asari, A.A., Sugahara, K.N. (2006) Hyaluronan Fragments: An Information-Rich System. European Journal of Cell Biology, 85, 699-715.
[14] Toole, B.P. (2001) Hyaluronan in Morphogenesis. Seminars in Cell and Developmental Biology, 12, 79-87.
https://doi.org/10.1006/scdb.2000.0244
[15] Li, J.A., Zhang, K., Chen, H.Q., Liu, T., Yang, P., Zhao, Y.C., et al. (2014) A Novel Coating of Type IV Collagen and Hyaluronic Acid on Stent Material-Titanium for Promoting Smooth Muscle Cell Contractile Phenotype. Materials Science and Engineering C, 38, 235-243.
[16] Sever, M.J., Weisser, J.T., Monahan, J., Srinivasan, S. and Wiilker, J. (2004) Metal-Mediated Cross-Linking in the Generation of a Marine-Mussel Adhesive. Angewandte Chemie, 116, 454-456.
https://doi.org/10.1002/ange.200352759
[17] Hong, S., Yang, K., Kang, B., et al. (2013) Hyaluronic Acid Catechol: A Biopolymer Exhibiting a pH-Dependent Adhesive or Cohesive Property for Human Neural Stem Cell Engineering. Advanced Functional Materials, 23, 1774- 1780.
https://doi.org/10.1002/adfm.201202365
[18] 瞿文军. 多巴胺对体外培养神经细胞的影响[J]. 中国老年学杂志, 2000, 19(5): 368-371.
[19] Yee, D., Hanjaya-Putra, D., Bose, V., et al. (2011) Hyaluronic Acid Hydrogels Support Cord-Like Structures from Endothelial Colony-Forming Cells. Tissue Engineering Part A, 17, 1351-1361.