有机化学研究  >> Vol. 5 No. 2 (June 2017)

异质富勒烯C26N4的芳香性和动力学稳定性研究
The Study on the Aromaticity and Kinetic Stability of Heterofullerene C26N4

DOI: 10.12677/JOCR.2017.52016, PDF, HTML, XML, 下载: 877  浏览: 1,822  国家自然科学基金支持

作者: 阿依古里•买土送, 阿布力克木•克热木, 卡玛勒别克•吾买尔, 鲁提夫拉•吾守尔:新疆大学化学化工学院,新疆 乌鲁木齐市

关键词: 芳香性异质富勒烯拓扑共振能(TRE)键共振能(BRE)C26N4Aromaticity Heterofullerene Topological Resonance Energy Bond Resonance Energy C26N4

摘要: 采用拓扑共振能(Topological Resonance Energy, TRE)方法对氮原子插入在C30(D5h)异构体后形成的异质富勒烯的芳香性进行了研究,分析了氮原子的取代位置和稳定性之间的关系,解释了各种异构体的相对稳定性。最后,用最小键共振能(Minimum Bond Resonance Energy, Min BRE)方法对C30(D5h)和C26N4的动力学稳定性进行了研究。研究结果表明,C30(D5h)在中性状态下,因TRE为负值具有反芳香性,C24N4所有异构体TRE为正值具有芳香性。Min BRE方法研究结果证明了C30(D5h)C26N4的动力学不稳定性与分子中具有较高反芳香性键直接有关。TRE和min BRE方法研究结果表明,C26N4各异构体在二价阴离子状态下不仅具有较高的芳香性而且也具有较高的动力学稳定性。
Abstract: The aromaticity of heterofullerene C26N4 formed on the initial C30 cage of D5h symmetry have been systematically investigated by the topological resonance energy (TRE). The relationships between the stabilities of the C26N4 isomers and the sites where nitrogen atoms dope at the C30 cage have been discussed. The kinetic stability of C30(D5h), C26N4 isomers were examined by the minimum bond resonance energy (min BRE) model. The min BRE model results show that kinetic instability of these compounds are closely related to the existence of highly reactive substructures in the molecule. Both the TRE and min BRE results show that the C24N2-4 isomers were found to not only have aromaticity but also have large kinetic stability.

文章引用: 阿依古里•买土送, 阿布力克木•克热木, 卡玛勒别克•吾买尔, 鲁提夫拉•吾守尔. 异质富勒烯C26N4的芳香性和动力学稳定性研究[J]. 有机化学研究, 2017, 5(2): 120-127. https://doi.org/10.12677/JOCR.2017.52016

参考文献

[1] Guo, T., Jin, C. and Smalley, R.E. (1991) Doping Bucky: Formation and Properties of Boron Doped Buckminsterfull-erene. Journal of Physical Chemistry, 95, 4948-4950.
https://doi.org/10.1021/j100166a010
[2] Aihara, J. and Takata, S. (1994) Aromatic Character of Typical C60 Derivatives. Journal of Chemical Society, Perkin Transaction, 2, 65-69.
https://doi.org/10.1039/p29940000065
[3] 邓顺柳, 谢素原. 富勒烯合成化学研究进展[J]. 化学进展, 2011, 23(1): 53-64.
[4] Averdung, J., Luftmann, H., Schlachter, I. and Mattay, J. (1995) Aza-dihydro[60]fullerene in the Gas Phase. A Mass- Spectrometric and Quantum Chemical Study. Tetrahedron, 51, 6977-6982.
https://doi.org/10.1016/0040-4020(95)00361-B
[5] Hasharoni, K., Bellavia-Lund, C., Keshavarz-K, M., Srdanov, G. and Wudl, F. (1997) Light-Induced ESR Studies of the Heterofullerene Dimers. Journal of the American Chemical Society, 119, 11128-11129.
https://doi.org/10.1021/ja972002y
[6] Nuber, B. and Hirsch, A. (1996) A New Route to Nitrogen Heterofuller-enes and the First Synthesis of (C69N)2, Chemical Communications, 1421-1422.
https://doi.org/10.1039/cc9960001421
[7] Prassides, K., Keshavarz-K, M., Hummelen, J.C., Andreoni, W., Giannozzi, P., Beer, E.,Bellavia, C., Christofolini, L., Gonzalez, R., Lappas, A., Murata, Y., Malecki, M., Srdanov, V. and Wudl, F. (1996) Isolation, Structure, and Electronic Calculations of the Heterofullerene Salt K6C59N. Science, 271, 1833-1835.
https://doi.org/10.1126/science.271.5257.1833
[8] Zuo, T., Xu, L., Beavers, C.M., Olmstead, M.M., Fu, W., Crawford, D.T., Balch A.L. and Dorn, H.C. (2008) M2@C79N (M = Y, Tb): Isolation and Characterization of Stable Endohedral Metallofullerenes Exhibiting M-M Bonding Interactions inside Aza[80]fullerene Cages. Journal of the American Chemical Society, 130, 12992-12997.
https://doi.org/10.1021/ja802417d
[9] Stevenson, S., Ling, Y., Coumbe, C.E., Mackey, M.A., Confait, B.S., Phillips, J.P., Dorn, H.C. and Zhang, Y.J. (2009) Preferential Encapsulation and Stability of La3N Cluster in 80 Atom Cages: Experimental Synthesis and Computational Investigation of La3N@C79N. Journal of the American Chemical Society, 131, 17780-17782.
https://doi.org/10.1021/ja908370t
[10] Fu, W.J., Zhang, J.Y., Fuhrer, T., Champion, H., Furukawa, K., Kato, T., Mahaney, J.E., Burke, B.G., Williams, K.A., Walker, K., Dixon C., Ge, J.C., Shu, C.Y., Harich, K. and Dorn, H.C. (2011) Gd2@C79N: Isolation, Characterization, and Monoadduct Formation of a Very Stable Heterofullerene with a Magnetic Spin State of S = 15/2. Journal of the American Chemical Society, 133, 9741-9750.
https://doi.org/10.1021/ja202011u
[11] Chen, C.B. (2011) Synthesis, Isolation and Properties of Titanium-Based Novel Endohedral Fullerenes. Ph.D. Dissertation, University of Science and Technology of China, Hefei.
[12] Fowler, P.W. and Manolopoulos, D.E. (1995) An Atlas of Fullerenes. Oxford University, Oxford.
[13] Kroto, H.W. (1987) The Stability of the Fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature, 329, 529-531.
https://doi.org/10.1038/329529a0
[14] Lu, X. and Chen, Z. (2005) Curved Pi-Conjugation, Aromaticity and the Related Chemistry of Small Fullerenes (https://doi.org/10.1021/cr030093d
[15] Chen, Z. and Thiel, W. (2003) Performance of Semiempirical Methods in Fullerene Chemistry: Relative Energies and Nucleus-Independent Chemical Shifts. Chemical Physics Letters, 367, 15-25.
https://doi.org/10.1016/S0009-2614(02)01660-3
[16] Aihara, J. (1976) A New Definition of Dewar Type Reso-nance Energies. Journal of the American Chemical Society, 98, 2750-2758.
https://doi.org/10.1021/ja00426a013
[17] Aihara, J. and Hosoya, H. (1993) Aromaticity of Multiply Charged Fullerene Ions. Bulletin of Chemical Society of Japan, 66, 1955-1958.
https://doi.org/10.1246/bcsj.66.1955
[18] Manoharan, M., Balakrishnarajan, M. and Venuvanalingam, P. (1994) Topological Resonance Energy Predictions of the Stability of Fullerene Clusters. Chemical Physics Letters, 222, 95-100.
https://doi.org/10.1016/0009-2614(94)00278-9
[19] 阿布力克木•克热木, 陈佳丽, 阿布力米提•阿布都卡德尔. 硼/氮掺杂富勒烯C20芳香性的争论[J]. 高等学校化学学报, 2008, 29(9): 1810-1815.
[20] Abdukadir, A., Kerim, A. and Tawar, T. (2016) General Rules for Predicting the Local Aromaticity of Carbon Polyhedral. Chemical Physics Letters, 643, 47-52.
https://doi.org/10.1016/j.cplett.2015.11.019
[21] Aihara, J. (1995) Bond Resonance Energy and Verification of the Isolated Pentagon Rule. Journal of the American Chemical Society, 117, 4130-4136.
https://doi.org/10.1021/ja00119a029
[22] Aihara, J. (2001) Kinetic Stability of Metallofullerenes as Predicted by the Bond Resonance Energy. Physical Chemistry Chemical Physics, 3, 1427-1431.
https://doi.org/10.1039/b100238o
[23] Aihara, J. (2002) Many Reactive Fullerenes Tend to Form Stable Metallofullerenes. Journal of Physical Chemistry, A, 106, 11371-11374.
https://doi.org/10.1021/jp021390+
[24] Aihara, J. (2001) Kinetic Stability of Carbon Cages in Non-Classical Metallofullerenes. Chemical Physics Letters, 343, 465-469.
https://doi.org/10.1016/S0009-2614(01)00719-9
[25] Van-Catledge, F.A. (1980) A Pariser-Parr-Pople-Based Set of Hückel Molecular Orbital Parameterst. Journal of Organic Chemistry, 45, 4801-4802.
https://doi.org/10.1021/jo01311a060
[26] Fan, M.F., Lin, Z.Y. and Yang, S.H. (1995) Closed-Shell Electronic Requirements for Small Fullerene Cage Structure. Journal of Molecular Structure (Theochem), 337, 231-240.
https://doi.org/10.1016/0166-1280(95)04137-U
[27] Ilić, P. and Trinajstić, N. (1980) Topological Resonance En-ergy of Conjugated Ions, Radicals, and Ion Radicals. Journal of Organic Chemistry, 45, 1738-1748.
https://doi.org/10.1021/jo01298a002
[28] Ewels, C.P. (2006) Nitrogen Violation of the Isolated Pentagon Rule. Nano Letters, 6, 890-895.
https://doi.org/10.1021/nl051421n