基于粒子法的熔融物碎片在铅冷却剂内运动行为模拟
Simulation of Molten Debris Transportation Behavior in Lead Coolant Based on Mps Method
DOI: 10.12677/NST.2017.53018, PDF, HTML, XML, 下载: 1,664  浏览: 4,315  科研立项经费支持
作者: 隋丹婷, 陆道纲:华北电力大学 核科学与工程学院,北京;非能动核能安全技术北京市重点实验室,北京;王艺萍:国核示范电站有限责任公司,山东 威海
关键词: 粒子法堆芯熔融物铅冷却剂Particle Method Molten Debri Lead Coolant
摘要: 研究严重事故工况下堆芯熔融物在一回路内的迁移及分布特性对于制定严重事故缓解措施及应急策略具有一定意义。本文通过定义熔融物颗粒的产生条件、入口速度、重力、粘性力、粒子数密度计算模型,完成粒子法程序MPS中固体颗粒物及铅/铅铋流体计算模型的开发。利用改进后的程序计算Zr-4合金碎片及二氧化铀碎片在不同的冷却剂流速及冷却剂粘性条件下的运动行为,分析熔融物密度、冷却剂流速、冷却剂粘性对熔融物迁移行为的影响,初步验证了应用粒子法开展熔融物运动行为研究的可行性,为后续研究及实验验证提供了基础。
Abstract: Investigation on the migration and distribution characteristics of the core molten debri in primary loop under severe accident is significant for the development of accident mitigation and emergency response strategies. Solid debris and lead/lead and bismuth calculation model is developed through defining the debri generation conditions, inlet velocity, gravity, viscous force, and particle number density model. Transportation behavior of Zr-4 alloy debri and uranium dioxide in lead coolant under different coolant velocity and viscosity are simulated with modified MPS code; effects of debri density, coolant mass flow rate and viscosity on transportation of debri are analyzed. Feasi-bility of the application of MPS method in the investigation of molten debri transportation behavior in lead coolant is preliminarily verified, which also provides the basis for subsequent further re-search and experimental validation.
文章引用:隋丹婷, 陆道纲, 王艺萍. 基于粒子法的熔融物碎片在铅冷却剂内运动行为模拟[J]. 核科学与技术, 2017, 5(3): 134-141. https://doi.org/10.12677/NST.2017.53018

参考文献

[1] Lucy, L.B. (1977) A Numerical Approach to the Testing of the Fission Hypothesis. Astronomical Journal, 82, 1013- 1024.
https://doi.org/10.1086/112164
[2] Koshizuka, S. and Oka, Y. (1996) Moving-Particle Semi-Implicit Method of Frag-mentation of Incompressible Fluids. Nuclear Science Engineering, 123, 421-434.
[3] Koshizuka, S., Okamoto, K. and Furuta, K. (1998) Development of Computational Techniques for Nuclear Engineering. Progress in Nuclear Energy, 32, 209-222.
https://doi.org/10.1016/S0149-1970(97)00017-6
[4] Koshizuka, S., Nobe, A. and Oka, Y. (1998) Numerical Analysis of Breaking Waves Using the Moving Particle Semi- Implicit Method. International Journal for Numerical Methods in Fluids, 26, 751-769.
https://doi.org/10.1002/(SICI)1097-0363(19980415)26:7<751::AID-FLD671>3.0.CO;2-C
[5] Nomura, K., Koshizuka, S., Oka, Y., et al. (2001) Numerical Analysis of Droplet Breakup Behavior Using Particle Method. Journal of Nuclear Science and Technology, 38, 1057-1064.
https://doi.org/10.1080/18811248.2001.9715136
[6] Yoon, H.Y., Koshizuka, S. and Oka, Y. (2001) Direct Calculation of Bubble Growth, Departure, and Rise in Nucleate Pool Boiling. International Journal of Multiphase Flow, 27, 277-298.
https://doi.org/10.1016/S0301-9322(00)00023-9
[7] Heo, S., Koshizuka, S. and Oka, Y. (2002) Numerical Analysis of Boiling on High Heat-Flux and High Subcooling Condition Using MPS-MAFL. International Journal of Heat and Mass Transfer, 45, 2633-2642.
https://doi.org/10.1016/S0017-9310(02)00011-X
[8] Ikeda, H., Koshizuka, S., Oka, Y., et al. (2001) Numerical Analy-sis of Jet Injection Behavior for Fuel-Coolant Interaction Using Particle Method. Journal of Nuclear Science and Technology, 38, 174-182.
https://doi.org/10.1080/18811248.2001.9715019
[9] Koshizuka, S., lkeda, H. and Oka, Y. (1999) Numerical Analysis of Fragmentation Mechanisms in Vapor Explosions. Nuclear Engineering and Design, 189, 423-433.
https://doi.org/10.1016/S0029-5493(98)00270-2
[10] Chikazawa, Y., Koshizuka, S. and Oka, Y. (2001) A Particle Method for Elastic and Visco-Plastic Structure and Fluid- Structure Interactions. Computational Mechanics, 27, 97-106.
https://doi.org/10.1007/s004660000216
[11] 陈荣华, 田文喜, 左娟莉, 苏光辉, 秋穗正, 许建辉. 基于MPS方法的液态铅铋合金内气泡上升流数值模拟[J]. 核动力工程, 2011, 32(5): 96-99.
[12] Tian, W., Ishiwatari, Y., Ikejiri, S., Yamakawa, M. and Oka, Y. (2009) Numerical Simulation on Void Bubble Dyna- mics Using Moving Particle Semi-Implicit Method. Nuclear Engineering and Design, 239, 2382-2390.
https://doi.org/10.1016/j.nucengdes.2009.06.018
[13] Tian, W., Ishiwatari, Y., Ikejiri, S., Yamakawa, M. and Oka, Y. (2010) Numerical Computation of Thermally Controlled Steam Bubble Condensation Using Moving Particle Semi-Implicit (MPS) Method. Annals of Nuclear Energy, 37, 5-15.
https://doi.org/10.1016/j.anucene.2009.10.011
[14] 左娟莉, 田文喜, 秋穗正, 苏光辉. 铅铋合金冷却反应堆内气泡提升泵提升自然循环能力的理论研究[J]. 原子能科学技术, 2013, 47(7): 1155-1161.
[15] 卫媛媛, 陆道纲. 基于移动粒子法的快堆自由表面流体对容器顶盖冲击现象的数值模拟[J]. 原子能科学技术, 2009, 10(9): 910 -914.