浮动核电站给水系统瞬态分析
Analysis on Transient Working Conditions for Main Water Feeding System of Floating Nuclear Power
DOI: 10.12677/NST.2017.53024, PDF, HTML, XML, 下载: 1,630  浏览: 3,416  国家科技经费支持
作者: 彭明民, 管晓纳*, 李浩杰*, 刘现星, 李刘杰:武汉第二船舶设计研究所,湖北 武汉
关键词: 浮动核电站给水系统瞬态工况失水量给水流量Floating Nuclear Power Main Water Feeding System Transient Conditions Water Loss Feedwater Flow Rate
摘要: 基于浮动核电站主给水系统,利用Flowmaster仿真软件建立了从除氧器出口至蒸汽发生器出口的给水系统模型。对给水系统四种瞬态过程中蒸汽发生器的水量变化进行分析:额定工况下一台给水泵跳闸,备用泵连锁启动;额定工况下一台给水泵跳闸,备用泵连锁启动失败;带零负荷时主给水调节阀故障全开;带满负荷时主给水调节阀故障全开。仿真结果表明,在给水泵切换瞬态工况下,蒸汽发生器的失水量在要求的范围内,不会触发反应堆跳停。并且根据瞬态工况的蒸汽发生器上水量的变化曲线,得到了保守的给水流量值作为核岛安全分析的输入,确保这些瞬态工况下堆芯不发生DNB。
Abstract: Based on the floating nuclear power plant main water feeding system, the water feeding process model from the outlet of deaerator to the outlet of the steam generator is established by using a one-dimensional fluid simulation software Flowmaster. The change of water quantity of steam generator in four transient processes of water supply system is analyzed, includes: a water pump trip in rated state, and standby pump interlock start; a water pump trip in rated state, and standby pump interlock start; main feed-regulating valve is in full open due to failure under no load; main feed-regulating valve is in full open due to failure under full load. The simulation results show that: steam generator water level changes within the scope of the requirements under the feed pump switching transient conditions, which cannot trip the reactor. And according to steam generator water supply curves under the transient conditions, the conservative water flow value is obtained, which is an input to the nuclear island safety analysis, and to make sure the reactor core do not departure from nucleate boiling under these transient conditions.
文章引用:彭明民, 管晓纳, 李浩杰, 刘现星, 李刘杰. 浮动核电站给水系统瞬态分析[J]. 核科学与技术, 2017, 5(3): 185-193. https://doi.org/10.12677/NST.2017.53024

参考文献

[1] Zhang, S.B., Luo, B.X., Qiao, X.B., et al. (2011) Feed Water System Transient Analysis of Nuclear Power Station. Advanced Materi-als Research, 347-353, 1557-1560.
https://doi.org/10.4028/www.scientific.net/AMR.347-353.1557
[2] 吴清, 卢毅力. 秦山二期工程瞬态事故分析[J]. 核动力工程, 2003, 24(S1): 56-60.
[3] 付锴, 马立, 李洪凤. 利用Flowmaster对水锤现场的研究[J]. 制冷与空调, 2015, 29(5): 597-600.
[4] 陈海松, 张锡中, 孙永盛, 等. 基于FLOWMASTER的工程机械热平衡仿真分析[J]. 矿山机械, 2007(6): 118-121.
[5] 杨小华, 彭雪平, 罗必雄, 等. CPR1000核电常规岛工艺设计技术研究[M]. 武汉: 中国地质大学出版社, 2007.
[6] Luo, F., Zhou, T., Cheng, W. and Su, Z. (2012) Flowmaster in the Application of Auxiliary Feedwater Sys-tem’s Transient Operation. Power & Energy Engineering Conference, 2012, 1-5.
[7] 李遵基. 热工自动控制系统[M]. 北京: 中国电力出版社, 2004.
[8] 王晓东, 黄涛. CPR1000核电站主给水系统稳态及瞬态工况分析[J]. 吉林电力, 2014, 42(2): 39-41.
[9] 贾祥, 安婕铷, 靖剑平. AP1000核电厂主给水管线断裂事故瞬态特性分析[J]. 原子能科学技术, 2016, 50(8): 1422-1427.