APP  >> Vol. 7 No. 11 (November 2017)

    宽广温度压强下RbxC60 (x = 3,4,6)的热力学性质
    Thermodynamic Properties of RbxC60 (x = 3,4,6) at Wide Temperature and Pressure

  • 全文下载: PDF(413KB) HTML   XML   PP.313-319   DOI: 10.12677/APP.2017.711039  
  • 下载量: 685  浏览量: 1,614   科研立项经费支持

作者:  

杨 维,刘 鸿,戴松晖:成都大学信息科学与工程学院,四川 成都

关键词:
自由体积理论RbxC60 (x = 346)指数势热力学性质Free Volume Theory RbxC60 (x = 346) Exponential Potential Thermodynamic Properties

摘要:

本文基于自由体积理论(FVT)应用解析平均场近似的方法对RbxC60 (x = 3,4,6)的热力学性质进行研究。根据双指数势模型和文献中的压缩实验数据,拟合得到三套势参数,并对相应的势函数曲线进行了比较分析。在宽广温度和压强下对三种碱金属掺杂富勒烯RbxC60 (x = 3,4,6)的热力学量,包括热膨胀、体积模量、等容热容量、亥姆霍兹自由能进行了计算和分析。我们采用的方法不仅计算简单而且结果与文献中实验数据非常一致。

Based on the free volume theory (FVT), the thermodynamic properties of RbxC60 (x = 3,4,6) are studied by means of analytic mean field approximation. According to the double exponential po-tential model and the compression experimental data in the literature, three sets of potential pa-rameters are obtained, and the corresponding potential function curves are compared and ana-lyzed. The thermodynamic properties of three alkali metal doped fullerene RbxC60 (x = 3,4,6), in-cluding thermal expansion, bulk modulus, constant volume heat capacity and Helmholtz free en-ergy, were calculated and analyzed under wide temperature and pressure. Our method is not only simple in calculation, but also in good agreement with the experimental data in the literature.

文章引用:
杨维, 刘鸿, 戴松晖. 宽广温度压强下RbxC60 (x = 3,4,6)的热力学性质[J]. 应用物理, 2017, 7(11): 313-319. https://doi.org/10.12677/APP.2017.711039

参考文献

[1] Stetzer, M.R., Heiney, P.A. and Stephens, P.W. et al. (2000) Structure and Phase Transitions of the 6,6-Cyclopropane Isomer of C61H2. Physical Review B, 62, 9305-9316.
https://doi.org/10.1103/PhysRevB.62.9305
[2] Sundqvistm, B. (1995) Phase Diagram, Structure, and Disorder in C60 below 300 K. Solid State Communications, 93, 109-112.
https://doi.org/10.1016/0038-1098(94)00750-0
[3] Yao, M.G., Sundqvist, B. and Wagberg, T. (2009) Reversible Pressure-Driven Nanoscale Phase Separation in Rb4C60. Physical Review B, 79, 081403-081406.
https://doi.org/10.1103/PhysRevB.79.081403
[4] Kuntscher, C.A. and Bendele, G.M. (1997) Alkali-Metal Stoichiometry and Structure of K4C60 and Rb4C60. Physical Review B, 55, 3366-3369.
https://doi.org/10.1103/PhysRevB.55.R3366
[5] Zhou, O., Vaughan, G.B.M., Zhu, Q. et al. (1992) Compressibility of M3C60 Fullerene Superconductors: Relation between Tc and Lattice Parameter. Science, 255, 833-835.
https://doi.org/10.1126/science.255.5046.833
[6] Diederichs, J., Schilling, J.S., Herwig, K.W., et al. (1997) Dependence of the Superconducting Transition Temperature and Lattice Parameter on Hydrostatic Pressure for Rb3C60. Journal of Physics and Chemistry of Solids, 58, 123-132.
[7] Fietz, W.H., Ludwigand, H.A., Hornung, F.W., et al. (1994) The Compressibility of Rb3C60 Derived by X-Ray Experiments under High Pressure. Physica C, 234, 45-48.
https://doi.org/10.1016/0921-4534(94)90052-3
[8] Kerkoud, R. Auban-Senzier, P., Jérome, D., et al. (1996) Insulator-Metal Transition in Rb4C60 under Pressure from 13C-NMR. Journal of Physics and Chemistry of Solids, 57, 143-152.
https://doi.org/10.1016/0022-3697(95)00113-1
[9] Poloni, R., Fernandez-Serra, M.V., Le Floch, S., et al. (2008) Pressure-Induced Deformation of the C60 Fullerene in Rb6C60 and Cs6C60. Physical Review B, 77, 035429.
https://doi.org/10.1103/PhysRevB.77.035429
[10] Sabouri-Dodaran, A.A., Marangolo, M., Bellin, C. et al. (2004) Equations of state of RbxC60 (x=3, 4, and 6). Physical Review B, 70, 174114.
https://doi.org/10.1103/PhysRevB.70.174114
[11] 金家骏. 分子热力学[M]. 北京: 科学出版社, 1990: 255-264.
[12] Wang, Y., Chen, D. and Zhang, X. (2000) Calculated Equation of State of Al, Cu, Ta, Mo, and W to 1000 GPa. Physical Review Letter, 84, 3220-3223.
https://doi.org/10.1103/PhysRevLett.84.3220
[13] Sun, J.X., Caiand, L.C., Wu, Q. et al. (2005) Equivalence of the Analytic Mean-Field Potential Approach with Free-Volume Theory and Verification of Its Applicability Based on the Vinet Equation of State. Physical Review B, 71, 024107.
https://doi.org/10.1103/PhysRevB.71.024107
[14] Yang, W., Sun, J. and Yu, X.F. (2009) Thermodynamic Properties of Cubic Boron Nitride Based on an Analytic Mean Field Approach. The European Physical Journal B, 71, 211-217.
https://doi.org/10.1140/epjb/e2009-00300-7
[15] Girifalco, L.A. (1992) Molecular Properties of C60 in the Gas and Solid Phases. Journal of Physical Chemistry, 96, 858-861.
https://doi.org/10.1021/j100181a061