# 利用LIBS对AlCl3溶液定量分析Quantitative Analysis of AlCl3 Solution Using LIBS

• 全文下载: PDF(910KB)    PP.151-156   DOI: 10.12677/APP.2018.83018
• 下载量: 603  浏览量: 2,102   国家自然科学基金支持

In this paper, the AlCl3 solution was quantitatively analyzed by laser induced plasma breakdown spectroscopy (laser-induced plasma breakdown spectroscopy). Using Al as internal standard ele-ments in the experiment, the configuration of different concentrations of AlCl3 solution to produce plasma jet, the use of internal standard method and the spectral concentration method for quanti-tative analysis found that the spectral line area Binet concentration method standard method espe-cially good effect of low concentration of strong self absorption when using line area concentration method for calibration is more accurate.

1. 引言

LIBS液体分析主要包括定性和定量分析。定性分析较为多用于两种含不同元素物体的鉴别。定量分析一般多用于液体中元素含量分析。常用定量分析原理从内标法出发，依据元素特征谱线强度和元素浓度。但是利用谱线强度与元素浓度出发的内标法往往需要其他方法来修正或验证或比较(比如：主成分分析法，吸收光谱法，电感耦合等离子体光谱法)。但这引起操作频繁。

2. 实验

2.1. 定量分析原理

$I=aCb$ (1)

$I=aC$ (2)

$S=KI$ (3)

$S=KaC=\beta C$ (4)

2.2. 实验装置及样品制备

3. 实验结果与分析

1) 谱线强度随浓度关系

2) 利用内标法定量分析

3) 利用谱线面积–浓度法定量分析

Figure 1. Diagram of liquid plasma experiment device. (1. YAG:Nd pulse laser, 2. Lens, 3. Glass sample pool, 4. Lens, 5. Optical fiber detector, 6. Peristaltic pump, 7. Optical fiber, 8. Spectrometer (with ICCD), 9. Computer)

Figure 2. Al 396.20 nm, 394.40 nm spectral line strength with concentration variation curve

(a) (b)

Figure 3. (a) The relationship between the intensity of Al 396.20 nm spectrum line and the concentration of Al element; (b) The relationship between the intensity of Al 396.40 nm spectrum line and the concentration of Al element

Figure 4. The relationship between the spectral peak area of Al 396.20 nm spectrum line and the concentration of Al element

Figure 5. The relationship between the spectral peak area of Al 396.40 nm spectrum line and the concentration of Al element

4. 结论

 [1] 章婷婷, 舒嵘, 刘鹏希, 万雄. 远程激光诱导击穿光谱技术分析岩石元素成分[J]. 光谱学与光谱分析, 2017, 37(2): 594-598. [2] 余克强, 赵艳茹, 刘飞, 彭继宇, 何勇. 激光诱导击穿光谱技术在土壤元素检测中的应用[J]. 光谱学与光谱分析, 2016, 36(3): 827-833. [3] 黄基松, 陈巧玲, 周卫东. 激光诱导击穿光谱技术分析土壤中的Cr和Sr [J]. 光谱学与光谱分析, 2009, 29(11): 3126-3129. [4] 付杰, 樊仲维, 郭喜庆, 等. 钢靶等离子体光谱时域分布特性研究[J]. 中国激光, 2017(3): 1-12. [5] 钱燕, 钟厦, 何勇, Whiddon, R., 王智化, 岑可法. 激光波长对煤激光诱导击穿光谱特性影响的试验研究[J]. 光谱学与光谱分析, 2017, 37(6): 1890-1895. [6] Cáceres, J.O., López, J.T., Telle, H.H., et al. (2001) Quantitative Analysis of Trace Metal Ions in Ice Using Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta Part B Atomic Spectroscopy, 56, 831-838. https://doi.org/10.1016/S0584-8547(01)00173-2 [7] López-Claros, M., Aglio, M.D., Gaudiuso, R., et al. (2017) Double Pulse Laser Induced Breakdown Spectroscopy of a Solid in Water: Effect of Hydrostatic Pressure on Laser Induced Plasma, Cavitation Bub-ble and Emission Spectra. Spectrochimica Acta Part B Atomic Spectroscopy, 133, 63-71. https://doi.org/10.1016/j.sab.2017.02.010 [8] 陈凯, 陆继东, 李俊彦. 钢液中多元素的LIBS实时定量分析[J]. 光谱学与光谱分析, 2011, 31(3): 823-826. [9] 宋超, 张亚维, 高勋. 基于激光诱导击穿光谱技术的混合溶液重金属元素检测[J]. 光谱学与光谱分析, 2017, 37(6): 1885-1889.