实时神经反馈训练的原理及应用
The Mechanisms and Application of Real-Time Neurofeedback Training
DOI: 10.12677/AP.2019.93060, PDF, HTML, XML, 下载: 824  浏览: 5,450 
作者: 唐炎程:西南大学心理学部,重庆
关键词: 神经反馈自我调节实时磁共振成像EEGNeurofeedback Self-Regulation Real-Time MRI EEG
摘要: 实时神经反馈训练指的是借助各类仪器实时提取大脑活动信号,以合适的方式反馈给被试,指导其调节脑活动,并最终实现行为变化的一种训练方法。这一方法既可以有效地探明特定脑活动与行为之间的关联,同时可以作为一种有效的训练方法应用于临床实践之中。目前神经反馈在很多科学研究和临床研究中都得到了应用,本文将主要就其科学原理、实验范式及其应用进行阐述。
Abstract: The real-time neurofeedback protocols measure the brain activity signal and display it in real time in a visual, auditory or any other form to participants, which in turn facilitates participants’ regulation on the activity, and eventually realize behavioral changes. This method can effectively detect the causal relationship between the targeted brain activity and the behavior, and it can also be applied to clinical treatments. Nowadays, the neurofeedback training has been used in multiple fields, including the researches of emotion, attention and perception. And this method can also be supplemental treatment for some mental disorders like ADHD, Alzheimer disease and depression. In this review, we briefly discuss the mechanisms of neurofeedback training, its typical experiment protocol and its application.
文章引用:唐炎程 (2019). 实时神经反馈训练的原理及应用. 心理学进展, 9(3), 486-493. https://doi.org/10.12677/AP.2019.93060

1. 引言

如今,愈发高压的社会环境提升了研究者们对于如何增强个体认知能力的兴趣,随着科技的进步,新的提升个体认知能力的方法与手段也层出不穷,而神经反馈训练也是其中一员。神经反馈训练是随着神经活动记录技术逐渐发展成熟而兴起的一类生物反馈技术,之前研究以基于脑电信号的神经反馈训练为主(Corlier et al., 2016; Nan et al., 2012; Staufenbiel, Brouwer, Keizer, & van Wouwe, 2014)。近些年随着实时磁共振成像技术的发展,由于MRI技术能够提供更精确的空间定位,MRI神经反馈训练同样受到了研究者的重视(Dessy, Van Puyvelde, Mairesse, Neyt, & Pattyn, 2017; Zotev, Phillips, Yuan, Misaki, & Bodurka, 2014)。

神经反馈训练通过将实时测量的神经活动信号加以在线处理之后以视觉、听觉或者是其他感觉形式反馈给被试,要求被试对反馈信号进行自主调节,以实现对神经活动信号来源(脑区/脑网络)的调节,并最终调节个体的行为表现(Sitaram et al., 2017)。

2. 神经反馈训练研究范式

2.1. 神经反馈训练的基本理论

操作条件学习是解释神经反馈训练的重要理论,它认为神经反馈学习过程主要包括了刺激、反应和强化物三个元素。刺激用于引发反应的准备和实际的反应,强化物用于强化正确的反应(Beatty, 2013; Fetz, 2010; Skinner, 1984)。反应准备过程受到了预期的效果与实际效果之差的调节(Ziessler, Nattkemper, & Frensch, 2004)。神经反馈学习中,由于个体经验的缺失,在训练刚开始时个体并没有反应准备阶段。接着,随着训练的进行,个体的反应逐渐受到了反馈信号的调节和强化,能够越来越好地表现出和实验要求相符的反应(Birbaumer, Ruiz, & Sitaram, 2013)。

为了研究在神经反馈训练调节过程中大脑如何活动,前人研究对比了消极观看反馈信号和虚假反馈信号两组的脑活动差异(即直接比较调节过程的差异),结果发现了双侧前脑岛,前扣带回,辅助运动区,背内侧及背外侧前额叶和顶上小叶表现了显著的激活(Ninaus et al., 2013)。而另一项元分析研究综合了12项包含了不同的靶脑区,不同的训练策略的fMRI神经反馈训练研究,类似的,报告了前脑岛,前扣带回,背外侧前额叶以及腹外侧前额叶,内侧顶叶,基底神经节和丘脑等一系列脑区和核团与神经反馈训练的调节过程显著相关(Emmert et al., 2016)。总的来说,研究者们认为前额叶、后顶叶等脑区在神经反馈训练过程中与执行控制相关,而前脑岛等突显网络相关脑区与注意和反馈信号的加工息息相关(Craig, 2009; Tal, Doron, & Rafael, 2015)。

同时,对于神经反馈学习过程,皮层–基底神经节环路被认为是其中最重要的脑区(Birbaumer et al., 2013)。Koralek等人以蔗糖溶液和食物小球为奖赏,训练小鼠有向的调整初级运动皮层神经元活动,在经过11天的训练之后,小鼠能有效地完成训练目标,但是对于控制组而言,被敲除了表达在背侧纹状体的N-甲基-D-天冬氨酸受体(NMDARs)的小鼠无法完成学习,NMDAR在背侧纹状体上与纹状体神经元的长时程增强效应相关,影响了神经元的可塑性,这一结果充分说明了纹状体的可塑性在神经反馈学习过程中有着重要的作用(Koralek, Xin, Long, Rui, & Carmena, 2012)。

2.2. 神经反馈训练过程

经典的神经反馈训练主要包括信号提取,信号处理和计算与信号反馈三个部分。信号提取主要是基于脑电系统或是实时磁共振成像系统,实时地将神经活动信号传输出来,而信号处理和计算主要借助各类现有的处理工具箱进行信号的预处理,例如磁共振信号处理中的AFNI (Analysis of Functional Neuroimages),而信号反馈部分则是将计算的结果以各类感觉形式反馈给被试,以促进其学习。

而在神经反馈训练的效果容易受到以下因素的调节:1) 反馈信号源的选择:想要取得相应的训练效果,反馈信号源的选择至关重要。而EEG神经反馈训练经常是选择不同的频段进行训练,例如alpha,beta或是theta频段等等(Gruzelier, 2014a; Peeters, Ronner, Bodar, van Os, & Lousberg, 2014; Staufenbiel et al., 2014)。频段的选择和想要训练的靶能力息息相关,例如感觉运动节律或是beta1频段训练常常用于注意和记忆相关的训练。一项研究发现以正常人为被试,训练SMR节律和beta1频段,结果发现训练可以帮助被试减少错误,提升其认知敏锐度(Egner, & Gruzelier, 2001; Egner & Gruzelier, 2004)。而alpha频段和theta频段可以用来训练记忆,学习和智力等不同的认知能力(Gruzelier, 2014b, 2014c)。

MRI神经反馈训练中,反馈信号源通常是源于某单一靶脑区的血氧水平依赖信号(BOLD信号,Blood oxygenlevel-dependent),将BOLD信号经过在线处理之后反馈给被试。而靶脑区的选择既可以根据以往的文献结果事先选择,也可以灵活地根据每个个体在行为任务中的激活情况选择脑区(Sherwood, Kane, Weisend, & Parker, 2016)。现今信号源的选择也有了新的发展,研究使用了两脑区之间的功能连接进行训练,例如Spetter等人(2017)以背外侧前额叶与腹内侧前额叶的功能连接为靶信号,以超重或者肥胖人群为训练人群,结果发现经过4天的神经反馈训练之后的个体能够更好地遏制自己选取高卡路里食物的倾向,表现为增强的认知控制;Koush等人(2015)以背内侧前额叶和杏仁核之间的功能连接为靶信号,以正常人为训练人群,发现经过训练的被试不但能成功降低背内侧前额叶和杏仁核之间的功能连接,而且表现出了更强的情绪控制能力(Koush et al., 2015; Spetter et al., 2017)。也有研究将MVPA方法融入了神经反馈训练,尝试解码的神经反馈训练,来更好的检验体素活动模式和行为之间的关联(Amano, Shibata, Kawato, Sasaki, & Watanabe, 2016; Cortese, Amano, Koizumi, Lau, & Kawato, 2017)。综合来说,目前神经反馈训练的信号源选择和计算方法越来越宽泛,不局限于某一特定脑区,可以根据任务要求灵活选择。

2) 策略:策略是神经反馈训练中极为重要的一环(Niels, Ander Ramos, & Leonardo, 2008)。关于策略的争议主要体现在研究者是否应该提供给被试明确的策略指导。明确的外显策略可以让被试尽快的开始训练,但是不提供策略则提供了更多的空间让被试自由探索(Sulzer et al., 2013)。目前来说,究竟哪种策略给予方式能更好地提升被试自我调节的效率,目前没有同一结论。近来的研究采用了内隐策略(Shibata, Watanabe, Sasaki, & Kawato, 2011)进行训练,研究者要求被试在6~10天的训练中,想办法提升一个绿色圆形的大小,但是并没有给予任何策略,结果发现内隐策略可以有效的促进被试的学习,并且由于潜在的有效认知策略可能难以量化和表述,内隐策略更适合部分被试进行学习和训练。

3. 神经反馈训练的应用

神经反馈训练主要应用于神经科学基础研究和临床研究两个方向。前者主要专注于讨论脑活动与行为之间的关系,而后者更多的是考虑神经反馈训练作为一种治疗手段怎样用于治疗或是缓解一些疾病。

3.1. 神经科学应用

在神经科学基础研究中,由于神经反馈训练过程是让被试习得自主调节其特定脑活动,从而诱发了行为的改变。这意味着在神经反馈训练过程中,脑活动成为了自变量,而行为表现成为了因变量,这与传统的EEG研究和磁共振研究中,行为表现诱发脑活动的产生的逻辑是不同的,而与脑刺激技术,如经颅磁刺激和经颅直流电刺激技术等的逻辑是相似故而神经反馈技术可以用于探究特定脑活动和行为之间的关系,并给出因果性的证据(Sitaram et al., 2017; Sulzer et al., 2013)。

在痛觉相关领域,deCharms等人以右侧前扣带回为靶脑区,进行神经反馈训练。其对应的控制组包括无反馈,配对反馈(呈现实验组的脑活动)和虚假反馈(呈现其他脑区的脑活动)三个组。训练后发现被试会感受到更少的痛觉,通过控制组研究者排除了给定的想象策略、右侧前扣带回的活动或是对其他任何脑区活动的控制能力对其研究结果的解释,最终确认了右侧前扣回和痛觉的感知息息相关(deCharms et al., 2005)。类似的研究确认了感知运动皮层和运动功能,额下回和语言,脑岛和情绪,海马旁回和记忆等之间的关系。

近来还有研究尝试内生反馈训练,不同于传统神经反馈训练,反馈信号直接以视听觉等形式外显的给予被试,而在内生反馈训练中,反馈信号并不会直接显示给被试(如石头的升降),而是反馈信号可能会触发另一个信号来给予被试提示。Yoo等人通过实施监测海马旁回的活动信号,在学习新异刺激时,将会根据被试的实时状态,实时地给予被试“好”或者“坏”的反馈,从而干预被试的学习和记忆过程(Yoo et al., 2012)。结果发现呈现了好状态的试次,其记忆效果更加的好,这一研究说明了海马旁回的活动情况确实与记忆表现之间有着紧密的联系。类似的,另一项研究探讨辅助运动区和默认网络分别与警觉之间关系,结果发现

总的来说,神经反馈训练中,训练单一脑区或是功能连接可以确认特定的脑活动和行为之间的联结,而内生反馈训练可以确认不同的脑活动状态与行为之间的关联,研究者可以根据自己的研究需要选择不同的反馈形式进行训练。

3.2. 临床研究

目前神经反馈训练已经作为一种安全的治疗手段应用于各类不同的疾病,包括注意缺陷多动障碍(Attention deficit hyperactivity disorder, ADHD) (Janssen et al., 2016b)、慢性疼痛(Veit et al., 2012)、重度抑郁(Linden et al., 2012)、阿尔茨海默症(Hohenfeld et al., 2017; Luijmes, 2016)等。

神经反馈经常应用于ADHD的治疗当中,由于ADHD患者在静息状态下表现出了更强的低频EEG振幅,因而神经反馈尤其是EEG神经反馈经常被考虑作为治疗ADHD的辅助手段(Poil et al., 2014)。传统治疗方案中,异常的EEG活动经常通过药物治疗降低(Ogrim et al., 2014),不过已有研究表明神经反馈可以起到类似的效果,并且研究还进一步发现降低的EEG异常活动和症状的改善之间存在显著的正相关(Holger et al., 2009; Janssen et al., 2016a)。

同样,神经反馈训练也常常应用于中风的恢复。尽管中风病人由于受损的脑组织都各不一样,但是症状大体相似。而以感觉运动皮层为靶脑区的神经反馈训练可以有效的帮助中风病人运动功能的恢复(Ethan et al., 2008)。一项研究以脑机接口式的机械臂辅助治疗手段为对照组,实验组除了机械臂之外,还加入了对感觉运动节律的实时监测,结果发现两组都能有效提高其运动成绩,并且两组之间并没有显著差异(Keng et al., 2015)。不过以虚假反馈为对照组,以对侧mu节律为反馈信号源对慢性的重度中风病人进行训练,发现只有实验组能提升对侧mu节律的活动,并且显著的提升了运动能力(Ander et al., 2013)。类似的,相比于只接受了运动想象的对照组,以感觉运动节律为信号源的神经反馈训练能有效提升实验组的运动能力(Small, Giovanni, & Ana, 2013)。

总体而言,神经反馈应用于临床治疗依然面临诸多困境,主要在于部分人群对于神经反馈训练并不敏感,无法从中获益;同时,为了疗效的最大化,不同治疗方案或是研究之间很难进行对比来确认神经反馈训练的疗效如何。研究者们需要继续推进神经反馈的基础研究,了解各类疾病的机制,以更好地开展临床工作。

4. 问题和展望

尽管神经反馈训练以脑活动为自变量,行为表现为因变量,既能揭示脑与行为之间的关系,同时可以作为一种训练技术用于提升个体能力或是临床治疗中,因而受到了研究者们越来越多的关注。但是目前在这一技术的使用过程中,依然存在一些问题需要研究者们继续推进和探索。

有一个颇为严重的问题是,对于参与训练个体中的15%~30%而言,他们无法实现脑活动的自我调节,也就无法从神经反馈训练中获益。那么这些个体(non-responder)究竟有何特征,导致了神经反馈训练的无效,目前并没有开展有效的研究对其进行深入的探讨。有研究认为可能是学习和记忆功能的差异是这一现象的原因,对于这类个体而言,可能随着时程的延长,他们在不断的调整过程中无法准确的强化可行的调节方案,但其具体的神经机制仍然需要基于人类被试的磁共振成像研究进一步探索(Oblak, Lewis-Peacock, & Sulzer, 2017; Shankar & Howard, 2012)。

不仅如此,神经反馈训练的训练效果能保持多长,同样需要研究者们进一步关注。不同的实验设计,不同的靶脑活动都有可能对其效用期产生影响,例如对ADHD的EEG神经反馈训练,有研究表明其效应能维持6个月(Gevensleben et al., 2010; Steiner, Frenette, Rene, Brennan, & Perrin, 2014),而在癫痫的辅助治疗中,EEG神经反馈的效用可能能维持10年之久(Strehl, Birkle, Worz, & Kotchoubey, 2014),而基于磁共振的神经反馈训练以功能连接为反馈信号,发现训练效果至少可以保持2个月以上(Megumi, Yamashita, Kawato, & Imamizu, 2015),局限于不同研究中的追踪时长,目前没有办法对于神经反馈训练的效应期做出准确回答,之后的研究应当多进行长时程追踪,以更好的应用这一技术。

在将来的研究中,可以进一步拓展反馈源的选择,要根据不同的需要精准选择反馈源。一方面可以考虑从脑功能连接指标进一步拓展到脑网络指标(Liang, 2010),另一方面还可以考虑结合不同技术的神经信号,例如可以考虑结合低空间分辨率高空间分辨率的EEG技术和高空间分辨率低时间分辨率的磁共振技术,可以为以后的研究开拓更多的可能性。

总之,神经反馈技术作为一种安全有效的训练技术,随着科学技术的推进会得到越来越多的发展,越来越广泛地应用在科学研究和临床治疗上,为造福人类做贡献。

参考文献

[1] Amano, K., Shibata, K., Kawato, M., Sasaki, Y., & Watanabe, T. (2016). Learning to Associate Orientation with Color in Early Visual Areas by Associative Decoded fMRI Neurofeedback. Current Biology, 26, 1861-1866.
https://doi.org/10.1016/j.cub.2016.05.014
[2] Ander, R. M., Doris, B., Massimiliano, R., Leonhard, L. E., Ozge, Y., Brasil, F. L. et al. (2013). Brain-Machine Interface in Chronic Stroke Rehabilitation: A Controlled Study. Annals of Neurology, 74, 100-108.
https://doi.org/10.1002/ana.23879
[3] Beatty, J. (Ed.). (2013). Biofeedback and Behavior (Vol. 2). Springer Science & Business Media.
[4] Birbaumer, N., Ruiz, S., & Sitaram, R. (2013). Learned Regulation of Brain Metabolism. Trends in Cognitive Sciences, 17, 295-302.
https://doi.org/10.1016/j.tics.2013.04.009
[5] Corlier, J., Rimsky-Robert, D., Valderrama, M., Lehongre, K., Adam, C., Clemenceau, S. et al. (2016). Self-Induced Intracerebral Gamma Oscillations in the Human Cortex. Brain, 139, 3084-3091.
https://doi.org/10.1093/brain/aww246
[6] Cortese, A., Amano, K., Koizumi, A., Lau, H., & Kawato, M. (2017). Decoded fMRI Neurofeedback Can Induce Bidirectional Confidence Changes within Single Participants. NeuroImage, 149, 323-337.
https://doi.org/10.1016/j.neuroimage.2017.01.069
[7] Craig, A. D. (2009). How Do You Feel—Now? The Anterior Insula and Human Awareness. Nature Reviews Neuroscience, 10, 59-70.
https://doi.org/10.1038/nrn2555
[8] deCharms, R. C., Maeda, F., Glover, G. H., Ludlow, D., Pauly, J. M., Soneji, D., Gabrieli, J. D. E., & Mackey, S. C. (2005). Control over Brain Activation and Pain Learned by Using Real-Time Functional MRI. Proceedings of the National Academy of Sciences, 102, 18626-18631.
https://doi.org/10.1073/pnas.0505210102
[9] Dessy, E., Van Puyvelde, M., Mairesse, O., Neyt, X., & Pattyn, N. (2017). Cognitive Performance Enhancement: Do Biofeedback and Neurofeedback Work? Journal of Cognitive En-hancement, 2, 12-42.
https://doi.org/10.1007/s41465-017-0039-y
[10] Egner, T., & Gruzelier, J. H. (2001). Learned Self-Regulation of EEG Frequency Components Affects Attention and Event-Related Brain Potentials in Humans. Neuroreport, 12, 4155-4159.
https://doi.org/10.1097/00001756-200112210-00058
[11] Egner, T., & Gruzelier, J. H. (2004). EEG Biofeedback of Low Beta Band Components: Frequency-Specific Effects on Variables of Attention and Event-Related Brain Potentials. Clinical Neurophysiology, 115, 131-139.
https://doi.org/10.1016/S1388-2457(03)00353-5
[12] Emmert, K., Kopel, R., Sulzer, J., Bruhl, A. B., Berman, B. D., Linden, D. E. et al. (2016). Meta-Analysis of Real-Time fMRI Neurofeedback Studies Using Individual Participant Data: How Is Brain Regulation Mediated? Neuroimage, 124, 806-812.
[13] Ethan, B., Cornelia, W., Cohen, L. G., Christoph, B., Dimyan, M. A., Tyler, A. et al. (2008). Think to Move: A Neuromagnetic Brain-Computer Interface (BCI) System for Chronic Stroke. Stroke, 39, 910.
https://doi.org/10.1161/STROKEAHA.107.505313
[14] Fetz, E. E. (2010). Volitional Control of Neural Activity: Implications for Brain-Computer Interfaces. Journal of Physiology, 579, 571-579.
https://doi.org/10.1113/jphysiol.2006.127142
[15] Gevensleben, H., Holl, B., Albrecht, B., Schlamp, D., Kratz, O., Studer, P. et al. (2010). Neurofeedback Training in Children with ADHD: 6-Month Follow-Up of a Randomised Con-trolled Trial. European Child & Adolescent Psychiatry, 19, 715-724.
https://doi.org/10.1007/s00787-010-0109-5
[16] Gruzelier, J. H. (2014a). Differential Effects on Mood of 12-15 (SMR) and 15-18 (beta1) Hz Neurofeedback. International Journal of Psychophysiology, 93, 112-115.
https://doi.org/10.1016/j.ijpsycho.2012.11.007
[17] Gruzelier, J. H. (2014b). EEG-Neurofeedback for Optimising Performance. I: A Review of Cognitive and Affective Outcome in Healthy Participants. Neuroscience & Biobehavioral Reviews, 44, 124-141.
https://doi.org/10.1016/j.neubiorev.2013.09.015
[18] Gruzelier, J. H. (2014c). EEG-Neurofeedback for Optimising Performance. II: Creativity, the Performing Arts and Ecological Validity. Neuroscience & Biobehavioral Reviews, 44, 142-158.
https://doi.org/10.1016/j.neubiorev.2013.11.004
[19] Hohenfeld, C., Nellessen, N., Dogan, I., Kuhn, H., Müller, C., Papa, F., Shah, N. J. et al. (2017). Cognitive Improvement and Brain Changes after Real-Time Functional MRI Neurofeedback Training in Healthy Elderly and Prodromal Alzheimer’s Disease. Frontiers in Neurology, 8, 384.
https://doi.org/10.3389/fneur.2017.00384
[20] Holger, G., Birgit, H., BjRn, A., Dieter, S., Oliver, K., Petra, S., Hartmut, H. et al. (2009). Distinct EEG Effects Related to Neurofeedback Training in Children with ADHD: A Randomized Controlled Trial. International Journal of Psychophysiology, 74, 149-157.
https://doi.org/10.1016/j.ijpsycho.2009.08.005
[21] Janssen, T. W. P., Bink, M., Geladé, K., Van, M. R., Maras, A., & Oosterlaan, J. (2016a). A Randomized Controlled Trial into the Effects of Neurofeedback, Methylphenidate, and Physical Activity on EEG Power Spectra in Children with ADHD. Journal of Child Psychology & Psychiatry & Allied Disciplines, 57, 633.
https://doi.org/10.1111/jcpp.12517
[22] Janssen, T. W. P., Bink, M., Weeda, W. D., Geladé, K., Mourik, R. V., Maras, A., & Oosterlaan, J. (2016b). Learning Curves of Theta/Beta Neurofeedback in Children with ADHD. European Child & Adolescent Psychiatry, 26, 1-10.
[23] Keng, A. K., Cuntai, G., Kok Soon, P., Chuanchu, W., Ling, Z., Peng, T. W., Effie, C. et al. (2015). Facilitating Effects of Transcranial Direct Current Stimulation on Motor Imagery Brain-Computer Interface with Robotic Feedback for Stroke Rehabilitation. Archives of Physical Medicine & Rehabilitation, 96, S79-S87.
https://doi.org/10.1016/j.apmr.2014.08.008
[24] Koralek, A. C., Xin, J., Long, J. D., Rui, M., Costa, & Carmena, J. M. (2012). Corticostriatal Plasticity Is Necessary for Learning Intentional Neuroprosthetic Skills. Nature, 483, 331-335.
https://doi.org/10.1038/nature10845
[25] Koush, Y., Meskaldji, D. E., Pichon, S., Rey, G., Rieger, S. W., Linden, D. E., Scharnowski, F. et al. (2015). Learning Control over Emotion Networks through Connectivity-Based Neurofeedback. Cereb Cortex, 27, 1193-1202.
https://doi.org/10.1093/cercor/bhv311
[26] Liang, X. (2010). Human Connectome: Structural and Functional Brain Networks. Csb, 55, 1565.
https://doi.org/10.1360/972009-2150
[27] Linden, D. E., Habes, I., Johnston, S. J., Linden, S., Tatineni, R., Subramanian, L., Goebel, R. et al. (2012). Real-Time Self-Regulation of Emotion Networks in Patients with Depression. PLoS ONE, 7, e38115.
https://doi.org/10.1371/journal.pone.0038115
[28] Luijmes, R. E. (2016). The Effectiveness of Neurofeedback on Cognitive Functioning in Patients with Alzheimer’s Disease. Neurophysiologie Clinique, 46, 179-187.
https://doi.org/10.1016/j.neucli.2016.05.069
[29] Megumi, F., Yamashita, A., Kawato, M., & Imamizu, H. (2015). Functional MRI Neurofeedback Training on Connectivity between Two Regions Induces Long-Lasting Changes in Intrinsic Functional Network. Frontiers in Human Neuroscience, 9, 160.
https://doi.org/10.3389/fnhum.2015.00160
[30] Nan, W., Rodrigues, J. P., Ma, J., Qu, X., Wan, F., Mak, P. I., Rosa, A. et al. (2012). Individual Alpha Neurofeedback Training Effect on Short Term Memory. International Journal of Psychophysiology, 86, 83-87.
https://doi.org/10.1016/j.ijpsycho.2012.07.182
[31] Niels, B., Ander Ramos, M., & Leonardo, C. (2008). Brain-Computer Interface in Paralysis. Current Opinion in Neurology, 21, 634-638.
https://doi.org/10.1097/WCO.0b013e328315ee2d
[32] Ninaus, M., Kober, S. E., Witte, M., Koschutnig, K., Stangl, M., Neuper, C., & Wood, G. (2013). Neural Substrates of Cognitive Control under the Belief of Getting Neurofeedback Training. Frontiers in Human Neuroscience, 7, 914.
https://doi.org/10.3389/fnhum.2013.00914
[33] Oblak, E. F., Lewis-Peacock, J. A., & Sulzer, J. S. (2017). Self-Regulation Strategy, Feedback Timing and Hemodynamic Properties Modulate Learning in a Simulated fMRI Neurofeedback Environment. PLOS Computational Biology, 13, e1005681.
https://doi.org/10.1371/journal.pcbi.1005681
[34] Ogrim, G., Kropotov, J., Brunner, J. F., Candrian, G., Sandvik, L., & Hestad, K. A. (2014). Predicting the Clinical Outcome of Stimulant Medication in Pediatric Atten-tion-Deficit/Hyperactivity Disorder: Data from Quantitative Electroencephalography, Event-Related Potentials, and a Go/No-Go Test. Neuropsychiatric Disease & Treatment, 10, 231-242.
https://doi.org/10.2147/NDT.S56600
[35] Peeters, F., Ronner, J., Bodar, L., van Os, J., & Lousberg, R. (2014). Validation of a Neurofeedback Paradigm: Manipulating Frontal EEG Alpha-Activity and Its Impact on Mood. International Journal of Psychophysiology, 93, 116-120.
https://doi.org/10.1016/j.ijpsycho.2013.06.010
[36] Poil, S. S., Bollmann, S., Ghisleni, C., O’Gorman, R. L., Klaver, P., Ball, J., Michels, L. et al. (2014). Age Dependent Electroencephalographic Changes in Attention-Deficit/Hyperactivity Disorder (ADHD). Clinical Neurophysiology Official Journal of the International Federation of Clinical Neurophysiology, 125, 1626-1638.
https://doi.org/10.1016/j.clinph.2013.12.118
[37] Shankar, K. H., & Howard, M. W. (2012). A Scale-Invariant Internal Representation of Time. Neural Computation, 24, 134-193.
https://doi.org/10.1162/NECO_a_00212
[38] Sherwood, M. S., Kane, J. H., Weisend, M. P., & Parker, J. G. (2016). Enhanced Control of Dorsolateral Prefrontal Cortex Neurophysiology with Real-Time Functional Magnetic Resonance Imaging (rt-fMRI) Neurofeedback Training and Working Memory Practice. Neuroimage, 124, 214-223.
https://doi.org/10.1016/j.neuroimage.2015.08.074
[39] Shibata, K., Watanabe, T., Sasaki, Y., & Kawato, M. (2011). Perceptual Learning Incepted by Decoded fMRI Neurofeedback without Stimulus Presentation. Science, 334, 1413-1415.
https://doi.org/10.1126/science.1212003
[40] Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis-Peacock, J., Sulzer, J. et al. (2017). Closed-Loop Brain Training: The Science of Neurofeedback. Nature Reviews Neuroscience, 18, 86-100.
https://doi.org/10.1038/nrn.2016.164
[41] Skinner, B. F. (1984). The Operational Analysis of Psychological Terms Author’s Response. Behavioral & Brain Sciences, 7, 547-553.
https://doi.org/10.1017/S0140525X00027187
[42] Small, S. L., Giovanni, B., & Ana, S. (2013). Brain Repair after Stroke—A Novel Neurological Model. Nature Reviews Neurology, 9, 698-707.
https://doi.org/10.1038/nrneurol.2013.222
[43] Spetter, M. S., Malekshahi, R., Birbaumer, N., Luhrs, M., van der Veer, A. H., Scheffler, K., Hallschmid, M. et al. (2017). Volitional Regulation of Brain Responses to Food Stimuli in Overweight and Obese Subjects: A Real-Time fMRI Feedback Study. Appetite, 112, 188-195.
https://doi.org/10.1016/j.appet.2017.01.032
[44] Staufenbiel, S. M., Brouwer, A. M., Keizer, A. W., & van Wouwe, N. C. (2014). Effect of Beta and Gamma Neurofeedback on Memory and Intelligence in the Elderly. Biological Psychology, 95, 74-85.
https://doi.org/10.1016/j.biopsycho.2013.05.020
[45] Steiner, N. J., Frenette, E. C., Rene, K. M., Brennan, R. T., & Perrin, E. C. (2014). In-School Neurofeedback Training for ADHD: Sustained Improvements from a Randomized Control Trial. Pediatrics, 133, 483-492.
https://doi.org/10.1542/peds.2013-2059
[46] Strehl, U., Birkle, S. M., Worz, S., & Kotchoubey, B. (2014). Sustained Reduction of Seizures in Patients with Intractable Epilepsy after Self-Regulation Training of Slow Cortical Potentials—10 Years after. Frontiers in Human Neuroscience, 8, 604.
https://doi.org/10.3389/fnhum.2014.00604
[47] Sulzer, J., Haller, S., Scharnowski, F., Weiskopf, N., Birbaumer, N., Blefari, M. L., Sitaram, R. et al. (2013). Real-Time fMRI Neurofeedback: Progress and Challenges. Neuroimage, 76, 386-399.
https://doi.org/10.1016/j.neuroimage.2013.03.033
[48] Tal, H., Doron, F., & Rafael, M. (2015). Differential Magnetic Resonance Neurofeedback Modulations across Extrinsic (Visual) and Intrinsic (Default-Mode) Nodes of the Human Cortex. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 35, 2588.
https://doi.org/10.1523/JNEUROSCI.3098-14.2015
[49] Veit, R., Singh, V., Sitaram, R., Caria, A., Rauss, K., & Birbaumer, N. (2012). Using Real-Time fMRI to Learn Voluntary Regulation of the Anterior Insula in the Presence of Threat-Related Stimuli. Social Cognitive and Affective Neuroscience, 7, 623-634.
https://doi.org/10.1093/scan/nsr061
[50] Yoo, J. J., Hinds, O., Ofen, N., Thompson, T. W., Whitfield-Gabrieli, S., Triantafyllou, C., & Gabrieli, J. D. (2012). When the Brain Is Prepared to Learn: Enhancing Human Learning Using Real-Time fMRI. Neuroimage, 59, 846-852.
https://doi.org/10.1016/j.neuroimage.2011.07.063
[51] Ziessler, M., Nattkemper, D., & Frensch, P. A. (2004). The Role of Anticipation and Intention in the Learning of Effects of Self-Performed Actions. Psychological Research, 68, 163-175.
https://doi.org/10.1007/s00426-003-0153-6
[52] Zotev, V., Phillips, R., Yuan, H., Misaki, M., & Bodurka, J. (2014). Self-Regulation of Human Brain Activity Using Simultaneous Real-Time fMRI and EEG Neurofeedback. Neuroimage, 85, 985-995.
https://doi.org/10.1016/j.neuroimage.2013.04.126