行列式在多重交替线性空间上的高维推广
High Dimensional Extension of Determinant in Multiple Alternating Linear Space
DOI: 10.12677/HANSPrePrints.2020.51003, PDF, 下载: 494  浏览: 1,030 
作者: 李兴源:华南理工大学广州学院,广州,中国
关键词: 行列式符号向量余子式切片拉普拉斯定理Determinant Symbolic Vector Cofactor Section Laplace’s Theorem
摘要: 从与张量不同的另外角度构造出水平、竖直、侧面三个方向各有n个元素,且沿水平、竖直、侧面三个方向的切片上各有n2个元素,共n3个元素的立方体数阵函数,称为立方行列式,其阶数为n。为方便区分,对只有两个下标的行列式称为狭义行列式。把狭义行列式的全部性质推广至立方行列式以及更高维的超立方行列式。最终给出立方行列式与超立方行列式对应狭义行列式的转化关系和各种变换,并对一般域上的行列式作更深层次的表述。
Abstract: From another angle different from tensor space, we construct a horizontal, vertical and lateral di-rection with n elements, on each slice along the horizontal, vertical and lateral directions have n2 elements respectively, cube matrix functions similar to determinant with n3 elements. It is called a cubic determinant and its order is n. For convenience of distinguishing, determinants with only two subscripts are called narrow determinant. Generalize all properties of narrow determinant to cubic determinant and higher dimensional hypercube determinant. In the end, the transformation relation between the cubic determinant and the hypercube determinant corresponding to the narrow determinant is given, and make a more deeper expression of the determinant on the general domain.
文章引用:李兴源. 行列式在多重交替线性空间上的高维推广[J]. 汉斯预印本, 2020, 5(1): 1-27. https://doi.org/10.12677/HANSPrePrints.2020.51003

参考文献

[1] 王立志.一般矩阵的广义行列式[J].山西大学学报(自然科学版), 1995,18(3):254-258.
[2] 贾政华.Hadamard乘积矩阵的一些性质[J].工科数学, 1998,14(3):150-154.
[3] 胡云,火博丰.双重求和可交换公式的推广及在组合中的应用[J].青海师范大学学报(自然科学版), 2012,28(3):10-15.
[4] 刘洁玉.逆序数的若干性质及应用[J].吉安师专学报, 1999,20(6):30-34.
[5] 彭雪梅.拉普拉斯(Laplace)定理的简化证明[J].数学通报, 1993,12:37-38.
[6] Lee W.Johnson , R.Dean Riess , Jimmy T.Arnold.Introduction to Linear Algebra[M].北京:机械工业出版社, 2015.4(5): 373-374.
[7] 郝秀梅,姜庆华.线性代数[M].北京:经济科学出版社, 2016.1(3):12-14.
[8] 冯荣权,宋春伟.组合数学[M].北京:北京大学出版社, 2015.8(3):121-123.