消声水池结构优化设计对吸声性能的影响Influence of Structural Design of Anechoic Tank on Sound Absorption Performance

DOI: 10.12677/OJAV.2020.81005, PDF, HTML, XML, 下载: 337  浏览: 825

Abstract: The main factors affecting the sound absorption performance of the anechoic tank are the proper-ties and structure of the sound absorbing materials. Through experimental comparison, this paper finds that the optimized design of the geometric structure of the anechoic tank can also improve the sound absorption performance. The incident angle of sound waves is changed, which adjusts the waveform conversion, scattering and reflection of sound waves in the sound absorption structure, and the noise reverberation is absorbed and consumed in the bank. Under the same sound absorbing material and measurement distance, the sound absorption coefficient of the quadran-gular prism has a significant increase compared to the planar structure, and the increase is about 10%. At the same time, it is successfully applied in the construction of the anechoic tank of the East China Sea Standard Metrology Center, which improved the sound absorption effect, and reduced the construction cost. It provides a new idea for the design of the anechoic tank in the future.

1. 引言

2. 消声水池吸声性能的影响因素分析

2.1. 声波传输距离

$R=\frac{{p}_{2}}{{p}_{1}}\left(1+\frac{2{\text{d}}_{2}}{{\text{d}}_{1}}\right)$ (1)

${p}_{2}$ 为水听器收到的反射脉冲，单位V；

${\text{d}}_{1}$ 为发射器和水听器之间的距离，单位m；

${\text{d}}_{2}$ 为水听器和水池界面间的距离，单位m。

2.2. 声波入射角度影响

Figure 1. Incident angle response analysis experiment

Table 1. Response results of the different incident angles

3. 消声水池结构优化设计

Figure 2. Design drawing and actual drawing of quadrangular pyramid structure. (a) Top view; (b) Main view; (c) Before entering the water; (d) Entering the water

4. 结构优化效果验证

Figure 3. Site layout of sound absorption performance verification

Table 2. Measurement results of the sound absorption coefficient

5. 结论

 [1] 朱金华, 王源升, 等. 水声吸声高分子材料的发展及应用[J]. 高分子材料科学与工程, 2005, 21(4): 46-50. [2] 蔡贝克. 聚氨酯发泡材料的制备及吸声结构优化[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2016. [3] 冯彩梅, 郭伟, 许伟. 水声吸声材料研究进展[J]. 玻璃钢/复合材料, 2007(6): 53-56. [4] 何祚镛. 声学理论基础[M]. 北京: 国防工业出版社, 1981. [5] 余鑫, 彭影星, 郁嘉诚. 消声水池侧壁模板的设计与施工[J]. 工程技术, 2017, 44(20): 80-81. [6] 陈灵鸽, 尹绪超, 黄圣. 消声水池用吸声隔墙声学结构设计[C]//第十五届船舶水下噪声学术讨论会暨船舶力学学术委员会水下噪声学组成立三十周年纪念学术会议, 2015: 522-527. [7] 罗马奇, 汲长远, 吴友亮, 陈瑶, 张权. 消声水池双层板结构隔墙的隔声性能研究[J]. 声学与电子工程, 2017(3): 12-14. [8] 石云霞, 奚正平, 等. 水下吸声材料的研究进展[J]. 材料导报, 2010, 24(1): 49-52. [9] 张天航. 基于反射声的材料参数反演研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2017.