非线性SchroO¨dinger-Kirchhoff型方程基态解的存在性
Existence of Ground States Solution of Nonlinear Schro?dinger-Kirchhoff-Type Equation
摘要: 本文利用Nehari流形的方法和Lions引理,将非线性Schrödinger-Kirchhoff型方程的基态转化为相应能量函的临界点,结合山路引理,证明了该类方程在一定条件下基态解的存在性。
Abstract: In this paper, by using the method of Nehari manifold and Lions lemma, the solutions of nonlinear Schrödinger-Kirchhoff-type equations are transformed into the critical points of the corresponding energy functional, combined with the mountain pass lemma to prove the existence of ground state solution of this kind of equations under certain conditions.
文章引用:李伟丹, 魏公明. 非线性SchroO¨dinger-Kirchhoff型方程基态解的存在性[J]. 理论数学, 2020, 10(4): 330-338. https://doi.org/10.12677/PM.2020.104042

参考文献

[1] Brezis, H. and Nirenberg, L. (1991) Remarks on Finding Critical Points. Communications on Pure and Applied Math-ematics, 44, 939-963.
https://doi.org/10.1002/cpa.3160440808
[2] Kirchhoff, G. (1883) Mechanik. Teubner, Leipzig.
[3] Ma, T.F. and Munoz Rivera, J.E. (2003) Positive Solutions for a Nonlinear Elliptic Transmission Problem. Applied Mathematics Letters, 16, 243-248.
https://doi.org/10.1016/S0893-9659(03)80038-1
[4] Perera, K. and Zhang, Z. (2006) Nontrivial Solutions of Kirchhoff-Type Problems via the Yang Index. Differential Equations, 221, 246-255.
https://doi.org/10.1016/j.jde.2005.03.006
[5] Mao, A. and Zhang, Z. (2009) Sign-Changing and Multiple Solutions of Kirchhoff Type Problems without the P.S. Condition. Nonlinear Analysis, 70, 1275-1287.
https://doi.org/10.1016/j.na.2008.02.011
[6] He, X. and Zou, W. (2010) Multiplicity of Solutions for a Class of Kirchhoff Type Problems. Acta Mathematicae Applicatae Sinica, English Series, 26, 387-394.
https://doi.org/10.1007/s10255-010-0005-2
[7] He, X. and Zou, W. (2009) Infinitely Many Positive Solutions for Kirchhoff-Type Problems. Nonlinear Analysis, 70, 1407-1414.
https://doi.org/10.1016/j.na.2008.02.021
[8] Wu, Y. and Liu, S.B. (2015) Existence and Multiplicity of Solutions for Asymptotically Linear Schrodinger-Kirchhoff Equations. Nonlinear Analysis: Real World Applications, 26, 191-198.
https://doi.org/10.1016/j.nonrwa.2015.05.010
[9] Wu, X. (2011) Existence of Nontrivial Solutions and High Energy Solutions for Schrödinger-Kirchhoff-Type Equations in RN. Nonlinear Analysis: Real World Applications, 12, 1278-1287.
https://doi.org/10.1016/j.nonrwa.2010.09.023
[10] Li, Q.Q. and Wu, X. (2014) A New Results on High Energy Solutions for Schrödinger-Kirchhoff-Type Equations in Rn. Applied Mathematics Letters, 30, 24-27.
https://doi.org/10.1016/j.aml.2013.12.002
[11] Li, Q.Q., Wu, X. and Teng, K.M. (2018) Existence of Nontrivial Solutions for Schrödinger-Kirchhoff Type Equations with Critical or Supercritical Growth. Mathematical Method in the Applied Sciences, 41, 1136-1144.
https://doi.org/10.1002/mma.4652
[12] Wang, L. and Zhang, L.B. (2018) Cheng Kun Ground State Sign-Changing Solutions for the Schrödinger-Kirchhoff Equation in R3. Journal of Mathematical Analysis and Applications, 466, 1545-1569.
https://doi.org/10.1016/j.jmaa.2018.06.071
[13] Guo, Z.J. (2015) Ground States for Kirchhoff Equations without Compact Condition. Journal of Differential Equations, 259, 2884-2902.
https://doi.org/10.1016/j.jde.2015.04.005
[14] 段雪亮, 魏公明. 分数阶非线性Schrödinger方程组非平凡基态解的存在性[J]. 吉林大学学报(理学版), 2018, 56(3): 33-40.
[15] 张福保, 张慧, 徐君祥. Rn上耦合的非线性Schrödinger方程的正基态解[J]. 中国科学(数学), 2013, 43(1): 33-43.
[16] Lions, P.L. (1984) The Concentration Compactness Principle in the Calculus of Variations. The Locally Compact Case, Part 2. Annales de l’Institut Henri Poincaré, 1, 223-283.
https://doi.org/10.1016/S0294-1449(16)30422-X
[17] Struwe, M. (1990) Variational Method. Springer, New York.
https://doi.org/10.1007/978-3-662-02624-3
[18] Willem, M. (1996) Minimax The-orem. Birkhäuser, Boston, MA, 39-41.
https://doi.org/10.1007/978-1-4612-4146-1