GaN基底上单层WS2调控生长及其光学性质研究
Controlled Growth of Monolayer WS2 on GaN Substrate and Its Optical Properties
DOI: 10.12677/MS.2020.105051, PDF, HTML, XML, 下载: 621  浏览: 1,263  国家自然科学基金支持
作者: 曾 昊, 孙保帆, 陈嘉俊, 吴志明*, 吴雅苹, 李 煦, 李金钗, 康俊勇:厦门大学物理系,福建省半导体材料及应用重点实验室,半导体光电材料及其高效转换器件协同创新中心,福建 厦门
关键词: 二硫化钨化学气相沉积氮化镓异质结Tungsten Disulfide Chemical Vapor Deposition Gallium Nitride Heterostructure
摘要: 本文采用化学气相沉积法在GaN上调控生长了单层WS2,并研究了基底耦合效应对其光学性质的影响。研究结果显示,生长温度为850℃,可以生长出质量较好的单层三角形WS2;当温度大于900℃时,GaN基底表面开始发生分解,不利于材料生长。通过载气H2流量调节,可在基底上生长出满覆盖的WS2。GaN基底上生长的三角形WS2呈现良好的60˚旋转对称性,通过GaN纳米柱上WS2的生长与第一性原理模拟计算,推测出了WS2/GaN样品的稳定结构。通过拉曼表征发现,GaN基底会对WS2产生一定的张应力作用,使E2g1拉曼峰和激子峰出现红移,并且由于WS2与GaN基底形成Ⅱ型异质结能带结构,WS2/GaN样品出现发光淬灭现象。本文为开发新型二维光电子器件提供了一定的实验依据。
Abstract: The growth of monolayer WS2 on GaN substrate by chemical vapor deposition method is explored, and the effect of the substrate on its optical properties is investigated. The results show that the monolayer triangular WS2 with good quality can be grown under the growth temperature of 850˚C. When the growth temperature is greater than 900˚C, slight decomposition of the substrate surface occurs, which is not conducive to the growth. In addition, by controlling the flow rate of H2 carrier gas properly, WS2 with full coverage can be grown on the substrate. The as-grown triangular WS2 on GaN substrate shows 60˚ rotation symmetry. The most stable structure of WS2/GaN is predicted by combining the growth of WS2 on GaN nanorod and the first-principles calculations. It is found by Raman characterization that GaN substrate would exert certain tensile stress on WS2, resulting in the redshift of the Raman peak E2g1 and the photoluminescence peak. Photoluminescence quench-ing emerges in WS2/GaN sample, which is attributed to the formation of type-II heterojunction band structure between WS2 and GaN substrate. This work provides a reference for the development of new 2-dimensional optoelectronic devices.
文章引用:曾昊, 孙保帆, 陈嘉俊, 吴志明, 吴雅苹, 李煦, 李金钗, 康俊勇. GaN基底上单层WS2调控生长及其光学性质研究[J]. 材料科学, 2020, 10(5): 412-421. https://doi.org/10.12677/MS.2020.105051

1. 引言

近年来,二维材料由于具有奇特或优异的光电性能受到人们的广泛关注。早期研究较多的石墨烯由于零带隙的特点,限制了其在光电器件和逻辑器件方面的应用 [1]。科学家们逐渐把目光投向其它二维材料,其中层状过渡金属硫族化合物(transition metal dichalcogenides, TMDs)因具有带隙可调、高激子结合能和高开关比等特点而备受瞩目 [2] [3] [4] [5] [6]。WS2是其中一个典型代表,通过厚度调节,其可实现从块材~1.3 eV间接带隙到单层~2.0 eV直接带隙的转变 [7]。另外,单层WS2由于缺少空间反演对称性且具有较强的自旋轨道耦合效应,在价带顶出现~420 meV的自旋劈裂 [8],并导致其布里渊区内相邻的两个K点不再等效,出现能谷特性 [9]。这些性质使得WS2在光电子器件,尤其是自旋电子器件和谷电子器件方面有着广阔的应用前景。

为构筑新型二维功能器件,通常需要对二维材料性质进行调控,构造异质结是其中一种常用的方式。GaN是一种宽带隙半导体(带隙~3.39 eV),已在光电子器件领域获得广泛应用 [10] [11] [12]。报道显示,GaN衬底能够提高MoS2的谷极化率 [13],且MoS2/GaN异质结表现出很高的电导率 [14];另外,基于TMDs/GaN异质结研制的紫外探测器也表现出优异的性能 [15] [16]。由于GaN和WS2的晶格失配很小(GaN: 3.189 Å [17], WS2: 3.153 Å [18]),有望在GaN基底上有望长出高质量、高对称性的单层WS2,并出现新奇性质。

本实验采用化学气相沉积法(chemical vapor deposition method, CVD)在GaN上调控生长了单层WS2,探究了生长温度和H2载气流量对材料生长质量以及结构形貌的影响。我们结合GaN纳米柱上WS2的生长结果与第一性原理计算,推测出了WS2/GaN样品的稳定结构。通过拉曼和光致发光谱表征,研究了GaN基底耦合效应对WS2光学性质的影响。结果显示,通过优化生长参数,我们可制备出高质量的三角形单层WS2或满覆盖的WS2。另外,GaN基底会对WS2产生一定的张应力作用,对其光学性质产生一定影响。

2. 实验和理论计算方法

2.1. 实验方法

我们使用双温区的管式炉进行WS2生长,以(0001)方向Ga极性面的GaN外延片作为衬底(Nanowin, GaN-T-C-U-C50)。生长前,我们依次分别用丙酮、乙醇和去离子水超声清洗GaN衬底10分钟,并用高纯氮气吹干。我们预先通过热蒸镀法在硅片上沉积一层5 nm厚的WO3 (ALDRICH, 99.999%)薄膜,作为W的前驱体源,将其放在石英舟中,并把GaN衬底倒盖在硅片上,两者之间间隔500 μm,将石英舟放在管式炉的下游温区。1 g高纯硫粉(Aladdin, 99.999%)平铺在一个小石英舟中,置于气路上游的温区。生长前,本底真空度为4 × 10−2 Torr。生长时,腔内保持大气压,Ar气流量保持50 sccm。我们采用扫描电子显微镜(SEM, Carl Zeiss, sigma_HD)、原子力显微镜(AFM, NSK, SPA400-Nanonavi)和透射电子显微镜(TEM, JEOL, JEM-2100)表征了样品的表面形貌和结构;通过共聚焦显微镜(WITec, alpha 300RA)表征了材料的拉曼谱和光致发光(photoluminescence, PL)谱,激发波长为488 nm。

2.2. 理论计算方法

理论计算采用基于密度泛函理论(density functional theory, DFT)的第一性原理计算方法,使用VASP (Vienna ab initio Simulation Package)软件包进行计算 [19]。通过缀加投影波方法描述价电子和原子实之间的相互作用 [20],使用广义梯度近似的PBE泛函作为交换关联泛函 [21]。所有原子采用的价电子组态分别为:W-5d46S2、S-3S23p4、Ga-4S24p1和N-2S22p3。采用Monkhorst-Pack方法对倒空间取样,按照包含Γ点的15 × 15 × 1的网格进行取点。使用带电量为0.75 e的氢原子饱和GaN底部氮原子的悬挂键。采用半经验的DFT-D2方法修正异质结层间范德华相互作用 [22]。z轴方向上的真空层设为20 Å。为保证计算精度,截断能统一设置为500 eV。沿c轴选取了12个GaN的原子层作为衬底,底部加氢后固定中间6个原子层,对表面6个原子层和氢原子层进行弛豫,直到总能收敛至10−6 eV,并且每个原子受到的Hellmann-Feynman力小于0.01 eV/Å为止。不同堆叠结构下仅优化W和S原子的纵向位置以得到相对稳定的结构。

3. 结果与讨论

3.1. 温度对生长结果的影响

为了在GaN基底上制备出高质量的WS2,我们研究了生长温度、载气成分与流量、源材料间距和硫粉加热温度等参数对材料生长的影响,由于生长温度与载气成分对生长结果影响较大,我们主要分析这两个参数对生长结果的影响。图1显示了不同生长温度下GaN基底上生长样品的SEM图像。从图中可以看出,当生长温度为800℃时,由于生长温度较低,材料在基底表面的扩散或迁移较难,仅形成密密麻麻的小颗粒。当温度生长增加到850℃时,GaN表面出现了少量的三角结构材料,与报道的WS2形状类似 [23],说明这个温度已经可以生长出WS2材料。我们继续增加温度,达到900℃时,如图1(c)所示,基底上WS2的密度显著增加,但其边缘变得模糊,而且GaN基底表面变得粗糙。当生长温度继续增加到950℃时,基底上出现明显的孔洞(如图1(d)插图),且表面也没有三角状WS2出现。已有报道显示,GaN外延片在900℃以上的温度退火后,表面部分材料发生分解 [24] [25],表面变得粗糙,该现象与我们的实验结果类似。由于粗糙的表面有利于材料成核,使得900℃下生长的WS2密度增加。然而,当温度升到950℃时,表面过于粗糙,WS2无法在基底上长大,所以未能看到三角状WS2。从上述结果可以看出,850℃是一个比较合适的生长温度。值得说明的是,根据文献报道,当采用SiO2基底生长时,一般的优化生长温度都会高于900℃,较高的生长温度有利于提高材料质量和增大单晶尺寸 [26] [27] [28]。

Figure 1. SEM images of WS2 crystals grown at different temperature: (a) 800˚C; (b) 850˚C; (c) 900˚C; (d) 950˚C. The inset in (d) is an enlarged SEM image

图1. 不同生长温度制备的WS2的SEM图像:(a) 800℃;(b) 850℃;(c) 900℃;(d) 950℃。(d)图中插图为高倍SEM图

3.2. 氢气流量对生长结果的影响

为了进一步提升GaN基底上制备 WS2的密度,我们对载气组分与流量进行了优化,在生长过程中通入了一定量的氢气。图2显示了不同氢气流量下GaN基底上生长样品的SEM图像。此时的Ar载气流量保持50 sccm不变,生长温度为850℃。可以看出,随着H2流量增加,WS2的密度明显增加。当H2流量为6 sccm时,样品表面已经出现密密麻麻的三角状WS2,而当H2流量为9 sccm时,WS2基本完全覆盖整个样品表面。这是因为氢气比硫的还原性强,WO3源材料更容易被H2或者H2和S反应生成的H2S还原成中间产物WO3-x,使得金属前驱体中W5+的浓度增加,从而促进了材料在衬底表面的成核及生长 [29] [30]。另外,我们看到,相比于3 sccm制备样品,6 sccm制备样品的尺寸有所减少,这可能是因为随着密度增加,每个晶核的源供量相对减少导致的。

Figure 2. SEM images of WS2 crystals grown at different H2 flow rate: (a) 0 sccm; (b) 3 sccm; (c) 6 sccm; (d) 9 sccm. The left part of (d) is a scratch area

图2. 不同H2流量生长的WS2的SEM图像:(a) 0 sccm;(b) 3 sccm;(c) 6 sccm;(d) 9 sccm。(d)图左边为划痕区域

Figure 3. (a) Optical image of WS2/GaN sample. (b) AFM image of WS2/GaN sample. (c) Cross section TEM image of WS2/GaN sample. The insets show the EDS mappings of W and S elements. (d) Optical image of WS2/SiO2 sample. (e) AFM image of WS2/SiO2 sample

图3. (a) WS2/GaN样品金相显微镜图像;(b) WS2/GaN样品AFM图;(c) WS2/GaN样品的横截面TEM图,插图为W和S元素的EDS扫描图像;(d) WS2/SiO2样品金相显微镜图像;(e) WS2/SiO2样品AFM图

进一步地,我们对GaN上制备的三角状WS2进行了AFM表征。图3(a)和图3(b)分别为图2(b)样品对应的金相显微镜图像和AFM图形。由于GaN的带隙较宽,对可见光的反射较小,因此金相显微镜图像对比度较低。从其AFM图可以看出,它的厚度约为0.89 nm,基本与报道的单层WS2厚度一致 [23] [28]。图3(c)为GaN上制备样品的横截面TEM图像和EDS扫描图像,W和S元素的分布情况验证了我们制备的材料确实为单层WS2。另外,为了后续对比研究GaN基底对WS2光学性质的影响,我们也在SiO2/Si基底上也制备了单层WS2 (制备方法见文章 [26]),它们的金相显微镜图像和AFM图如图3(d)和图3(e)所示。AFM测量结果显示,其厚度约为0.87 nm,说明该样品也是单层WS2

3.3. WS2/GaN异质结层间堆叠结构的研究

我们知道,GaN和WS2都是六角晶格结构,从图2(b)和图2(c)可以看出,在GaN衬底上生长的大部分三角形WS2都表现出良好的60˚旋转对称性,该现象和报道的MoS2/GaN [13] [14]、MoS2/h-BN [31] 和MoS2/Graphene [32] 生长结果类似。当基底为SiO2时,由于它是非晶材料,生长的WS2晶格方向各异,如图3(d)所示。这也说明,WS2生长方向可以通过基底调控。值得说明的是,当采用SiO2基底时,生长的材料单晶尺寸可以达到几十甚至上百微米,但采用晶格较为匹配的基底生长时,单晶的尺寸都较小,平均尺寸不超过2 μm [13] [14],相关机理有待进一步研究。为了进一步确定WS2和GaN基底之间的堆叠方式,我们利用六角的GaN纳米柱生长了单层WS2。如图4(a)所示,纳米柱上生长的三角形WS2仍保有60˚旋转对称性,并且三角形WS2的三边基本与GaN纳米柱的其中三边有平行关系。根据对称性,WS2和GaN存在两个相对转角系列,分别为0˚和60˚,我们基于此对单胞进行扩展,构建了图4(b)异质结结构示意图。我们采用第一性原理计算,分别计算了两个相对方向不同层间堆叠情况的结合能Eb,计算公式为:

E b = E hete E WS 2 E GaN ,

式中,Ehete E WS 2 EGaN分别是异质结、WS2和GaN衬底的能量,结果如图4(c)和图4(d)所示。图中a0b0表示横向的两个晶格常数,Δa和Δb分别表示单胞中WS2和GaN沿ab两个晶矢方向的偏移量。相对转角为0˚时,(0, 0)点为极小值点,其Eb为−273.76 meV,60˚时,有三个极小值点,分别为(0, 0.5)、(0.5, 0)和(0.5, 0.5),它们的Eb分别为−272.79 meV、−271.17 meV和−273.41 meV。0˚的(0, 0)点拥有最低的能量,反映其结构最稳定,因此可以推断WS2/GaN异质结的最稳定结构为W和S原子分别落在衬底表面N和Ga原子正上方,如图4(e)所示,基于此扩展的三角形WS2图4(b)中所展示的0˚ (W)和0˚ (S)。值得一提的是我们计算的堆叠结构和MoS2/GaN异质结的最稳定结构一致 [33]。

Figure 4. (a) SEM image of WS2 grown on a GaN nanorod. (b) Schematic of WS2/GaN heterostructure. (c) And (d) are the calculated bonding energy of the unit cell at different displacement under the relative angle of 0˚ and 60˚, respectively. (e) The most stable stacking configuration of WS2/GaN heterostructure

图4. (a) GaN纳米柱上生长的WS2的SEM图;(b) WS2/GaN异质结结构示意图;(c)和(d)分别为0˚和60˚的相对转角下不同偏移量时WS2/GaN单胞的结合能;(e) 最稳定WS2/GaN异质结堆叠结构

3.4. GaN基底上WS2光学性质的研究

为了进一步研究GaN基底与WS2相互作用,我们分别测量了它们的拉曼谱和PL谱。图5(a)显示了WS2/GaN样品(Tri.为图2(b)三角形样品,Cont.为图2(d)满覆盖样品)和WS2/SiO2样品的拉曼谱。WS2存在两个特征拉曼峰,S原子和W原子在面内相对振动的E1 2g和S原子之间在面外方向相对振动的A1g [34]。有研究显示,随着层数增加,WS2中的介电屏蔽效应增强,有效电荷之间的长程库伦相互作用变弱,最终导致E1 2g和A1g分别红移和蓝移 [34]。通常单层WS2的两拉曼峰位差值小于63.5 cm−1 [7]。我们制备的WS2/GaN样品,两个特征峰的位置分别是352.9 cm−1和416.0 cm−1,差值为63.1 cm−1,WS2/SiO2样品的两个特征峰位置分别是354.2 cm−1和416.0 cm−1,差值为61.8 cm−1,也说明了它们是单层的WS2。值得注意的是,如图5(b)所示,相比WS2/SiO2而言,WS2/GaN样品的E1 2g峰出现红移,而A1g峰位几乎不变。这主要是因为GaN的晶格常数略微比WS2大,WS2会受到GaN基底张应力作用,从而会使对应力敏感的面内振动模式E1 2g红移 [35] [36]。而对于A1g峰,除受张应力影响会发生轻微红移外 [35] [36],该峰位还会受载流子浓度影响 [37] [38],并且其作为面外振动模式在受层间相互作用力时会蓝移 [34]。为此,我们猜测在WS2/GaN中,由于多种因素共同作用使得A1g的峰位几乎不变。另外,通常在E1 2g峰的低频处紧挨着有一个二阶振动模式的2LA,使E1 2g峰展宽,为此,常以A1g的半高宽评判样品的质量。如图5(b)所示,WS2/GaN样品的A1g峰半高宽比WS2/SiO2小,说明GaN上制备的WS2具有更好的晶体质量。另外,我们对生长的满覆盖样品(图2(d)中白框区域)进行了二维拉曼谱扫描,结果如图5(c)所示。可以看出WS2基本完全覆盖样品表面,但其中有一定的缺陷出现,说明生长质量有待进一步提高。

Figure 5. (a) Raman spectra of different samples. (b) The positions and FWHMs of the two Raman peaks in WS2/SiO2 and WS2/GaN samples. (c) Two-dimensional scan map of the Raman peaks of the white zone marked in Figure 2(d)

图5. (a) 不同样品拉曼谱;(b) WS2/SiO2和WS2/GaN样品的两个拉曼峰的峰位和半高宽;(c) 图2(d)中白框区域WS2拉曼特征峰的二维扫描分布图

Figure 6. (a) PL spectra of WS2/GaN, WS2/SiO2 and pure GaN. Lorentz fitting results of (b) WS2/SiO2 and (c) WS2/GaN. Spectrum of (b) has been enlarged by 20 times. (d) Schematic diagram of the band structure of WS2/GaN heterostructure

图6. (a) WS2/GaN、WS2/SiO2和单独GaN的PL谱;(b)和(c) 分别是WS2/SiO2和WS2/GaN样品的PL谱的拟合结果,(b)已放大20倍;(d) WS2/GaN异质结的能带结构示意图

图6(a)显示了三角状WS2/GaN和WS2/SiO2样品以及单独GaN衬底的PL谱。从图中可以看出,WS2/SiO2样品在630 nm左右处出现一个较强的发光谱,而WS2/GaN样品出现发光淬灭现象,其发光强度基本只有WS2/SiO2样品的1/20。同时,我们单独测试了GaN衬底的PL谱。从图中可以看出,单纯的GaN样品基本没有PL信号,说明WS2/GaN样品的发光确实来源于WS2。为了进一步分析基底对WS2发光的影响,我们分别对WS2/SiO2和WS2/GaN样品的发光谱线进行拟合,结果如图6(b)和图6(c)所示。对于WS2/SiO2样品,拟合的三个峰位为624.4 nm、634.9 nm和646.7 nm,分别对应中性激子峰X0 A、带电激子峰X-A和局域缺陷(local defect, LD)的发光峰 [39];而对于WS2/GaN样品,拟合的X0 A、X-A和LD三个峰位分别为628.6 nm、639.6 nm和658.1 nm。通过对比发现,WS2/SiO2样品光谱中带电激子峰X-A最强,而WS2/GaN样品是中性激子峰X0 A最强,这可能是因为WS2/GaN样品具有更高的晶体质量,而WS2/SiO2样品中具有较多的S空位从而拥有较大的电子浓度导致的 [37] [40]。另外,我们发现,WS2/GaN样品的X0 A和X-A都出现了红移,这也是张应力影响的结果 [36]。为了进一步解释WS2/GaN样品发光较弱的原因,我们画出了它的异质结能带结构图,如图6(d)所示。我们在SiO2/Si上生长的WS2由于S空位较多表现为N型材料,通过扫描隧穿谱测试结果显示,其费米能级靠近导带底 [26]。实验中衬底采用的是本征GaN外延片,基于这些现象我们推测WS2/GaN形成了图6(d)所示的II型异质结能带结构,图中还考虑了WS2与GaN之间存在一定的范德华势垒 [41] [42]。在PL测试时,WS2吸收激发光源能量后产生电子空穴对,由于Ⅱ型界面处的能量差,电子空穴对在界面处发生分离,使得电子空穴对的复合几率降低,大幅度减弱发光强度,使得PL峰变弱。

4. 结语

我们采用CVD方法在GaN上调控生长了单层WS2并研究了它的光学性质。研究结果显示,850℃是一个比较适合的生长温度,当温度大于900℃时,GaN基底表面开始发生分解,变得粗糙,不利于材料生长。另外,载气中加入一定的H2可以提高生长成核密度。当H2流量为9 sccm时,可生长出满覆盖的WS2。相比于WS2/SiO2样品,GaN基底上生长的三角形WS2呈现良好的60˚旋转对称性。基于GaN纳米柱上的WS2生长结果以及第一性原理计算,我们推测了WS2/GaN样品稳定结构,即W和S原子分别落在衬底表面N和Ga原子正上方。通过拉曼表征发现,GaN基底会对WS2产生一定的张应力作用,使得E1 2g特征峰发生红移。同时,通过PL谱测量发现,相对于WS2/SiO2样品,WS2/GaN样品的中性激子峰和带电激子峰都因为张应力而出现红移,并且由于WS2与GaN基底形成Ⅱ型异质结能带结构,WS2/GaN样品出现发光淬灭。本文为高质量二维材料生长以及新型二维光电子器件开发提供一定的实验依据。

基金项目

本研究得到了国家自然科学基金(批准号:61774128,61974123,61874092,61674124)和厦门市科技计划重大项目(批准号:3502ZCQ20191001)的资助。

NOTES

*共一作者。

#通讯作者。

参考文献

[1] Geim, A.K. and Novoselov, K.S. (2007) The Rise of Graphene. Nature Materials, 6, 183-191.
https://doi.org/10.1038/nmat1849
[2] Wang, Q.H., Kalantar-Zadeh, K., Kis, A., et al. (2012) Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nature Nanotechnology, 7, 699-712.
https://doi.org/10.1038/nnano.2012.193
[3] Yan, C.Y., Gong, C.H., Wangyang, P.H., et al. (2018) 2D Group IVB Transition Metal Dichalcogenides. Advanced Functional Materials, 28, Article ID: 1803305.
https://doi.org/10.1002/adfm.201803305
[4] Manzeli, S., Ovchinnikov, D., Pasquier, D., et al. (2017) 2D Tran-sition Metal Dichalcogenides. Nature Reviews Materials, 2, 17033.
https://doi.org/10.1038/natrevmats.2017.33
[5] Chhowalla, M., Liu, Z.F. and Zhang, H. (2015) Two-Dimensional Transition Metal Dichalcogenide (TMD) Nanosheets. Chemical Society Reviews, 44, 2584-2586.
https://doi.org/10.1039/C5CS90037A
[6] Berkelbach, T.C., Hybertsen, M.S. and Reichman, D.R. (2013) Theory of Neutral and Charged Excitons in Monolayer Transition Metal Dichalcogenides. Physical Review B, 88, Article ID: 045318.
https://doi.org/10.1103/PhysRevB.88.045318
[7] Gutierrez, H.R., Perea-Lopez, N., Elias, A.L., et al. (2013) Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers. Nano Letters, 13, 3447-3454.
https://doi.org/10.1021/nl3026357
[8] Zhu, Z.Y., Cheng, Y.C. and Schwingenschlogl, U. (2011) Giant Spin-Orbit-Induced Spin Splitting in Two-Dimensional Transition-Metal Dichalcogenide Semiconductors. Physical Re-view B, 84, Article ID: 153402.
https://doi.org/10.1103/PhysRevB.84.153402
[9] Xiao, D., Liu, G.B., Feng, W.X., et al. (2012) Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides. Physical Review Letters, 108, Article ID: 196802.
https://doi.org/10.1103/PhysRevLett.108.196802
[10] Gradecak, S., Qian, F., Li, Y., et al. (2005) GaN Nanowire Lasers with Low Lasing Thresholds. Applied Physics Letters, 87, Article ID: 173111.
https://doi.org/10.1063/1.2115087
[11] Khan, A., Balakrishnan, K. and Katona, T. (2008) Ultraviolet Light-Emitting Diodes Based on Group Three Nitrides. Nature Photonics, 2, 77-84.
https://doi.org/10.1038/nphoton.2007.293
[12] Ponce, F.A. and Bour, D.P. (1997) Nitride-Based Semiconductors for Blue and Green Light-Emitting Devices. Nature, 386, 351-359.
https://doi.org/10.1038/386351a0
[13] Wan, Y., Xiao, J., Li, J.Z., et al. (2018) Epitaxial Single-Layer MoS2 on Gan with Enhanced Valley Helicity. Advanced Materials, 30, Article ID: 1703888.
https://doi.org/10.1002/adma.201703888
[14] Ruzmetov, D., Zhang, K.H., Stan, G., et al. (2016) Vertical 2D/3D Semiconductor Heterostructures Based on Epitaxial Molybdenum Disulfide and Gallium Nitride. ACS Nano, 10, 3580-3588.
https://doi.org/10.1021/acsnano.5b08008
[15] Zhuo, R.R., Wang, Y.G., Wu, D., et al. (2018) High-Performance Self-Powered Deep Ultraviolet Photodetector Based on MoS2/GaN P-N Heterojunction. Journal of Materials Chemistry C, 6, 299-303.
https://doi.org/10.1039/C7TC04754A
[16] Zhao, Z.H., Wu, D., Guo, J.W., et al. (2019) Synthesis of Large-Area 2DWS2 Films and Fabrication of a Heterostructure for Self-Powered Ultraviolet Photodetection and Imaging Applica-tions. Journal of Materials Chemistry C, 7, 12121-12126.
https://doi.org/10.1039/C9TC03866C
[17] Reeber, R.R. and Wang, K. (2000) Lattice Parameters and Thermal Expansion of GaN. Journal of Materials Research, 15, 40-44.
https://doi.org/10.1557/JMR.2000.0011
[18] Schutte, W.J., Deboer, J.L. and Jellinek, F. (1987) Crystal-Structures of Tungsten Disulfide and Diselenide. Journal of Solid State Chemistry, 70, 207-209.
https://doi.org/10.1016/0022-4596(87)90057-0
[19] Fuchs, M. and Scheffler, M. (1999) Ab Initio Pseudopotentials for Electronic Structure Calculations of Poly-Atomic Systems Using Density-Functional Theory. Computer Physics Communications, 119, 67-98.
https://doi.org/10.1016/S0010-4655(98)00201-X
[20] Blochl, P.E. (1994) Projector Augmented-Wave Method. Physical Review B, 50, 17953-17979.
https://doi.org/10.1103/PhysRevB.50.17953
[21] Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868.
https://doi.org/10.1103/PhysRevLett.77.3865
[22] Grimme, S. (2004) Accurate Description of Van Der Waals Complexes by Density Functional Theory Including Empirical Corrections. Journal of Computational Chemistry, 25, 1463-1473.
https://doi.org/10.1002/jcc.20078
[23] Cong, C.X., Shang, J.Z., Wu, X., et al. (2014) Synthesis and Optical Properties of Large-Area Single-Crystalline 2D Semiconductor WS2 Monolayer from Chemical Vapor Deposi-tion. Advanced Optical Materials, 2, 131-136.
https://doi.org/10.1002/adom.201300428
[24] Kuball, M., Demangeot, F., Frandon, J., et al. (1998) Thermal Sta-bility of GaN Investigated by Raman Scattering. Applied Physics Letters, 73, 960-962.
https://doi.org/10.1063/1.122052
[25] Kumar, M.S., Sonia, G., Ramakrishnan, V., et al. (2002) Thermal Stability of GaN Epitaxial Layer and GaN/Sapphire Interface. Physica B—Condensed Matter, 324, 223-228.
https://doi.org/10.1016/S0921-4526(02)01316-9
[26] Chen, J.J., Shao, K., Yang, W.H., et al. (2019) Synthesis of Wafer-Scale Monolayer WS2 Crystals toward the Application in Integrated Electronic Devices. ACS Applied Materials & Interfaces, 11, 19381-19387.
https://doi.org/10.1021/acsami.9b04791
[27] Dong, L.Q., Wang, Y.Y., Sun, J.C., et al. (2019) Facile Access to Shape-Controlled Growth of WS2 Monolayer Via Environment-Friendly Method. 2D Materials, 6, Article ID: 015007.
https://doi.org/10.1088/2053-1583/aae7eb
[28] Liu, P.Y., Luo, T., Xing, J., et al. (2017) Large-Area WS2 Film with Big Single Domains Grown by Chemical Vapor Deposition. Nanoscale Research Letters, 12, 558.
https://doi.org/10.1186/s11671-017-2329-9
[29] Huang, J.K., Pu, J., Hsu, C.L., et al. (2014) Large-Area Synthesis of Highly Crystalline WSe2 Mono Layers and Device Applications. ACS Nano, 8, 923-930.
https://doi.org/10.1021/nn405719x
[30] McCreary, K.M., Hanbicki, A.T., Jernigan, G.G., et al. (2016) Synthesis of Large-Area WS2 Monolayers with Exceptional Photoluminescence. Scientific Reports, 6, Article No. 19159.
https://doi.org/10.1038/srep19159
[31] Yu, H., Yang, Z.Z., Du, L.J., et al. (2017) Precisely Aligned Monolayer MoS2 Epitaxially Grown on h-BN Basal Plane. Small, 13, Article ID: 1603005.
https://doi.org/10.1002/smll.201603005
[32] Wan, W., Zhan, L.J., Xu, B.B., et al. (2017) Temperature-Related Morphological Evolution of MoS2 Domains on Graphene and Electron Transfer within Heterostructures. Small, 13, Ar-ticle ID: 1603549.
https://doi.org/10.1002/smll.201603549
[33] Sung, D., Min, K.A. and Hong, S. (2019) Investigation of Atomic and Electronic Properties of 2D-MoS2/3D-GaN Mixed-Dimensional Heterostructures. Nanotechnology, 30, Article ID: 404002.
https://doi.org/10.1088/1361-6528/ab2c16
[34] Molina-Sanchez, A. and Wirtz, L. (2011) Phonons in Single-Layer and Few-Layer MoS2 and WS2. Physical Review B, 84, Article ID: 155413.
https://doi.org/10.1103/PhysRevB.84.155413
[35] Wang, F., Kinloch, I.A., Wolverson, D., et al. (2017) Strain-Induced Phonon Shifts in Tungsten Disulfide Nanoplatelets and Nanotubes. 2D Materials, 4, Article ID: 015007.
https://doi.org/10.1088/2053-1583/4/1/015007
[36] Wang, Y.L., Cong, C.X., Yang, W.H., et al. (2015) Strain-Induced Direct-Indirect Bandgap Transition and Phonon Modulation in Monolayer WS2. Nano Research, 8, 2562-2572.
https://doi.org/10.1007/s12274-015-0762-6
[37] Chee, S.-S., Oh, C., Son, M., et al. (2017) Sulfur Vacancy-Induced Reversible Doping of Transition Metal Disulfides Via Hydrazine Treatment. Nanoscale, 9, 9333-9339.
https://doi.org/10.1039/C7NR01883E
[38] Sasaki, S., Kobayashi, Y., Liu, Z., et al. (2016) Growth and Optical Properties of Nb-Doped WS2 Monolayers. Applied Physics Express, 9, Article ID: 071201.
https://doi.org/10.7567/APEX.9.071201
[39] Sheng, Y.W., Tan, H.J., Wang, X.C., et al. (2017) Hydrogen Addi-tion for Centimeter-Sized Monolayer Tungsten Disulfide Continuous Films by Ambient Pressure Chemical Vapor Deposition. Chemistry of Materials, 29, 4904-4911.
https://doi.org/10.1021/acs.chemmater.7b00954
[40] Ma, Y.D., Dai, Y., Guo, M., et al. (2011) Electronic and Magnetic Properties of Perfect, Vacancy-Doped, and Nonmetal Adsorbed MoSe2, MoTe2 and WS2 Monolayers. Physical Chemistry Chemical Physics, 13, 15546-15553.
https://doi.org/10.1039/c1cp21159e
[41] Allain, A., Kang, J.H., Banerjee, K., et al. (2015) Electrical Contacts to Two-Dimensional Semiconductors. Nature Materials, 14, 1195-1205.
https://doi.org/10.1038/nmat4452
[42] Kang, J.H., Liu, W., Sarkar, D., et al. (2014) Computational Study of Metal Contacts to Monolayer Transition-Metal Dichalcogenide Semiconductors. Physical Review X, 4, Article ID: 031005.
https://doi.org/10.1103/PhysRevX.4.031005