妊娠哺乳相关骨质疏松症发病机制探讨
Discussion on the Pathogenesis of Pregnancy and Lactation-Associated Osteoporosis
DOI: 10.12677/ACM.2020.109292, PDF, HTML, XML, 下载: 418  浏览: 664 
作者: 刁宏翠*, 孙晓方, 赵文娟#:青岛大学附属医院,山东 青岛
关键词: 骨质疏松妊娠哺乳机制Osteoporosis Pregnancy Lactation Mechanism
摘要: 妊娠和哺乳使母体代谢产生一系列适应性反应,机体各项指标也会产生相应变化。由于妊娠期妇女血钙降低、尿钙排泄率增加,因此有极少数妇女会在妊娠后期或产后早期出现骨质疏松。妊娠哺乳期骨质疏松的发病原因未明,可能与钙和维生素D缺乏、激素水平变化、低体重、家族史等存在一定联系。因其发生在妊娠哺乳期,一旦因骨质疏松继发骨折,可严重降低孕产妇的生活质量,对其产生重大影响。现就妊娠哺乳相关骨质疏松症的发生机制进行综述,以便更好地为临床和科研提供依据。
Abstract: Pregnancy and lactation cause a series of adaptive responses to maternal metabolism, the body’s various indicators will also produce corresponding changes. Due to the reduction of blood calcium and the increase of urinary calcium excretion rate in pregnant women, very few women develop osteoporosis late in pregnancy or early postpartum. The cause of pregnancy and lactation-associated osteoporosis is unknown, it may be associated with calcium and vitamin D deficiency, hormonal changes, low body weight, and family history. Because it happens during pregnancy and lactation, once the osteoporosis causes fracture, it can seriously reduce the quality of life of pregnant women. The mechanism and therapeutic drugs of pregnancy-lactation related osteoporosis were reviewed in our article in order to provide a better basis for clinical and scientific research.
文章引用:刁宏翠, 孙晓方, 赵文娟. 妊娠哺乳相关骨质疏松症发病机制探讨[J]. 临床医学进展, 2020, 10(9): 1945-1950. https://doi.org/10.12677/ACM.2020.109292

1. 概述

妊娠哺乳相关骨质疏松症(pregnancy and lactation-associated osteoporosis, PLO)是指妊娠晚期至产后18个月内,尤其产后或哺乳早期所诊断的骨质疏松 [1],是一种十分罕见的疾病,这种疾病以脆性骨折为特点,常伴有身高变矮。骨折好发部位在胸腰段脊柱,最常见于TH11到L2。另有部分病例发生在髋关节,少数病例发生在骶骨。患有该疾病的妇女常常会在妊娠晚期或产后早期经历由于骨髓水肿和脊椎骨折导致的急性下半部背痛 [2]。可根据发病原因分为五类:妊娠期特发短暂髋骨骨质疏松、产后脊柱骨质疏松、哺乳相关的骨质疏松、肝素诱导的骨质疏松、长期静注硫酸镁所致骨质疏松。有报道称患病人群中约88.8%的患者会经历至少一次骨折,而总人群平均为3.3次。一旦因骨质疏松继发骨折,可严重降低孕妇的生活质量,且其对胎儿和婴儿产生重大影响。

1955年由Nordin等报道第一例妊娠后骨质疏松 [3],1959年Curtiss等报道第一例发生在髋关节的一过性妊娠期骨质疏松症 [4]。由于该疾病的发病率较低,因此,系统分析和病例对照试验较少。本文就该疾病的发病机制进行综述,为临床研究提供进一步参考。

2. 妊娠期骨代谢相关指标变化及其与骨质疏松的关系

2.1. 妊娠期孕妇钙量及1,25-(OH)2VD3的生理性及病理性变化

近几年研究表明,妊娠期母体血清白蛋白的下降及钙结合蛋白的减少使血清总钙下降,而具有生理活性的血清离子钙浓度无显著性改变,这反映了母体的适应性变化。尿钙排泄量从正常非妊娠期妇女的160 mg/d增长到晚期妊娠的240 mg/d。肠道钙吸收率从非妊娠期妇女的25%增长到晚期妊娠的50% [5]。怀孕期间,孕妇骨骼中钙贮备降低,同时妊娠期孕妇需要吸收大量的钙来供给胎儿。通过母乳喂养的妇女,丢失的钙为300~400 mg/d,这意味着3个月哺乳将有25~30 g的钙丢失,占全身钙量的3%。如果哺乳期延长到6个月,意味着有6%的钙丢失,而这些丢失的钙5%~10%来源于中轴骨 [6]。也有相反观点认为,妊娠会使骨量增加,在骨质疏松的妇女中骨密度也有15%的升高 [7]。妊娠期血1,25-(OH)2VD3有适宜性改变,妊娠早期增长迅速,晚期达最高水平,妊娠中期有适度降低 [8]。在哺乳期,尿钙排出量增加,1,25-(OH)2VD3也由高水平逐渐降至正常,导致肠道钙吸收也逐渐下降。

研究认为,在妊娠期妇女由于母体及胎儿对钙需求增加、钙和外源性维生素D摄入不足以及哺乳期钙源的丢失是妊娠哺乳期妇女发生骨质疏松的原因 [9]。研究结果显示,在孕期维生素D缺乏和继发性甲状旁腺功能亢进,可能会导致小肠钙吸收进一步减少,进而使骨钙脱失增加 [10]。另据资料表明 [11],哺乳期的钙源丢失大于骨吸收增加,哺乳6个月时骨丢失率高于绝经后,甚至可以导致罕见的骨折。

2.2. 妊娠期激素的生理性及病理性变化

2.2.1. 妊娠雌激素的变化

骨吸收是通过脑–乳房–骨回路的协调调节的 [12] [13]。在哺乳期,婴儿对母亲乳头的吸吮会刺激催乳素的分泌,该激素又会抑制促性腺激素的分泌,通过该通路导致较低的雌二醇水平。低雌二醇水平刺激核因子kB受体活化因子配体并下调成骨细胞分泌的骨保护蛋白水平,则增加破骨细胞的形成、再生和活动 [14]。

停止排卵和异常月经周期可以使年轻女性患骨质疏松的几率更高,而性腺类固醇激素的分泌可以避免此类情况的发生。因此,50岁以下的妇女中骨质疏松的发病率低于2%,其中20~40岁的女性发病率仅为1.2% [15]。

2.2.2. 甲状旁腺激素相关肽的变化

有学者发现甲状旁腺激素相关肽(PTHrP)在发病中可能产生一定作用。PTHrP由母体乳腺、胎盘和胎儿羊膜产生,在妊娠晚期分泌达高峰,而甲状旁腺激素(PTH)水平在妊娠期保持稳定,当PTHrP与PTH/PTHrP受体结合后可刺激骨转换,因此,产生类似PTH的生物学效应从而引起骨吸收增加。而在哺乳期,PTH及PTHrP水平均升高。VanHouten等的动物实验研究发现乳腺来源的PTHrP可能加速哺乳小鼠的骨量丢失 [16]。

2.2.3. 催乳素的变化

催乳素(Prolactin, PRL)是由垂体前叶细胞分泌的一种蛋白质类的激素。研究发现,正常妊娠妇女随孕周的增加,孕血催乳素水平逐渐升高,至妊娠末达高峰,可达到非孕期的10倍。催乳素通过刺激成骨细胞形成以增加骨量和钙吸收率提高生长激素效率,妊娠期妇女由于体内高的垂体催乳素、胎盘催乳素及雌激素水平,增强了1-α-羟化酶的活性,促进维生素D转化为1,25(OH)D3,使其浓度比非妊娠期升高2~4倍,促进肠道对钙的吸收 [17]。

2.2.4. 糖皮质激素的变化

妊娠后期肾上腺皮质激素分泌生理性增加,血浆皮质醇浓度增加到非妊娠期的3倍,游离皮质醇约增加1倍,或外源性使用糖皮质激素药物,可以直接作用于骨骼使成骨细胞的生成减少、加速成骨细胞和骨细胞的凋亡,以及延长破骨细胞的寿命,同时减少血管内皮生长因子、骨骼血管,骨间质液,骨强度导致骨质疏松 [18]。亦可以通过影响骨代谢局部调控因子导致其紊乱间接导致骨吸收减少。另外,Drescher W等研究发现糖皮质激素可以导致骨血流量减少和骨密度下降 [19]。

2.3. 妊娠期其他指标变化与骨质疏松的关系

2.3.1. 母乳喂养时间

随着哺乳时间延长,骨密度值逐渐降低 [20]。Sowers等调查显示,分娩后母乳喂养时间短或以人工喂养为主,骨形成吸收标志很快降到基础水平 [21]。相反,6个月母乳喂养的母亲,骨碱性磷酸酶升高,直到分娩后12个月,生物标志才回到基线。在哺乳期前3个月,骨转换增长较快。众多学者认为分娩后喂养方式与哺乳期骨量改变有关。根据最近的报道,每个孩子如果哺乳超过12个月,无论母亲的年龄,将会是未来的一个危险因素 [22]。

Bolzetta等研究表明忽略妊娠次数,哺乳时间和脊柱骨折之间有明显的联系,且哺乳时间越长,发生骨质疏松的可能性越大。因为哺乳时间超过18个月的女性骨质疏松的发病率是其他人的2倍 [23]。

2.3.2. 体重

产后妇女体重指数与骨质疏松的发生成负向关系,体重指数 < 20 kg/m2者,骨质疏松发生率最高,为8.4%;体重指数 ≥ 24 kg/m2者,骨质疏松发生率最低,为1.2% [24]。在相关文献中,较多文献可以很好的证明较低的BMI会有更高的骨质疏松风险,例如O’Sullivan报导的11例患者中,64%的患者出现低体重 [2]。Di Gregorio等报道的一组患者中,1/3患者体重低于60 kg,1/2患者体重指数低于20 kg/m2 [25]。Kroger等报道在芬兰1600例围绝经期女性中,每增加一公斤体重会使腰椎骨密度增加0.004 g/cm2,使股骨颈增加0.005 g/cm2 [26]。

2.3.3. 家族史

李璐琳等研究表明,家族史与本病密切相关,有骨质疏松家族史者,妊娠期骨质疏松的发生明显高于无骨质疏松家族史 [24]。

2.3.4. 妊娠年龄

30岁前骨密度未达峰值的妇女,母亲骨量仍在增加,妊娠期由于母婴同时生长发育会影响骨密度 [2] [27]。人的骨密度在20~30岁之间达到峰值,而在骨密度尚未达峰值之前,绝大多数妇女正值妊娠及哺乳期,是生育年龄妇女体内激素环境变化最大的两个时期 [28]。Sowers研究表明20岁前妊娠的妇女,在围绝经期胫骨骨密度明显低于在成熟期妊娠的妇女,相当于绝经后5年以上的骨丢失量 [29]。

2.3.5. 机械性压迫

另外,机械性压迫可能是诱发妊娠期骨质疏松的原因之一。因为妊娠晚期胎头入盆后,压迫闭孔神经导致支配髂骨神经的营养障碍从而使相应的骨质营养障碍,因此妊娠期骨质疏松多发于妊娠晚期,主要累及髂骨 [30]。

2.3.6. 药物应用

部分药物如肝素、硫酸镁等的应用也可能会导致骨量丢失 [31] [32]。

D. Ozdemir等研究显示在怀孕期间使用依诺肝素(一种低分子肝素)会增加产后骨质疏松的风险 [33]。用肝素治疗的患者骨组织形态测量学可见皮质骨结构疏松、破骨细胞活性增加、成骨细胞活性下降,骨量在产后停止使用肝素后可以恢复。硫酸镁作为解痉剂在产科领域广泛应用于防治早产、子痫,然而,硫酸镁可影响钙代谢,也可能影响骨矿化过程。以1.5~3.5 g/小时静脉注射硫酸镁6 g/30分钟后,可以诱导低血钙和高尿钙,短期使用,钙代谢是可逆的,长期使用硫酸镁可导致母体持续的低血钙和高尿钙且不受血清甲状旁腺与磷的浓度的调节。一些研究表明,运动量的减少以及摄入咖啡因和吸烟也会导致骨质疏松 [33]。其他有较多争议的如产次、多胎妊娠与骨量的关系目前还很难确定 [34] [35]。

3. 结论及展望

总之,妊娠及哺乳期骨质疏松的发生虽然罕见,但是一旦发生将对母婴均产生一系列较为严重的影响。妊娠与哺乳对骨代谢的影响机制尚无统一标准,目前认为可能与钙和维生素D缺乏、激素水平变化、低体重、家族史、较长的哺乳时间等存在一定联系。虽然该疾病给孕产妇带来的影响严重,但只要保持健康生活习惯,孕期注意补充钙剂及维生素D,加强筛查,及时发现、尽早治疗,将大大改善妊娠及哺乳期骨质疏松患者的预后,提高孕产妇的生活质量。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Hongye, S., et al. (2011) Osteoporosis Associated Pregnancy and Lactation. Chinese Journal of Osteoporosis, 17, 150-152.
[2] O’Sullivan, S.M., et al. (2006) Bisphosphonates in Pregnancy and Lactation-Associated Osteoporosis. Osteoporosis International, 17, 1008-1012.
https://doi.org/10.1007/s00198-006-0112-3
[3] Bret, J. (1955) A New Syndrome; Pregnancy Osteoporosis or Post-Pregnancy Osteoporosis. La Presse médicale, 63, 1549.
[4] Curtiss, P.H. and Kincaid, W.E. (1959) Transitory Demineralization of the Hip in Pregnancy. A Report of Three Cases. The Journal of Bone and Joint Surgery. American Volume, 41-A, 1327-1333.
https://doi.org/10.2106/00004623-195941070-00014
[5] Kohlmeier, L. and Marcus, R. (1995) Calcium Disorders of Pregnancy. Endocrinology and Metabolism Clinics of North America, 24, 15-39.
https://doi.org/10.1016/S0889-8529(18)30052-5
[6] Wang, Y.F., Han, Y. and Wang, D.Y. (2012) The Research Progress of Pregnancy and Lactation Osteoporosis. Medical Recapitulate, No. 20, 77-79.
[7] Rummens, K., et al. (2002) Vitamin D Deficiency in Guinea Pigs: Exacerbation of Bone Phenotype during Pregnancy and Disturbed Fetal Mineralization, with Recovery by 1,25(OH)2D3 Infusion or Dietary Calcium-Phosphate Supplementation. Calcified Tissue International, 71, 364-375.
https://doi.org/10.1007/s00223-001-2125-4
[8] Gallacher, S.J., et al. (1994) Changes in Calciotrophic Hormones and Biochemical Markers of Bone Turnover in Normal Human Pregnancy. European Journal of Endocrinology, 131, 369-374.
https://doi.org/10.1530/eje.0.1310369
[9] Zhu, Y., Xiao, J.P. and Liao, X.P. (2013) Effect of Maternal Vitamin D Level during Pregnancy on Bone Growth of the Offspring. Chinese Journal of Osteoporosis, 19, 533-536.
[10] Kovacs, C.S. (2012) The Role of Vitamin D in Pregnancy and Lactation: Insights from Animal Models and Clinical Studies. Annual Review of Nutrition, 32, 97-123.
https://doi.org/10.1146/annurev-nutr-071811-150742
[11] Ni, X.L. and Xia, W.B. (2019) Maternal Mineral and Bone Metabolism during Lactation. Chinese Journal of Endocrinology and Metabolism, 35, 176-180.
[12] Kovacs, C.S. (2005) Calcium and Bone Metabolism during Pregnancy and Lactation. Journal of Mammary Gland Biology and Neoplasia, 10, 105-118.
https://doi.org/10.1007/s10911-005-5394-0
[13] Wysolmerski, J.J. (2010) Interactions between Breast, Bone, and Brain Regulate Mineral and Skeletal Metabolism during Lactation. Annals of the New York Academy of Sciences, 1192, 161-169.
https://doi.org/10.1111/j.1749-6632.2009.05249.x
[14] A, H., et al. (2010) Regulation of Adult Bone Turnover by Sex Steroids. Journal of Cellular Physiology, 224, 305-310.
https://doi.org/10.1002/jcp.22159
[15] Gutowski, J.L. (2014) Compression Fracture in Postpartum Osteoporosis. Journal of Bone Metabolism, 21, 161.
https://doi.org/10.11005/jbm.2014.21.2.161
[16] N., V.J. and Wysolmerski, J.J. (2003) Low Estrogen and High Parathyroid Hormone-Related Peptide Levels Contribute to Accelerated Bone Resorption and Bone Loss in Lactating Mice. Endocrinology, No. 12, 12.
[17] Kovacs, C.S. (2016) Maternal Mineral and Bone Metabolism during Pregnancy, Lactation, and Post-Weaning Recovery. Physiological Reviews, 96, 449-547.
https://doi.org/10.1152/physrev.00027.2015
[18] Hui, R., et al. (2014) The Advance in the Glucocorticoid-Induced Osteoporosis. Chinese Journal of Osteoporosis, No. 9, 1138-1142.
[19] Drescher, W., et al. (2000) Vertebral Blood Flow and Bone Mineral Density during Long-Term Corticosteroid Treatment: An Experimental Study in Immature Pigs. Spine (Phila Pa 1976), 25, 3021-3025.
https://doi.org/10.1097/00007632-200012010-00009
[20] Chen, S.Q., Li, J.J. and Yang, X.Q. (2010) Early Femoral Proximal Bone Mineral Density after Postpartum. Maternal & Child Health Care of China, 25, 2968-2969.
[21] Sowers, M., et al. (1995) Biochemical Markers of Bone Turnover in Lactating and Nonlactating Postpartum Women. The Journal of Clinical Endocrinology and Metabolism, 80, 2210-2216.
https://doi.org/10.1210/jc.80.7.2210
[22] Hellmeyer, L., et al. (2015) Quantitative Ultrasonometry during Pregnancy and Lactation: A Longitudinal Study. Osteoporosis International, 26, 1147-1154.
https://doi.org/10.1007/s00198-014-2984-y
[23] Bolzetta, F., et al. (2014) Duration of Breastfeeding as a Risk Factor for Vertebral Fractures. Bone, 68, 41-45.
https://doi.org/10.1016/j.bone.2014.08.001
[24] Li, L.L., Ma, Y.L. and Li, Z. (2013) Analysis of the Factors Related to Osteoporosis in Early Postpartum Women. Chinese Journal of Osteoporosis, No. 12, 1259-1261.
[25] Silvana, et al. (2000) Osteoporosis with Vertebral Fractures Associated with Pregnancy and Lactation.
[26] Kröger, H., et al. (1994) Bone Mineral Density and Risk Factors for Osteoporosis—A Population-Based Study of 1600 Perimenopausal Women. Calcified Tissue International, 55, 1-7.
https://doi.org/10.1007/BF00310160
[27] Xia, W.B., He, X.D., Xu, L.L., et al. (2009) Clinical Features of Pregnancy and Lactation-Associated Osteoporosis: Analysis of 4 Cases. National Medical Journal of China, 89, 983-985.
[28] Li, J., Yao, X.W. and Guo, F.C. (2003) Relationship between Pregnancy and Lactation and Osteoporosis. Foreign Medical Sciences (Section of Maternal and Child Health), No. 2, 68-71.
[29] Sowers, M., et al. (1991) A Prospective Evaluation of Bone Mineral Change in Pregnancy. Obstetrics & Gynecology, 77, 841-845.
[30] Fu, H.B., Pei, Y., Yang, G.Q., et al. (2019) Pregnancy and Lactation-Associated Osteoporosis: Five Cases and Review of Literature. Chinese Journal of Osteoporosis and Bone Mineral Research, 12, 37-42.
[31] Aynaci, O., et al. (2008) Bilateral Non-Traumatic Acetabular and Femoral Neck Fractures Due to Pregnancy-Associated Osteoporosis. Archives of Orthopaedic & Trauma Surgery, 128, 313-316.
https://doi.org/10.1007/s00402-007-0439-z
[32] Neufeld, F. (1998) Long-Term Magnesium Sulfate Tocolysis and Maternal Osteoporosis in a Triplet Pregnancy: A Case Report. American Journal of Perinatology, 15, 43-46.
https://doi.org/10.1055/s-2007-993897
[33] Ozdemir, D., et al. (2015) Postpartum Osteoporosis and Vertebral Fractures in Two Patients Treated with Enoxaparin during Pregnancy. Osteoporosis International, 26, 415-418.
https://doi.org/10.1007/s00198-014-2852-9
[34] Ondrak, K.S. and Morgan, D.W. (2007) Physical Activity, Calcium Intake and Bone Health in Children and Adolescents. Sports Medicine, 37, 587-600.
https://doi.org/10.2165/00007256-200737070-00003
[35] Kaur, M., et al. (2003) Longitudinal Changes in Bone Mineral Density during Normal Pregnancy. Bone, 32, 449-454.
https://doi.org/10.1016/S8756-3282(03)00017-6