|
[1]
|
Xu, Z., et al. (2014) Halogen Bond: Its Role beyond Drug Target Binding Affinity for Drug Discovery and Development. Journal of Chemical Information and Modeling, 54, 69-78. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Lu, Y., et al. (2012) Halogen Bonding for Rational Drug Design and New Drug Discovery. Expert Opinion on Drug Discovery, 7, 375-383. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zhou, Y., et al. (2016) Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II-III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. Chemical Reviews, 116, 422-518. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Wang, J., et al. (2014) Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last Decade (2001-2011). Chemcial Reviews, 114, 2432-2506. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Jeschke, P. (2010) The Unique Role of Halogen Substituents in the Design of Modern Agrochemicals. Pest Management Science, 66, 10-27. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Jeschke, P. (2004) The Unique Role of Fluorine in the Design of Active Ingredients for Modern Crop Protection. Chembiochem, 5, 571-589. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Berger, G., et al. (2015) Halogen Bonding in Polymer Science: From Crystal Engineering to Functional Supramolecular Polymers and Materials. Polymer Chemistry, 6, 3559-3580. [Google Scholar] [CrossRef]
|
|
[8]
|
Tang, M.L. and Bao, Z.N. (2011) Halogenated Materials as Organic Semiconductors. Chemistry of Materials, 23, 446-455. [Google Scholar] [CrossRef]
|
|
[9]
|
Latham, J., et al. (2018) Development of Halogenase Enzymes for Use in Synthesis. Chemical Reviews, 118, 232-269. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Fejzagic, A.V., et al. (2019) Halogenating Enzymes for Active Agent Synthesis: First Steps Are Done and Many Have to Follow. Molecules, 24, 4008. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
曾佳, 占纪勋. 黄素依赖型卤化酶的研究进展及应用[J]. 生命科学仪器, 2019, 17(Z1): 34-45.
|
|
[12]
|
Sundaramoorthy, M., et al. (1995) The Crystal Structure of Chloroperoxidase: A Heme Peroxidase-Cytochrome P450 Functional Hybrid. Structure, 3, 1367-1377. [Google Scholar] [CrossRef]
|
|
[13]
|
Butler, A. and Sandy, M. (2009) Mechanistic Considerations of Halogenating Enzymes. Nature, 460, 848-854. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Neumann, C.S., et al. (2008) Halogenation Strategies in Natural Product Biosynthesis. Chemical Biology, 15, 99-109. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Vazquez-duhalt, R., et al. (2001) Biocatalytic Chlorination of Aromatic Hydrocarbons by Chloroperoxidase of Caldariomyces fumago. Phytochemistry, 58, 929-933. [Google Scholar] [CrossRef]
|
|
[16]
|
Geigert, J., et al. (1983) Novel Haloperoxidase Substrates. Alkynes and Cyclopropanes. Journal of Biological Chemistry, 258, 2273-2277.
|
|
[17]
|
Butler, A. and Walker, J.V. (1993) Marine Haloperoxidases. Chemical Reviews, 93, 1937-1944. [Google Scholar] [CrossRef]
|
|
[18]
|
Iton, N., et al. (1986) Characterization of Non-Heme Type Bromoperoxidase in Corallina pilulifera. Journal of Biological Chemistry, 261, 5194-5200.
|
|
[19]
|
Kaysser, L., et al. (2012) Merochlorins A-D, Cyclic Meroterpenoid Antibiotics Biosynthesized in Divergent Pathways with Vanadium-Dependent Chloroperoxidases. Journal of the American Chemical Society, 134, 11988-11991. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wischang, D., Brucher, O. and Hartung, J. (2011) Bromoperoxidases and Functional Enzyme Mimics as Catalysts for Oxidative Bromination—A Sustainable Synthetic Approach. Coordination Chemistry Reviews, 255, 2204-2217. [Google Scholar] [CrossRef]
|
|
[21]
|
Wischang, D., et al. (2011) Vanadate(v)-Dependent Bromoperoxidase Immobilized on Magnetic Beads as Reusable Catalyst for Oxidative Bromination. Green Chemistry, 13, 102-108. [Google Scholar] [CrossRef]
|
|
[22]
|
Carter-Fanklin, J.N., et al. (2004) Vanadium Bromoperoxidase-Catalyzed Biosynthesis of Halogenated Marine Natural Products. Journal of the American Chemical Society, 26, 15060-15066. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Bernhardt, P., et al. (2011) A Stereoselective Vanadium-Dependent Chloroperoxidase in Bacterial Antibiotic Biosynthesis. Journal of the American Chemical Society, 133, 4268-4270. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Voss, M., et al. (2020) Exploring the Biocatalytic Potential of Fe/α-Ketoglutarate-Dependent Halogenases. Chemistry, 26, 7336-7345. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Vaillancourt, F.H., et al. (2005) SyrB2 in Syringomycin E Biosynthesis Is a Non-Herne Fe-II Alpha-Ketoglutarate- and O2-Dependent Halogenase. Proceedings of the National Academy of Sciences of the United States of America, 102, 10111-10116. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Blaslak, L.C., et al. (2006) Crystal Structure of the Non-Haem Iron Halogenase SyrB2 in Syringomycin Biosynthesis. Nature, 440, 368-371. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Hillwig, M.L. and Liu, X.Y. (2014) A New Family of Iron-Dependent Halogenases Acts on Freestanding Substrates. Nature Chemical Biology, 10, 921-923. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Hillwig, M.L., et al. (2014) Biosynthesis of Ambiguine Indole Alkaloids in Cyanobacterium Fischerella ambigua. ACS Chemical Biology, 9, 372-377. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Neugebauer, M.E., et al. (2019) A Family of Radical Halogenases for the Engineering of Amino-Acid-Based Products. Nature Chemical Biology, 15, 1009-1016. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zhao, C., et al. (2020) An Fe2+- and α-Ketoglutarate-Dependent Halogenase Acts on Nucleotide Substrates. Angewandte Chemie International Edition, 59, 9478-9484. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Huijbers, M.M., et al. (2014) Flavin Dependent Monooxygenases. Archives of Biochemistry and Biophysics, 544, 2-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Visitsatthawong, S., et al. (2015) Mechanism of Oxygen Activation in a Flavin-Dependent Monooxygenase: A Nearly Barrierless Formation of C4a-Hydroperoxyflavin via Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 137, 9363-9374. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zhu, X.F., et al. (2009) Structural Insights into Regioselectivity in the Enzymatic Chlorination of Tryptophan. Journal of Molecular Biology, 391, 74-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Dong, C.J., et al. (2004) Crystallization and X-Ray Diffraction of a Halogenating Enzyme, Tryptophan 7-Halogenase, from Pseudomonas fluorescens. Acta Crystallographica Section D—Structural Biology, 60, 1438-1440. [Google Scholar] [CrossRef]
|
|
[35]
|
Dong, C.J., et al. (2005) Tryptophan 7-Halogenase (PrnA) Structure Suggests a Mechanism for Regioselective Chlorination. Science, 309, 2216-2219. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Kirner, S., et al. (1998) Functions Encoded by Pyrrolnitrin Biosynthetic Genes from Pseudomonas fluorescens. Journal of Bacteriology, 180, 1939-1943. [Google Scholar] [CrossRef]
|
|
[37]
|
Kirner, S., et al. (1996) The Non-Haem Chloroperoxidase from Pseudomonas fluorescens and Its Rrelationship to Pyrrolnitrin Biosynthesis. Microbiology, 142, 2129-2135. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Sanchez, C., et al. (2002) The Biosynthetic Gene Cluster for the Antitumor Rebeccamycin: Characterization and Generation of Indolocarbazole Derivatives. Chemical Biology, 9, 519-531. [Google Scholar] [CrossRef]
|
|
[39]
|
Heemstra, J.R. and Walsh, C.T. (2008) Tandem Action of the O2- and FADH2-Dependent Halogenases KtzQ and KtzR Produce 6,7-Dichlorotryptophan for Kutzneride Assembly. Journal of the American Chemical Society, 130, 14024- 14025. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Fujimori, D.G., et al. (2007) Cloning and Characterization of the Biosynthetic Gene Cluster for Kutznerides. Proceedings of the National Academy of Sciences of the United States of America, 104, 16498-16503. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Milbredt, D., et al. (2014) A Tryptophan 6-Halogenase and an Amidotransferase Are Involved in Thienodolin Biosynthesis. Chembiochem, 15, 1011-1020. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Menon, B.R.K., et al. (2016) Structure and Biocatalytic Scope of Thermophilic Flavin-Dependent Halogenase and Flavin Reductase Enzymes. Organic & Biomolecular Chemistry, 14, 9354-9361. [Google Scholar] [CrossRef]
|
|
[43]
|
Zehner, S., et al. (2005) A Regioselective Tryptophan 5-Hhalogenase Is Involved in Pyrroindomycin Biosynthesis in Streptomyces rugosporus LL-42D005. Chemical Biology, 12, 445-452. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Du, Y.L., et al. (2015) Expansion of Bisindole Biosynthetic Pathways by Combinatorial Construction. ACS Synthetic Biology, 4, 682-688. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Ortega, M.A., et al. (2017) Two Flavoenzymes Catalyze the Post-Translational Generation of 5-Chlorotryptophan and 2-Aminovinyl-Cysteine during NAI-107 Biosynthesis. ACS Chemical Biology, 12, 548-557. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Hammer, P.E., Hill, D.S., Lam, S.T., Van Pée, K.H. and Ligon, J.M. (1997) Four Genes from Pseudomonas fluorescens That Encode the Biosynthesis of Pyrrolnitrin. Applied and Environmental Microbiology, 63, 2147-2154. [Google Scholar] [CrossRef]
|
|
[47]
|
Dorrestein, P.C., et al. (2005) Dichlorination of a Pyrrolyl-S-Carrier Protein by FADH2-Dependent Halogenase PltA during Pyoluteorin Biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 102, 13843-13848. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Wynands, I., et al. (2004) A Novel Halogenase Gene from the Pentachloropseudilin Producer Actinoplanes sp. ATCC 33002 and Detection of in Vitro Halogenase Activity. FEMS Microbiology Letters, 237, 363-367. [Google Scholar] [CrossRef]
|
|
[49]
|
Mantovani, S.M. and Moore, B.S. (2013) Flavin-Linked Oxidase Catalyzes Pyrrolizine Formation of Dichloropyrrole- Containing Polyketide Extender Unit in Chlorizidine A. Journal of the American Chemical Society, 135, 18032-18035. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
El Gamal, A., et al. (2016) Biosynthesis of Coral Settlement Cue Tetrabromopyrrole in Marine Bacteria by a Uniquely Adapted Brominase-Thioesterase Enzyme Pair. Proceedings of the National Academy of Sciences of the United States of America, 113, 3797-3802. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Zhou, H., et al. (2010) Insights into Radicicol Biosynthesis via Heterologous Synthesis of Intermediates and Analogs. Journal of Biological Chemistry, 285, 41412-41421. [Google Scholar] [CrossRef]
|
|
[52]
|
Zeng, J., et al. (2011) Specific Inhibition of the Halogenase for Radicicol Biosynthesis by Bromide at the Transcriptional Level in Pochonia chlamydosporia. Biotechnology Letters, 33, 333-338. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Wang, S.H., et al. (2008) Functional Characterization of the Biosynthesis of Radicicol, an Hsp90 Inhibitor Resorcylic Acid Lactone from Chaetomium chiversii. Chemical Biology, 15, 1328-1338. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Xu, F.C., et al. (2016) Selective Biochlorination of Hydroxyquinolines by a Flavin-Dependent Halogenase. Tetrahedron Letters, 57, 5262-5265. [Google Scholar] [CrossRef]
|
|
[55]
|
Chool, Y.H., Cacho, R. and Tang, Y. (2010) Identification of the Viridicatumtoxin and Griseofulvin Gene Clusters from Penicillium aethiopicum. Chemical Biology, 17, 483-494. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Chankhamjon, P., et al. (2014) Biosynthesis of the Halogenated Mycotoxin Aspirochlorine in Koji Mold Involves a Cryptic Amino Acid Conversion. Angewandte Chemie—International Edition, 53, 13409-13413. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Winter, J.M., et al. (2012) Identification and Characterization of the Chaetoviridin and Chaetomugilin Gene Cluster in Chaetomium Globosum Reveal Dual Functions of an Iterative Highly-Reducing Polyketide Synthase. Journal of the American Chemical Society, 134, 17900-17903. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Susca, A., et al. (2016) Variation in Fumonisin and Ochratoxin Production Associated with Differences in Biosynthetic Gene Content in Aspergillus niger and a Welwitschiae Isolates from Multiple Crop and Geographic Origins. Frontiers in Microbiology, 7, 1412. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Nielsen, M.T., et al. (2013) Heterologous Reconstitution of the Intact Geodin Gene Cluster in Aspergillus nidulans through a Simple and Versatile PCR Based Approach. PLoS ONE, 8, e72871. [Google Scholar] [CrossRef]
|
|
[60]
|
Yin, Y., et al. (2016) Polyketides in Aspergillus terreus: Biosynthesis Pathway Discovery and Application. Applied Microbiology and Biotechnology, 100, 7787-7798. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Neumann, C.S., et al. (2010) A Flavin-Dependent Halogenase Ccatalyzes the Chlorination Step in the Biosynthesis of Dictyostelium Differentiation-Inducing Factor 1. Proceedings of the National Academy of Sciences of the United States of America, 107, 5798-5803. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Yu, T.W., et al. (2010) The Biosynthetic Gene Cluster of the Maytansinoid Antitumor Agent Ansamitocin from Actinosynnema pretiosum. Proceedings of the National Academy of Sciences of the United States of America, 107, 5798- 5803.
|
|
[63]
|
Spiteller, P., et al. (2003)The Post-Polyketide Synthase Modification Steps in the Biosynthesis of the Antitumor Agent Ansamitocin by Actinosynnema pretiosum. Journal of the American Chemical Society, 125, 14236-14237.[CrossRef] [PubMed]
|
|
[64]
|
Winter, J.M., et al. (2007) Molecular Basis for Chloronium-Mediated Meroterpene Cyclization-Cloning, Sequencing, and Heterologous Expression of the Napyradiomycin Biosynthetic Gene Cluster. Journal of Biological Chemistry, 282, 16362-16368. [Google Scholar] [CrossRef]
|
|
[65]
|
Mori, S., et al. (2019) Unusual Substrate and Halide Versatility of Phenolic Halogenase PltM. Nature Communications, 10, 1255. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Eustaquio, A.S., et al. (2003) Clorobiocin Biosynthesis in Streptomyces: Identification of the Halogenase and Generation of Structural Analogs. Chemical Biology, 10, 279-288. [Google Scholar] [CrossRef]
|
|
[67]
|
Pelzer, S., et al. (1999) Identification and Analysis of the Balhimycin Biosynthetic Gene Cluster and Its Use for Manipulating Glycopeptide Biosynthesis in Amycolatopsis mediterranei DSM5908. Antimicrobial Agents and Chemotherapy, 43, 1565-1573. [Google Scholar] [CrossRef]
|
|
[68]
|
Chiu, H.T., et al. (2001) Molecular Cloning and Sequence Analysis of the Complestatin Biosynthetic Gene Cluster. Proceedings of the National Academy of Sciences of the United States of America, 98, 8548-8553. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Park, O.K., et al. (2016) Generation of New Complestatin Analogues by Heterologous Expression of the Complestatin Biosynthetic Gene Cluster from Streptomyces chartreusis AN1542. Chembiochem, 17, 1725-1731. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Buedenbender, S., Rachid, S., Müller, R. and Schulz, G.E. (2009) Structure and Action of the Myxobacterial Chondrochloren Halogenase CndH: A New Variant of FAD-Dependent Halogenases. Journal of Molecular Biology, 385, 520-530. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Lin, S.J., et al. (2008) Characterization of the Two-Component, FAD-Dependent Monooxygenase SgcC That Requires Carrier Protein-Tethered Substrates for the Biosynthesis of the Enediyne Antitumor Antibiotic C-1027. Journal of the American Chemical Society, 130, 6616-6623. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Van, L.S.G., et al. (2009) Characterization of Sgce6, the Flavin Reductase Component Supporting FAD-Dependent Halogenation and Hydroxylation in the Biosynthesis of the Enediyne Antitumor Antibiotic C-1027. FEMS Microbiology Letters, 300, 237-241. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Chen, J.S., et al. (2016) Investigation of Halogenation during the Biosynthesis of Ramoplanin in Actinoplanes sp ATCC33076. Applied Microbiology and Biotechnology, 100, 289-298. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Yin, X.H. and Zabriskie, T.M. (2006) The Enduracidin Biosynthetic Gene Cluster from Streptomyces fungicidicus. Microbiology-SGM, 152, 2969-2983. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Agarwal, V., et al. (2014) Biosynthesis of Polybrominated Aromatic Organic Compounds by Marine Bacteria. Nature Chemical Biology, 10, 640-647. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Podzellnska, K., et al. (2010) Chloramphenicol Biosynthesis: The Structure of CmlS, a Flavin-Dependent Halogenase Showing a Covalent Flavin-Aspartate Bond. Journal of Molecular Biology, 397, 316-331. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Chankham, J.P., et al. (2016) Regioselective Dichlorination of a Non-Activated Aliphatic Carbon Atom and Phenolic Bismethylation by a Multifunctional Fungal Flavoenzyme. Angewandte Chemie International Edition, 55, 11955- 11959. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Lang, A., et al. (2011) Changing the Regioselectivity of the Tryptophan 7-Halogenase PrnA by Site-Directed Mutagenesis. Angewandte Chemie International Edition, 50, 2951-2953. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Shepherd, S.A., et al. (2016) A Structure-Guided Switch in the Regioselectivity of a Tryptophan Halogenase. Chembiochem, 17, 821-824. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Andorfer, M.C., et al. (2016) Directed Evolution of RebH for Catalyst-Controlled Halogenation of Indole C-H Bonds. Chemical Science, 7, 3720-3729. [Google Scholar] [CrossRef]
|
|
[81]
|
Payne, J.T., et al. (2015) Directed Evolution of RebH for Site-Selective Halogenation of Large Biologically Active Molecules. Angewandte Chemie International Edition, 54, 4226-4230. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Chen, X., et al. (2013) Genome Sequence of Streptomyces Violaceusniger Strain SPC6, a Halotolerant Streptomycete That Exhibits Rapid Growth and Development. Genome Announcements, 1, e00494-13. [Google Scholar] [CrossRef]
|
|
[83]
|
Takahashi, S., et al. (2009) Characterization of a Flavin Reductase from a Thermophilic Dibenzothiophene-Desulfuri- zing Bacterium, Bacillus subtilis WU-S2B. Journal Bioscience Bioengneering, 107, 38-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Strickler, S.S., et al. (2006) Protein Stability and Surface Electrostatics: A Charged Relationship. Biochemistry, 45, 2761- 2766. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Lawrence, M.S., et al. (2007) Supercharging Proteins can Impart Unusual Resilience. Journal of the American Chemical Society, 129, 10110-10112. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
Poor, C.B., et al. (2014) Improving the Stability and Catalyst Lifetime of the Halogenase RebH by Directed Evolution. Chembiochem, 15, 1286-1289. [Google Scholar] [CrossRef] [PubMed]
|
|
[87]
|
Sanchez, C., et al. (2005) Combinatorial Biosynthesis of Antitumor Indolocarbazole Compounds. Proceedings of the National Academy of Sciences of the United States of America, 102, 461-466. [Google Scholar] [CrossRef] [PubMed]
|
|
[88]
|
Gruschow, S., et al. (2009) New Pacidamycin Antibiotics through Precursor-Directed Biosynthesis. Chembiochem, 10, 355-360. [Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
O’hagan, D., et al. (2002) Biochemistry: Biosynthesis of an Organofluorine Molecule. Nature, 416, 279. [Google Scholar] [CrossRef] [PubMed]
|
|
[90]
|
Schaffrath, C., et al. (2003) Isolation and Characterisation of 5’-Fluorode-Oxyadenosine Synthase, a Fluorination Enzyme from Streptomyces cattleya. FEBS Letters, 547, 111-114. [Google Scholar] [CrossRef]
|
|
[91]
|
Dong, C., et al. (2004) Crystal Structure and Mechanism of a Bacterial Fluorinating Enzyme. Nature, 427, 561-565. [Google Scholar] [CrossRef] [PubMed]
|
|
[92]
|
Deng, H., et al. (2014) Identification of Fluorinases from Streptomyces sp MA37, Norcardia brasiliensis, and Actinoplanes sp N902-109 by Genome Mining. Chembiochem, 15, 364-368. [Google Scholar] [CrossRef] [PubMed]
|
|
[93]
|
Huang, S., et al. (2014) Fluoroacetate Biosynthesis from the Marine-Derived Bacterium Streptomyces xinghaiensis NRRL B-24674. Organic & Biomolecular Chemistry, 12, 4828-4831. [Google Scholar] [CrossRef]
|
|
[94]
|
O’hagan, D., et al. (2015) Enzymatic Fluorination and Biotechnological Developments of the Fluorinase. Chemical Reviews, 115, 634-649. [Google Scholar] [CrossRef] [PubMed]
|
|
[95]
|
Eustaquio, A.S., et al. (2010) Engineering Fluorometabolite Production: Fluorinase Expression in Salinispora tropica Yields Fluorosalinosporamide. Journal of Nature Product, 73, 378-382. [Google Scholar] [CrossRef] [PubMed]
|
|
[96]
|
Hong, H., Spiteller, D. and Spencer, J.B. (2008) Incorporation of Fluoroacetate into an Aromatic Polyketide and Its Influence on the Mode of Cyclization. Angewandte Chemie International Edition, 47, 6028-6032. [Google Scholar] [CrossRef] [PubMed]
|
|
[97]
|
Walker, M.C., et al. (2013) Expanding the Fluorine Chemistry of Living Systems Using Engineered Polyketide Synthase Pathways. Science, 341, 1089-1094. [Google Scholar] [CrossRef] [PubMed]
|
|
[98]
|
Thuronyi, B.W., et al. (2017) Engineered Fluorine Metabolism and Fluoropolymer Production in Living Cells. Angewandte Chemie International Edition, 56, 13637-13640. [Google Scholar] [CrossRef] [PubMed]
|