没食子酸在抗微生物感染中药理作用的研究进展
Pharmacological Research Progress on Antimicrobial Infection of Gallic Acid
DOI: 10.12677/ACM.2020.1012444, PDF, HTML, XML, 下载: 545  浏览: 1,539  科研立项经费支持
作者: 尹 娇, 彭旭东*, 张 杰, 田 雪, 张冉冉:青岛大学附属医院眼科,山东 青岛
关键词: 没食子酸抗微生物抗菌氧化应激抗炎药理作用Gallic Acid Antimicrobial Antibacterial Oxidative Stress Anti-Inflammatory Pharmacological Action
摘要: 没食子酸(Gallic acid, GA)是一种低分子天然多酚类化合物,广泛存在于自然界各种植物,具有多种生物活性。在查阅国内外GA的最新文献基础上,综述了GA在抗细菌、抗真菌、抗病毒、抗寄生虫、抗炎、抗氧化以及在肿瘤、代谢、心血管、神经心理疾病等方面的药理作用研究进展,重点围绕其抗微生物作用,进行分析总结,以期为没食子酸的深入研究或开发应用提供参考。
Abstract: Gallic acid (GA) is a low-molecular natural polyphenolic compound that is widely present in various plants of nature and has a variety of biological activities. On the basis of consulting the latest domestic and foreign literature of GA, the research progress of pharmacological effects of GA in antibacterial, antifungal, antiviral, antiparasitic, anti-inflammatory, anti-oxidant, and tumor, metabolism, cardiovascular, neuropsychological diseases and other aspects is reviewed. Analyze and summarize the antimicrobial effect in order to provide a reference for the in-depth research or development and application of GA.
文章引用:尹娇, 彭旭东, 张杰, 田雪, 张冉冉. 没食子酸在抗微生物感染中药理作用的研究进展[J]. 临床医学进展, 2020, 10(12): 2940-2952. https://doi.org/10.12677/ACM.2020.1012444

1. 引言

没食子酸(gallic acid, GA),化学名3,4,5-三羟基苯甲酸,是一种淡黄色结晶化合物,广泛分布于自然界各种植物 [1],是植物界中最丰富的酚酸之一,在食品和制药工业中得到广泛应用 [2]。作为一种化学结构最简单的天然多酚类化合物,没食子酸已被证明具有抗菌、抗病毒、抗肿瘤、抗炎、抗氧化等多种生物活性 [3]。笔者就没食子酸的多种药理作用进行分析总结,重点围绕抗微生物感染方面,希望能为其合理开发利用提供参考和依据。

2. 抗细菌作用

2.1. 革兰氏阳性菌

2.1.1. 葡萄球菌

研究者从泰国的一种植物(Caesalpinia mimosoides)中分离出抗菌活性物质GA,并证明其对金黄色葡萄球菌及表皮葡萄球菌均具有抗菌活性 [4]。Anabela等后来发现GA能够抑制金黄色葡萄球菌运动和粘附以及预防其生物膜形成 [5]。另外,GA亦显示出对耐甲氧西林金黄色葡萄球菌的抑制作用 [6]。有研究表明 [7],GA的这些抗菌活性很可能与邻苯三酚基团位点和羟基数有关。

2.1.2. 单核细胞增生李斯特菌

Saavedra [8] 等在评估几种简单的酚类物质抗菌活性时发现,GA对细胞增生李斯特菌的抑菌活性可能与酚类化合物使细菌氨基酸或蛋白质失活有关。亦有研究 [9] 发现,这种抗菌活性与pH值密切相关,这可能归因于酚酸影响细菌膜通透性。

2.1.3. 变形链球菌

Kang [10] 等在研究口腔变形链球菌时发现了GA的抗菌作用(MIC = 4 mg/ml),且GA可以显着抑制变形链球菌生物膜的体外形成。最近的一项研究 [11] 发现GA通过影响钙离子在细胞中的外流而影响口腔细菌定殖。Sendamangalam等 [12] 证明,GA的抗菌活性可能与其羟基和羧基的存在有关。

2.1.4. 乳酸菌

GA可通过影响乳酸菌细胞膜通透性、酸化细胞质、引起蛋白质变性来发挥抗乳酸菌活性 [13]。Campos [14] 等发现多种GA对O. oeni乳酸菌最大生长速率的抑制作用与酚酸浓度有相关性。

2.1.5. 蜡状芽孢杆菌

当GA浓度为2.5 mg/mL时,显示出对蜡状芽孢杆菌的抗菌活性 [6],Han等不仅证明了GA可抑制蜡状芽孢杆菌生物活性,并且发现富含GA的植物(红色剑豆皮)也同样发挥抗菌作用 [15]。

2.2. 革兰氏阴性菌

2.2.1. 大肠杆菌

有实验证明 [16],GA对大肠杆菌的MIC为8 mg/mL,在25℃和37℃时,GA显著影响了大肠杆菌的生长曲线,并且GA对细菌生长和生物膜的抑制作用均受到营养水平、温度和处理时间的影响。GA亦显示出对一种多重耐药菌(产ESBLs的大肠杆菌)的抗菌活性 [6]。Shao等 [16] 证实,GA不仅对革兰氏阴性菌的抗菌活性比革兰阳性细菌高,且在减少革兰氏阴性细菌形成的生物膜的质量方面显示出更高的活力。

2.2.2. 伤寒沙门氏菌

当GA浓度为2.5 mg/mL时,显示出鼠伤寒氏沙门杆菌的抗菌活性 [6]。Puupponen等 [17] 在研究鞣花单宁结构成分的抗微生物活性时发现,GA强烈抑制了鼠伤寒沙门氏菌生长,并推测这可能与GA抑制细胞外微生物酶、剥夺微生物生长所需的底物、抑制微生物代谢氧化磷酸化等有关。另外,Ratttanata等 [9] 发现天然没食子酸(nGA)和商品没食子酸(cGA)以相同的方式抑制食源性致病菌沙门氏菌的生长,这与酚酸在细菌细胞膜上的作用有关。

2.2.3. 假单胞菌

有研究 [5] 发现,GA可大幅降低铜绿假单胞菌生物膜的代谢活性、减少生物膜质量。Rauha等 [18] 通过孔板扩散法亦证明GA对铜绿假单胞菌明显的抗菌活性。Yang等 [19] 从一种山茶花中鉴定出没食子酸,并验证了GA抑制铜绿假单胞菌PAO1菌株的生长及致病因子绿脓素的生成。其次,GA亦对耐碳青霉菌的铜绿假单胞菌显示出抗菌活性 [6]。Borges等 [20] 证明GA的抗铜绿假单胞菌活性可能是由于GA改变细胞膜疏水性,或者在膜上形成局部破裂或孔,从而导致细胞内成分泄漏。

2.2.4. 气单胞菌

研究发现,GA通过破坏细菌的膜完整性表现出抗气单胞菌活性,并以剂量依赖性方式引起细菌内膜的严重收缩和不规则形态 [21]。

2.3. 其他

一项新的研究 [22] 发现,GA对一种植物细菌病原体(Ralstonia solanacearum)显示出抗生物膜形成及粘附潜力。GA还显示出对弗氏链球菌、耐多药鲍曼不动杆菌 [6]、幽门螺杆菌 [23]、叶缘焦枯病菌 [24]、产气荚膜梭菌、副溶血性弧菌、密歇根棒状杆菌 [7]、粪肠球菌、肺炎克雷伯菌 [25] 等的体外生长抑制作用。GA抑制了几种不同弯曲杆菌菌株的生长(MIC 15.63~250 μg/mL),但在易感菌株中没有观察到细胞含量的损失或形态变化,却引起钙离子流失,并推测其潜在机制为造成细胞膜通透性的损害 [26]。GA作为传统草本植物大戟素提取物之一,显示出对痤疮丙酸杆菌强大的抗菌活性 [27]。

3. 抗真菌作用

3.1. 念珠菌

Pedroso [28] 等在秀丽隐杆线虫–念珠菌感染模型中发现,GA对5种不同的念珠菌菌株均显示出较强抗真菌活性(MIC 31.25~1000 µg/mL),其中,其抗菌作用主要针对光滑念珠菌和克柔念珠菌,抗生物膜活性主要针对克柔念珠菌。有体外研究表明 [29],GA还可降低白色念珠菌对口腔上皮细胞的粘附,但是不能降低白色念珠菌毒力因子蛋白酶和磷脂酶的产生。体内实验 [30] 证实,用GA治疗全身感染白色念珠菌的小鼠7天后,机体组织真菌载量降低,死亡率显著降低,效果可与氟康唑相当。另外,Sony等 [31] 发现,决明子瘘提取物可对氟康唑抗药性念珠菌产生抗菌活性,这可能与GA影响真菌细胞膜,导致细胞质含量的泄漏有关,本实验亦证明了GA与真菌细胞膜合成途径重要的酶羊毛甾醇14-α脱甲基酶(CYP51)具有结合力。

3.2. 毛癣菌

较早的一项研究显示 [32],GA对红色毛癣菌及须毛癣菌具有抗菌活性,其MIC分别为16和31 mg/L。后来的研究 [30] 发现,GA对几种毛癣菌属的皮肤真菌株具有广泛抗菌活性(MIC 43.75~83.33 μg/mL),其中最敏感的丝状菌是红毛癣菌,其效价与氟康唑相当,GA通过影响麦角固醇生物合成途径中2种重要的酶:角鲨烯环氧酶(SE)和CYP51,作用于真菌细胞膜,从而影响细胞生长和存活。

3.3. 镰刀菌

Nguyen等 [33] 发现,GA通过使茄形镰刀菌菌丝塌陷收缩、抑制分生孢子萌发来抑制菌丝体生长,其抗真菌活性的机制之一可能是产生几丁质酶降解真菌细胞壁的重要组成部分几丁质。Miguel等 [34] 证明GA对孢镰刀菌和单形镰刀菌MFC均为250 µg/mL。而Shinsaku等 [35] 则证明使用Natsuaki教授赠送的茄形镰刀菌发现GA对其并无抗菌活性,并推测出现不同的结果可能与菌株的差异有关。

3.4. 霉菌

研究发现 [34],来自墨西哥的塔布灌木表现出对匍枝根霉、灰霉菌的抗菌活性,而其抗菌活性归因于其中的没食子酸和类黄酮。Lam等 [36] 证明,GA及含GA的微胶囊均表现出对黑曲霉的抗真菌活性,且后者效果更佳。Carlos等 [37] 证明GA对黑曲霉MFA为250 µg/ml。Ana [32] 等发现GA对烟曲霉及黑曲霉MIC均大于62.5 mg/L。

3.5. 新生隐球菌

Nuchanart等 [38] 发现,GA表现出对新生隐球菌的抗真菌活性(MIC > 8000 µg/ml),而Gehrke等 [39] 则证明从巴西南部的一种植物分离的GA对新生隐球菌MIC为100 μg/ml。

4. 抗病毒作用

4.1. 肝炎病毒

研究发现 [40],GA对丙型肝炎病毒(HCV)具有抗病毒活性,并以时间依赖性方式下调HCV蛋白和RNA的表达。也有实验证明 [41],GA呈剂量依赖性显著地抑制HCV感染Huh-7.5肝癌细胞细胞,主要的机制为灭活未进入细胞的病毒颗粒并阻断其与宿主细胞的结合,而对结合后的病毒进入或融合阶段几乎没有影响。但Aoki等 [42] 却发现GA的抗HCV活性在病毒进入细胞前后步骤都起作用。而先前的一项基于Huh-7.5肝癌细胞的研究 [43] 却发现浓度为25 μM以内的GA无论在抑制HCV进入细胞或是复制过程中,均没有检测到抗HCV活性。另外,有研究 [44] 分析GA的抗乙型肝炎病毒(HBV)机制与抑制病毒包膜或逆转录酶有关。

4.2. 流感病毒

GA以剂量依赖的方式显示出对甲型流感病毒(H1N1)活性的抑制作用,并通过灭活NA (一种关键的病毒蛋白)抑制病毒的释放 [45]。类似的研究表明 [46],GA以浓度依赖的方式在1~400 µM的范围内对A型和B型流感病毒均显示抑制作用,但其仅破坏病毒颗粒,并不抑制血凝反应。亦有研究 [47] 验证,GA虽然可抑制甲型流感病毒,但>400 µg/ml的浓度下不能抑制甲型流感病毒表面蛋白血凝素,其具体机制有待深究。

4.3. 单纯疱疹病毒

Kratz等 [48] 检测到GA的抗HSV-1活性,IC50值为23.9 ± 9.4 µM,可能的机制GA是抑制病毒附着和渗透或破坏病毒的糖蛋白,在这之前也有研究 [49] 发现GA在较高浓度下表现出对HSV-1一定的抑制作用。但Neli等 [50] 却表明,GA对HSV-1没有明显的抗病毒活性,并推测这可能与GA的化学结构及其可能的病毒蛋白靶标有关。

4.4. 人免疫缺陷病毒

最近的一项研究 [51] 显示,在使用β-半乳糖苷酶测定法多酚的体外抗HIV活性时,发现没食子酸的有效活性(CC50 962 µM, IC50 27.74 µM, SI = 34),这与早先的关于GA的抗HIV-1活性研究 [48] 相似(CC50为825 µM)。Nutan等 [52] 发现从紫薇中提取的GA具有抗HIV活性,并显示逆转录酶的抑制作用。相反地,有研究 [53] 表示GA在50 μM浓度以内均未显示任何抗HIV活性。

4.5. 冠状病毒

一项关于COVID-19的研究 [54] 发现,没食子酸有希望是开发用于预防和治疗SARS-CoV-2和其他冠状病毒的有效抗病毒剂的起始原料。另外,GA作为茶树接骨木提取物重要成分之一,减少了人冠状病毒感染细胞的细胞病变,具有潜在的针对HCoV-NL63的抗病毒活性,其抑制病毒产量的IC50值71.48 μM [55]。

4.6. 埃博拉病毒

一项体外抗病毒实验显示 [56],GA对埃博拉病毒的入侵有约80%的抑制作用,且呈剂量响应性,并证明GA主要在病毒进入细胞后期阻止感染,但其具体机制尚有待探究。

4.7. 诺如病毒

GA在100 μM时可对鼠诺如病毒1 (MNV-1)和猫杯状病毒F9 (FCV-F9)产生50%~65%的抑制作用 [42],但是在早先的一项研究 [57] 却发现GA对这两种病毒无抑制活性。相似地,在一项关于诺如病毒的阻断实验中发现GA未显示出可检测的抑制活性 [58]。

4.8. 其他

Andrea等 [59] 从番石榴中分离纯化的GA,在病毒感染细胞前后均显示出对登革热病毒抑制作用,并推测可能与抑制病毒复制和组装过程中必不可少的酶(α-葡萄糖苷酶)有关。GA亦显示出轻微的抗马尔堡病毒活性 [56]。GA以100 μg/mL的浓度抑制了人鼻病毒HRV2和HRV3复制,主要是通过减轻HRV诱导的细胞病变效应(CPE)并与HRV颗粒直接作用 [60]。另外,从金缕梅花中分离的GA显示出对肠道病毒71 (EV71)强大的抗病毒活性 [61]。

5. 抗寄生虫作用

5.1. 锥虫

高浓度GA在以前被测定出可抗布鲁氏锥虫 [62]。近来的研究 [63] 也发现,GA作为一种具有铁螯合特性的酚酸,同时在基因和蛋白水平以剂量依赖性方式显示出抗布鲁氏锥虫活性(IC50 14.2 ± 1.5 μM)。但是先前的一项研究 [64] 却证明GA的衍生物没食子酸酯具有很强的杀锥虫活性而GA本身却完全无活性,并推测这可能归因于亲脂质基团对麦角固醇作用更有效。

5.2. 利什曼原虫

GA通过时间和剂量依赖方式控制利什曼原虫的生长,可能的机制为对利什曼原虫重要酶(Try-R和Try-S)发挥抑制作用和DNA损伤作用 [65]。Deniz等 [66] 证明GA不仅以浓度依赖性抑制利什曼原虫的生长,还可以减少被感染的巨噬细胞数量、诱导巨噬细胞能力激活以及增加溶酶体量、NO合成和胞质钙释放。Rogério等 [64] 从巴西的一种植物分离出的GA亦表现出良好的抗利什曼原虫活性(IC50 1.7 μg/ml),这比一项早期的研究 [67] 显示出GA更强抗原虫效力(IC50 > 30 μg/ml)。

5.3. 线虫

研究发现 [68],从植物分离出的GA具有抗盘尾丝虫活性。更早的一项研究 [69] 表明GA还对野生型秀丽隐杆线虫和秀丽隐杆线虫耐药突变体有不同程度抑制活性。GA亦显示出对捻转血矛线虫的抑制活性,包括对其卵孵化和运动方面的抑制作用 [70]。

5.4. 其他

当GA浓度为300 μg/mL,显示出对三种贾第鞭毛虫滋养体菌株的抑制活性 [71]。GA对细粒棘球绦虫具有有效的杀虫作用,当浓度为25 mg/mL时可显示出100%的杀卵活性 [72]。

6. 其他药理作用

6.1. 抗炎

最近的一项体外研究 [73] 证明,GA抑制涉及子宫肌层收缩和胎膜破裂的促炎介质的产生而发挥抗炎作用。几项研究验证,GA可通过NF-κB通路下调炎症因子表达,从而缓解结肠炎 [74] [75]、哮喘 [76]。GA还可通过影响Th1,Th2和Th17细胞因子的表达,从而减轻小鼠过敏性鼻炎 [77]。另外,GA的抗炎活性亦表现在其他炎症性疾病,例如肺部炎症 [78]、牙周炎 [79]、特应性皮炎 [80]、类风湿关节炎 [81]。

6.2. 抗氧化

最新的一项动物实验 [82] 表明,GA可通过减少细胞活性氧的产生并提高抗氧化防御系统酶的活性,从而发挥肝保护作用。并且先前多项研究已证明GA可降低多个系统的氧化应激水平,发挥器官保护作用,例如心脏和脾脏 [83]、脑和肝 [84] [85]、肾 [86]、呼吸道 [87]。另外,GA可抑制生殖系统氧化损伤,调节精子功能特性以及生殖系统有关的激素水平 [88] [89]。

6.3. 抗肿瘤

GA通过不同信号通路以及引起线粒体功能障碍抑制膀胱癌细胞增殖、迁移和侵袭,从而发挥抗肿瘤活性 [90] [91]。GA以剂量依赖性的方式抑制HeLa宫颈癌细胞生长,这会诱导谷胱甘肽耗竭,导致细胞死亡 [92]。GA对癌细胞的毒性作用也表现在乳腺癌 [93]、急性髓细胞性白血病 [94]、口腔癌 [95]、鼻咽癌 [96]。

6.4. 抗糖尿病

最近的研究 [97] 发现,GA可降低db/db小鼠及果糖中毒大鼠的血糖、HbA1c水平,增加胰岛素敏感性,这与过去的几项大鼠体内实验 [98] [99] 类似。但是Lizielle等 [100] 在先前的一项体内研究中却未观察到GA的降血糖作用。另外,GA可减轻2型糖尿病引起的大鼠肾脏损害 [101]、神经变性 [102]、高甘油三酸酯血症和脂肪积累 [103]、DNA氧化损伤 [104]。

6.5. 心血管保护

体内实验 [105] 发现,GA通过抑制内皮型一氧化氮合酶的降解来减轻血管紧张素Ⅱ诱导的小鼠高血压和血管功能障碍。Du等 [106] 发现GA对乌头碱引起的心律失常具有保护作用,这与其对电压门控Na通道的抑制作用有关。并且,GA可以降低原发性高血压大鼠的收缩压以及心脏组织中丙二醛水平 [107],是治疗心血管疾病潜在药物。

6.6. 其他

一项新的研究 [108] 发现,GA可减轻阿尔兹海默病小鼠认知障碍并改善其病理变化。GA通过抑制组蛋白H3K27me3脱甲基酶活性和表达来减弱脊髓损伤后的血脊髓屏障破坏,从而发挥神经保护作用 [109]。Wang等 [110] 发现GA通过抑制AKT/ERK信号通路,阻止瘢痕疙瘩成纤维细胞(KFs)向伤口区域的迁移起到治疗疗瘢痕疙瘩作用。GA可调节中风后抑郁小鼠的抑郁状态 [111]。GA以剂量依赖性方式通过刺激Fox蛋白N1表达和细胞增殖来对抗胸腺的退化 [112]。

7. 总结与展望

综上所述,大量的研究已经肯定了没食子酸的抗微生物作用。首先,GA的抗细菌作用主要依赖于其特殊的化学结构及其对细胞膜通透性的影响;其次,无论是在抑制菌体生长还是生物膜方面,GA对革兰氏阴性菌的活性都优于革兰氏阳性细菌 [16]。GA的抗真菌作用主要集中于念珠菌属,推测它似乎对丝状真菌更有效。与抗细菌一致的是,GA也作用于真菌细胞膜,导致胞质泄漏,但其抗真菌机制还可能涉及真菌细胞膜的合成 [30] 或真菌细胞壁的降解 [33],但是具体机制尚不明确。GA发挥的抗病毒作用的时机以及是否有特定的蛋白或酶靶标还有待深究。GA的抗寄生虫活性与其抗氧化性有密切关系,且有一部分抗寄生虫特性与免疫机制有关。因此,关于没食子酸在抗微生物感染中药理作用的机理尚需探讨。

另外,GA还具有抗炎、抗肿瘤、抗氧化、心血管保护等生物活性,并在消化道、心血管、代谢、神经心理等多个系统发挥药理作用。作为一种天然低分子天然化合物,GA特殊的三羟基苯酚结构在其生物学功能扮演重要的角色,并且它无论作为单体还是植物基质的组成部分,都能在不同程度上发挥其生物活性。GA涉及广泛的信号传导通路,其抗炎和抗氧化的生物活性贯穿各大领域的预防或治疗。但是,这些药理作用目前仅局限于细胞和动物实验,GA是否可以早期进入临床实验有待探究,同时也需要进一步探索GA分子水平的药理作用机制,使其更安全并有效地发挥药物最大的利用空间。

基金项目

山东省自然科学基金青年项目(No. ZR2019BH004)。

NOTES

*通讯作者。

参考文献

[1] Wang, Q., de Oliveira, E.F., Alborzi, S., et al. (2017) On Mechanism Behind UV-A Light Enhanced Antibacterial Activity of Gallic Acid and Propyl Gallate against Escherichia coli O157:H7. Scientific Reports, 7, 8325.
https://doi.org/10.1038/s41598-017-08449-1
[2] Kahkeshani, N., Farzaei, F., Fotouhi, M., et al. (2019) Pharmacological Effects of Gallic Acid in Health and Diseases: A Mechanistic Review. Iranian Journal of Basic Medical Sciences, 22, 225-237.
[3] Fernandes, F.H.A. and Salgado, H.R.N. (2016) Gallic Acid: Review of the Methods of Determination and Quantification. Critical Reviews in Analytical Chemistry, 46, 257-265.
https://doi.org/10.1080/10408347.2015.1095064
[4] Chanwitheesuk, A., Teerawutgulrag, A., Kilburn, J.D., et al. (2007) Antimicrobial Gallic acid from Caesalpinia mimosoides Lamk. Food Chemistry, 100, 1044-1048.
https://doi.org/10.1016/j.foodchem.2005.11.008
[5] Borges, A., Saavedra, M.J. and Simões, M. (2012) The Activity of Ferulic and Gallic Acids in Biofilm Prevention and Control of Pathogenic Bacteria. Biofouling, 28, 755-767.
https://doi.org/10.1080/08927014.2012.706751
[6] Fu, L., Lu, W. and Zhou, X. (2016) Phenolic Compounds and in Vitro Antibacterial and Antioxidant Activities of Three Tropic Fruits: Persimmon, Guava, and Sweetsop. BioMed Research International, 2016, Article ID: 4287461.
https://doi.org/10.1155/2016/4287461
[7] Taguri, T., Tanaka, T. and Kouno, I. (2006) Antibacterial Spectrum of Plant Polyphenols and Extracts Depending upon Hydroxyphenyl Structure. Biological and Pharmaceutical Bulletin, 29, 2226-2235.
https://doi.org/10.1248/bpb.29.2226
[8] Saavedra, M.J., Borges, A., Dias, C., et al. (2010) Antimicrobial Activity of Phenolics and Glucosinolate Hydrolysis Products and their Synergy with Streptomycin against Pathogenic Bacteria. Medicinal Chemistry, 6, 174-183.
https://doi.org/10.2174/1573406411006030174
[9] Rattanata, N., Klaynongsruang, S., Daduang, S., et al. (2016) Inhibitory Effects of Gallic Acid Isolated from Caesalpinia mimosoides Lamk on Cholangiocarcinoma Cell Lines and Foodborne Pathogenic Bacteria. Asian Pacific Journal of Cancer Prevention, 17, 1341-1345.
https://doi.org/10.7314/APJCP.2016.17.3.1341
[10] Kang, M.-S., Oh, J.-S., Kang, I.-C., et al. (2008) Inhibitory Effect of Methyl Gallate and Gallic Acid on Oral Bacteria. The Journal of Microbiology, 46, 744-750.
https://doi.org/10.1007/s12275-008-0235-7
[11] Wang, Y. and Lam, A.T.W. (2020) Epigallocatechin Gallate and Gallic Acid Affect Colonization of Abiotic Surfaces by Oral Bacteria. Archives of Oral Biology, 120, Article ID: 104922.
https://doi.org/10.1016/j.archoralbio.2020.104922
[12] Sendamangalam, V., Choi, O.K., Kim, D., et al. (2011) The Anti-Biofouling Effect of Polyphenols against Streptococcus mutans. Biofouling, 27, 13-19.
https://doi.org/10.1080/08927014.2010.535897
[13] Campos, F.M., Couto, J.A., Figueiredo, A.R., et al. (2009) Cell Membrane Damage Induced by Phenolic Acids on Wine Lactic Acid Bacteria. International Journal of Food Microbiology, 135, 144-151.
https://doi.org/10.1016/j.ijfoodmicro.2009.07.031
[14] Campos, F.M., Couto, J.A. and Hogg, T.A. (2003) Influence of Phenolic Acids on Growth and Inactivation of Oenococcus oeni and Lactobacillus hilgardii. Journal of Applied Microbiology, 94, 167-174.
https://doi.org/10.1046/j.1365-2672.2003.01801.x
[15] Han, S.S., Hur, S.J. and Lee, S.K. (2015) A Comparison of Antioxidative and Anti-Inflammatory Activities of Sword Beans and Soybeans Fermented with Bacillus subtilis. Food & Function, 6, 2736-2748.
https://doi.org/10.1039/C5FO00290G
[16] Shao, D., Li, J., Li, J., et al. (2015) Inhibition of Gallic Acid on the Growth and Biofilm Formation of Escherichia coli and Streptococcus mutans. Journal of Food Science, 80, M1299-M305.
https://doi.org/10.1111/1750-3841.12902
[17] Puupponen-Pimiä, R., Nohynek, L., Hartmann-Schmidlin, S., et al. (2005) Berry Phenolics Selectively Inhibit the Growth of Intestinal Pathogens. Journal of Applied Microbiology, 98, 991-1000.
https://doi.org/10.1111/j.1365-2672.2005.02547.x
[18] Rauha, J.-P., Remes, S., Heinonen, M., et al. (2000) Antimicrobial Effects of Finnish Plant Extracts Containing Flavonoids and Other Phenolic Compounds. International Journal of Food Microbiology, 56, 3-12.
https://doi.org/10.1016/S0168-1605(00)00218-X
[19] Rui, Y., Ying, G., Jinwei, Z., et al. (2018) Phytochemicals from Camellia nitidissima Chi Flowers Reduce the Pyocyanin Production and Motility of Pseudomonas aeruginosa PAO1. Frontiers in Microbiology, 8, 2640.
[20] Borges, A., Ferreira, C., Saavedra, M.J., et al. (2013) Antibacterial Activity and Mode of Action of Ferulic and Gallic Acids against Pathogenic Bacteria. Microbial Drug Resistance (Larchmont, NY), 19, 256-265.
https://doi.org/10.1089/mdr.2012.0244
[21] Jing, L., Zhenning, W., Mengrou, R., et al. (2016) Antibacterial Effect of Gallic Acid against Aeromonas hydrophila and Aeromonas sobria through Damaging Membrane Integrity. Current Pharmaceutical Biotechnology, 17, 1153-1158.
https://doi.org/10.2174/1389201017666161022235759
[22] Sowndarya, J., Rubini, D., Sinsinwar, S., et al. (2020) Gallic Acid an Agricultural Byproduct Modulates the Biofilm Matrix Exopolysaccharides of the Phytopathogen Ralstonia solanacearum. Current Microbiology, 77, 3339-3354.
https://doi.org/10.1007/s00284-020-02141-w
[23] Díaz-Gómez, R., López-Solís, R., Obreque-Slier, E., et al. (2013) Comparative Antibacterial Effect of Gallic Acid and Catechin against Helicobacter Pylori. LWT-Food Science and Technology, 54, 331-335.
https://doi.org/10.1016/j.lwt.2013.07.012
[24] Maddox, C.E., Laur, L.M. and Tian, L. (2010) Antibacterial Activity of Phenolic Compounds against the Phytopathogen Xylella Fastidiosa. Current Microbiology, 60, 53-58.
https://doi.org/10.1007/s00284-009-9501-0
[25] Hossan, M.S., Jindal, H., Maisha, S., et al. (2018) Antibacterial Effects of 18 Medicinal Plants Used by the Khyang Tribe in Bangladesh. Pharmaceutical Biology, 56, 201-208.
https://doi.org/10.1080/13880209.2018.1446030
[26] Sarjit, A., Wang, Y. and Dykes, G.A. (2015) Antimicrobial Activity of Gallic Acid against Thermophilic Campylobacter is Strain Specific and Associated with a Loss of Calcium Ions. Food Microbiology, 46, 227-233.
https://doi.org/10.1016/j.fm.2014.08.002
[27] Lim, H.J., Jeon, Y.D., Kang, S.H., et al. (2018) Inhibitory Effects of Euphorbia supina on Propionibacterium Acnes-Induced Skin Inflammation in Vitro and in Vivo. BMC Complementary Medicine and Therapies, 18, 263.
https://doi.org/10.1186/s12906-018-2320-8
[28] Pedroso, R.D.S., Balbino, B.L., Andrade, G., et al. (2019) In Vitro and in Vivo Anti-Candida spp. Activity of Plant-Derived Products. Plants (Basel, Switzerland), 8, 494.
https://doi.org/10.3390/plants8110494
[29] Teodoro, G.R., Gontijo, A.V.L., Salvador, M.J., et al. (2018) Effects of Acetone Fraction from Buchenavia tomentosa Aqueous Extract and Gallic Acid on Candida albicans Biofilms and Virulence Factors. Frontiers in Microbiology, 9, 647.
https://doi.org/10.3389/fmicb.2018.00647
[30] Li, Z.-J., Liu, M., Dawuti, G., et al. (2017) Antifungal Activity of Gallic Acid in Vitro and in Vivo. Phytotherapy Research, 31, 1039-1045.
https://doi.org/10.1002/ptr.5823
[31] Sony, P., Kalyani, M., Jeyakumari, D., et al. (2018) In Vitro Antifungal Activity of Cassia Fistula Extracts against Fluconazole Resistant Strains of Candida Species from HIV Patients. Journal De Mycologie Medicale, 28, 193-200.
https://doi.org/10.1016/j.mycmed.2017.07.010
[32] de Paula, E., Silva, A.C.A., Costa-Orlandi, C.B., Gullo, F.P., et al. (2014) Antifungal Activity of Decyl Gallate against Several Species of Pathogenic Fungi. Evidence-Based Complementary and Alternative Medicine, 2014, Article ID: 506273.
https://doi.org/10.1155/2014/506273
[33] Nguyen, D.M., Seo, D.J., Lee, H.B., et al. (2013) Antifungal Activity of Gallic Acid Purified from Terminalia nigrovenulosa Bark against Fusarium solani. Microbial Pathoge, 56, 8-15.
https://doi.org/10.1016/j.micpath.2013.01.001
[34] De León-Zapata, M.A., Pastrana-Castro, L., Rua-Rodríguez, M.L., et al. (2016) Experimental Protocol for the Recovery and Evaluation of Bioactive Compounds of Tarbush against Postharvest Fruit Fungi. Food Chemistry, 198, 62-67.
https://doi.org/10.1016/j.foodchem.2015.11.034
[35] Ito, S., Nakagawa, Y., Yazawa, S., et al. (2014) Antifungal Activity of Alkyl Gallates against Plant Pathogenic Fungi. Bioorganic & Medicinal Chemistry Letters, 24, 1812-1814.
https://doi.org/10.1016/j.bmcl.2014.02.017
[36] Lam, P.L., Gambari, R., Kok, S.H., et al. (2015) Non-Toxic Agarose/Gelatin-Based Microencapsulation System Containing Gallic Acid for Antifungal Application. International Journal of Molecular Medicine, 35, 503-510.
https://doi.org/10.3892/ijmm.2014.2027
[37] Céspedes, C.L., Salazar, J.R., Ariza-Castolo, A., et al. (2014) Biopesticides from Plants: Calceolaria Integrifolia s.l. Environmental Research, 132, 391-406.
https://doi.org/10.1016/j.envres.2014.04.003
[38] Rangkadilok, N., Tongchusak, S., Boonhok, R., et al. (2012) In Vitro Antifungal Activities of Longan (Dimocarpus longan Lour.) Seed Extract. Fitoterapia, 83, 545-553.
https://doi.org/10.1016/j.fitote.2011.12.023
[39] Gehrke, I.T.S., Neto, A.T., Pedroso, M., et al. (2013) Antimicrobial Activity of Schinus lentiscifolius (Anacardiaceae). Journal of Ethnopharmacology, 148, 486-491.
https://doi.org/10.1016/j.jep.2013.04.043
[40] Govea-Salas, M., Rivas-Estilla, A.M., Rodríguez-Herrera, R., et al. (2016) Gallic Acid Decreases Hepatitis C Virus Expression through Its Antioxidant Capacity. Experimental and Therapeutic Medicine, 11, 619-624.
https://doi.org/10.3892/etm.2015.2923
[41] Hsu, W.-C., Chang, S.-P., Lin, L.-C., et al. (2015) Limonium Sinense and Gallic Acid Suppress Hepatitis C Virus Infection by Blocking Early Viral Entry. Antiviral Research, 118, 139-147.
https://doi.org/10.1016/j.antiviral.2015.04.003
[42] Aoki, C., Hartati, S., Santi, M., et al. (2014) Isolation and Identification of Substances with Anti-Hepatitis C Virus Activities from Kalanchoe pinnata. International Journal of Pharmaceutics, 6, 211-215.
[43] Liu, S., Chen, R. and Hagedorn, C.H. (2015) Tannic Acid Inhibits Hepatitis C Virus Entry into Huh7.5 Cells. PLoS One, 10, e0131358.
https://doi.org/10.1371/journal.pone.0131358
[44] Alam, P., Parvez, M.K., Arbab, A.H., et al. (2017) Quantitative Analysis of Rutin, Quercetin, Naringenin, and Gallic Acid by Validated RP- and NP-HPTLC Methods for Quality Control of Anti-HBV Active Extract of Guiera senegalensis. Pharmaceutical Biology, 55, 1317-1323.
https://doi.org/10.1080/13880209.2017.1300175
[45] You, H.-L., Huang, C.-C., Chen, C.-J., et al. (2018) Anti-Pandemic Influenza A (H1N1) Virus Potential of Catechin and Gallic Acid. Journal of the Chinese Medical Association, 81, 458-468.
https://doi.org/10.1016/j.jcma.2017.11.007
[46] Lee, J.-H., Oh, M., Seok, J.H., et al. (2016) Antiviral Effects of Black Raspberry (Rubus coreanus) Seed and Its Gallic Acid against Influenza Virus Infection. Viruses, 8, 157.
https://doi.org/10.3390/v8060157
[47] Theisen, L.L., Erdelmeier, C.A.J., Spoden, G.A., et al. (2014) Tannins from Hamamelis virginiana Bark Extract: Characterization and Improvement of the Antiviral Efficacy against Influenza A Virus and Human Papillomavirus. PLoS ONE, 9, e88062.
https://doi.org/10.1371/journal.pone.0088062
[48] Kratz, J.M., Andrighetti-Fröhner, C.R., Kolling, D.J., et al. (2008) Anti-HSV-1 and Anti-HIV-1 Activity of Gallic Acid and Pentyl Gallate. Memórias do Instituto Oswaldo Cruz, 103, 437-442.
https://doi.org/10.1590/S0074-02762008000500005
[49] Uozaki, M., Yamasaki, H., Katsuyama, Y., et al. (2007) Antiviral Effect of Octyl Gallate against DNA and RNA Viruses. Antiviral Research, 73, 85-91.
https://doi.org/10.1016/j.antiviral.2006.07.010
[50] Vilhelmova-Ilieva, N., Jacquet, R., Deffieux, D., et al. (2019) Anti-Herpes Simplex Virus Type 1 Activity of Specially Selected Groups of Tannins. Drug Research, 69, 373-374.
https://doi.org/10.1055/a-0640-2557
[51] Mirani, A., Kundaikar H., Velhal, S., et al. (2019) Evaluation of Phytopolyphenols for Their gp120-CD4 Binding Inhibitory Properties by in Silico Molecular Modelling & in Vitro Cell Line Studies. Current HIV Research, 17, 102-113.
https://doi.org/10.2174/1570162X17666190611121627
[52] Nutan, Modi, M., Goel, T., et al. (2013) Ellagic Acid & Gallic Acid from Lagerstroemia speciosa L. Inhibit HIV-1 Infection through Inhibition of HIV-1 Protease & Reverse Transcriptase Activity. Indian Journal of Medical Research, 137, 540-548.
[53] Rivero-Buceta, E., Carrero, P., Doyagüez, E.G., et al. (2015) Linear and Branched Alkyl-Esters and Amides of Gallic Acid and Other (mono-, di- and tri-) Hydroxy Benzoyl Derivatives as Promising Anti-HCV Inhibitors. European Journal of Medicinal Chemistry, 92, 656-671.
https://doi.org/10.1016/j.ejmech.2015.01.033
[54] Maurya, V.K., Kumar, S., Prasad, A.K., et al. (2020) Structure-Based Drug Designing for Potential Antiviral Activity of Selected Natural Products from Ayurveda against SARS-CoV-2 Spike Glycoprotein and Its Cellular Receptor. VirusDisease, 31, 179-193.
https://doi.org/10.1007/s13337-020-00598-8
[55] Weng, J.-R., Lin, C.-S., Lai, H.-C., et al. (2019) Antiviral Activity of Sambucus FormosanaNakai Ethanol Extract and Related Phenolic Acid Constituents against Human Coronavirus NL63. Virus Research, 273, Article ID: 197767.
https://doi.org/10.1016/j.virusres.2019.197767
[56] Cui, Q., Du, R., Anantpadma, M., et al. (2018) Identification of Ellagic Acid from Plant Rhodiola rosea L. as an Anti-Ebola Virus Entry Inhibitor. Viruses, 10, 152.
https://doi.org/10.3390/v10040152
[57] Mi, O., Bae, S.Y., Lee, J.H., et al. (2012) Antiviral Effects of Black Raspberry (Rubus coreanus) Juice on Foodborne Viral Surrogates. Foodborne Pathogens and Disease, 9, 915-921.
https://doi.org/10.1089/fpd.2012.1174
[58] Zhang, X.-F., Dai, Y.-C., Zhong, W., et al. (2012) Tannic Acid Inhibited Norovirus Binding to HBGA Receptors, a Study of 50 Chinese Medicinal Herbs. Bioorganic & Medicinal Chemistry, 20, 1616-1623.
https://doi.org/10.1016/j.bmc.2011.11.040
[59] Trujillo-Correa, A.I., Quintero-Gil, D.C., Diaz-Castillo, F., et al. (2019) In Vitro and in Silico Anti-Dengue Activity of Compounds Obtained from Psidium guajava through Bioprospecting. BMC Complementary Medicine and Therapies, 19, 298.
https://doi.org/10.1186/s12906-019-2695-1
[60] Choi, H.J., Song, J.H., Bhatt, L.R., et al. (2010) Anti-Human Rhinovirus Activity of Gallic Acid Possessing Antioxidant Capacity. Phytotherapy Research, 24, 1292-1296.
https://doi.org/10.1002/ptr.3101
[61] Choi, H.J., Song, J.H., Park, K.S., et al. (2010) In Vitro Anti-Enterovirus 71 Activity of Gallic Acid from Woodfordia fruticosa Flowers. Letters in Applied Microbiology, 50, 438-440.
https://doi.org/10.1111/j.1472-765X.2010.02805.x
[62] Cortes, L.A., Castro, L., Pesce, B., et al. (2015) Novel Gallate Triphenylphosphonium Derivatives with Potent Antichagasic Activity. PLoS One, 10, e0136852.
https://doi.org/10.1371/journal.pone.0136852
[63] Amisigo, C.M., Antwi, C.A., Adjimani, J.P., et al. (2019) In Vitro Anti-Trypanosomal Effects of Selected Phenolic Acids on Trypanosoma brucei. PLoS ONE, 14, e0216078.
https://doi.org/10.1371/journal.pone.0216078
[64] Andréo, R., Regasini, L.O., Petrônio, M.S., et al. (2015) Toxicity and Loss of Mitochondrial Membrane Potential Induced by Alkyl Gallates in Trypanosoma cruzi. International Scholarly Research Notices, 2015, Article ID: 924670.
https://doi.org/10.1155/2015/924670
[65] Mehwish, S., Khan, H., Rehman, A.U., et al. (2019) Natural Compounds from Plants Controlling Leishmanial Growth via DNA Damage and Inhibiting Trypanothione Reductase and Trypanothione Synthetase: An in Vitro and in Silico Approach. 3 Biotech, 9, Article No. 303.
https://doi.org/10.1007/s13205-019-1826-1
[66] Alves, M.M.D.M, Brito, L.M., Souza, A.C., et al. (2017) Gallic and Ellagic Acids: Two Natural Immunomodulator Compounds Solve Infection of Macrophages by Leishmania Major. Naunyn-Schmiedeberg’s Archives of Pharmacology, 390, 893-903.
https://doi.org/10.1007/s00210-017-1387-y
[67] Tasdemir, D., Kaiser, M., et al. (2006) Antitrypanosomal and Antileishmanial Activities of Flavonoids and Their Analogues: In Vitro, in Vivo, Structure-Activity Relationship, and Quantitative Structure-Activity Relationship Studies.
https://doi.org/10.1128/AAC.50.4.1352-1364.2006
[68] Ndjonka, D., Djafsia, B. and Liebau, E. (2018) Review on Medicinal Plants and Natural Compounds as Anti-Onchocerca Agents. Parasitology Research, 117, 2697-2713.
https://doi.org/10.1007/s00436-018-6003-7
[69] Ndjonka, D., Abladam, E.D., Djafsia, B., et al. (2014) Anthelmintic Activity of Phenolic Acids from the Axlewood Tree Anogeissus leiocarpus on the Filarial Nematode Onchocerca ochengi and Drug-Resistant Strains of the Free-Living Nematode Caenorhabditis elegans. Journal of Helminthology, 88, 481-488.
https://doi.org/10.1017/S0022149X1300045X
[70] Engström, M.T., Karonen, M., Ahern, J.R., et al. (2016) Chemical Structures of Plant Hydrolyzable Tannins Reveal Their in Vitro Activity against Egg Hatching and Motility of Haemonchus contortus Nematodes. Journal of Agricultural and Food Chemistry, 64, 840-851.
https://doi.org/10.1021/acs.jafc.5b05691
[71] Cock, I.E. and Rayan, P. (2020) Ascorbic Acid Potentiates the Giardia duodenalis Growth Inhibitory Activity of Pure Terminalia ferdinandiana Exell Compounds. Parasitology Research, 119, 1125-1137.
https://doi.org/10.1007/s00436-019-06579-1
[72] Bolson, N.C., Urach, M.D., de, B.T.F., et al. (2017) In Vitro Effects of Blepharocalyx salicifolius (H.B.K.) O. Berg on the Viability of Echinococcus ortleppi Protoscoleces. Revista do Instituto de Medicina Tropical de São Paulo, 59, e42.
https://doi.org/10.1590/s1678-9946201759042
[73] Nguyen-Ngo, C., Salomon, C., Lai, A., et al. (2020) Anti-Inflammatory Effects of Gallic Acid in Human Gestational Tissues in Vitro. Reproduction (Cambridge, England), 160, 561-578.
https://doi.org/10.1530/REP-20-0249
[74] Shree, A., Islam, J., Vafa, A., et al. (2020) Gallic Acid Prevents 1, 2-Dimethylhydrazine Induced Colon Inflammation, Toxicity, Mucin Depletion, and Goblet Cell Disintegration. Environmental Toxicology, 35, 652-664.
https://doi.org/10.1002/tox.22900
[75] Zhu, L., Gu, P. and Shen, H. (2019) Gallic Acid Improved Inflammation via NF-κB Pathway in TNBS-Induced Ulcerative Colitis. International Immunopharmacology, 67, 129-137.
https://doi.org/10.1016/j.intimp.2018.11.049
[76] Wang, X., Zhao, H., Ma, C., et al. (2018) Gallic Acid Attenuates Allergic Airway Inflammation via Suppressed Interleukin-33 and Group 2 Innate Lymphoid Cells in Ovalbumin-Induced Asthma in Mice. International Forum of Allergy & Rhinology, 8, 1284-1290.
https://doi.org/10.1002/alr.22207
[77] Fan, Y., Piao, C.H., Hyeon, E., et al. (2019) Gallic Acid Alleviates Nasal Inflammation via Activation of Th1 and Inhibition of Th2 and Th17 in a Mouse Model of Allergic Rhinitis. International Immunopharmacology, 70, 512-519.
https://doi.org/10.1016/j.intimp.2019.02.025
[78] Saygin, M., Ozturk, O., Ozmen, O., et al. (2016) The Impact of Methotrexate on Lung Inflammatory and Apoptotic Pathway Biomarkers—The Role of Gallic Acid. Biomed Pharmacother, 84, 1689-1696.
https://doi.org/10.1016/j.biopha.2016.10.077
[79] Karatas, O. and Gevrek, F. (2020) 3,4,5-Trihydroxybenzoic Acid Attenuates Ligature-Induced Periodontal Disease in Wistar Rats. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry, 19.
https://doi.org/10.2174/1871523019666200206094335
[80] Tsang, M.S., Jiao, D., Chan, B.C., et al. (2016) Anti-Inflammatory Activities of Pentaherbs Formula, Berberine, Gallic Acid and Chlorogenic Acid in Atopic Dermatitis-Like Skin Inflammation. Molecules (Basel, Switzerland), 21, 519.
https://doi.org/10.3390/molecules21040519
[81] Chong-Hyeon, Y., et al. (2013) Gallic Acid, a Natural Polyphenolic Acid, Induces Apoptosis and Inhibits Proinflammatory Gene Expressions in Rheumatoid Arthritis Fibroblast-Like Synoviocytes. Joint Bone Spine, 80, 274-279.
https://doi.org/10.1016/j.jbspin.2012.08.010
[82] Esmaeilzadeh, M., Heidarian, E., Shaghaghi, M., et al. (2020) Gallic Acid Mitigates Diclofenac-Induced Liver Toxicity by Modulating Oxidative Stress and Suppressing IL-1β Gene Expression in Male Rats. Pharmaceutical Biology, 58, 590-596.
https://doi.org/10.1080/13880209.2020.1777169
[83] Hosseinzadeh, A., Houshmand, G., Goudarzi, M., et al. (2019) Ameliorative Effect of Gallic Acid on Sodium Arsenite-Induced Spleno-, Cardio- and Hemato-Toxicity in Rats. Life Sciences, 217, 91-100.
https://doi.org/10.1016/j.lfs.2018.11.050
[84] Dutta, M. and Paul, G. (2019) Gallic Acid Protects Rat Liver Mitochondria ex Vivo from Bisphenol A Induced Oxidative Stress Mediated Damages. Toxicology Reports, 6, 578-589.
https://doi.org/10.1016/j.toxrep.2019.06.011
[85] Schimites, P.I., Segat, H.J., Teixeira, L.G., et al. (2020) Gallic Acid Prevents Ketamine-Induced Oxidative Damages in Brain Regions and Liver of Rats. Neuroscience Letters, 714, Article ID: 134560.
https://doi.org/10.1016/j.neulet.2019.134560
[86] Nouri, A., Heibati, F. and Heidarian, E. (2020) Gallic Acid Exerts Anti-Inflammatory, Anti-Oxidative Stress, and Nephroprotective Effects against Paraquat-Induced Renal Injury in Male Rats. Naunyn-Schmiedeberg’s Archives of Pharmacology, 393.
https://doi.org/10.1007/s00210-020-01931-0
[87] Radan, M., Dianat, M., Badavi, M., et al. (2019) In Vivo and in Vitro Evidence for the Involvement of Nrf2-Antioxidant Response Element Signaling Pathway in the Inflammation and Oxidative Stress Induced by Particulate Matter (PM10): The Effective Role of Gallic Acid. Free Radical Research, 53, 210-225.
https://doi.org/10.1080/10715762.2018.1563689
[88] Owumi, S.E., Adedara, I.A., Akomolafe, A.P., et al. (2020) Gallic Acid Enhances Reproductive Function by Modulating Oxido-Inflammatory and Apoptosis Mediators in Rats Exposed to Aflatoxin-B1. Experimental Biology and Medicine (Maywood), 245, 1016-1028.
https://doi.org/10.1177/1535370220936206
[89] Mehraban, Z., Novin, M.G., Golmohammadi, M.G., et al. (2019) Protective Effect of Gallic Acid on Apoptosis of Sperm and in Vitro Fertilization in Adult Male Mice Treated with Cyclophosphamide. Journal of Cellular Biochemistry, 120, 17250-17257.
https://doi.org/10.1002/jcb.28987
[90] Liao, C.-C., Chen, S.-C., Huang, H.-P., et al. (2018) Gallic Acid Inhibits Bladder Cancer Cell Proliferation and Migration via Regulating Fatty Acid Synthase (FAS). Journal of Food and Drug Analysis, 26, 620-627.
https://doi.org/10.1016/j.jfda.2017.06.006
[91] Zeng, M., Su, Y., Li, K., et al. (2020) Gallic Acid Inhibits Bladder Cancer T24 Cell Progression through Mitochondrial Dysfunction and PI3K/Akt/NF-κB Signaling Suppression. Frontiers in Pharmacology, 11, 1222.
https://doi.org/10.3389/fphar.2020.01222
[92] Park, W. (2016) Gallic Acid Induces HeLa Cell Death via Increasing GSH Depletion rather than ROS Levels. Oncology Reports, 37, 1277-1283.
https://doi.org/10.3892/or.2016.5335
[93] Rezaei-Seresht, H., Cheshomi, H., Falanji, F., et al. (2019) Cytotoxic Activity of Caffeic Acid and Gallic Acid against MCF-7 Human Breast Cancer Cells: An in Silico and in Vitro Study. Avicenna Journal of Phytomedicine, 9, 574-86.
[94] Gu, R., Zhang, M., Meng, H., et al. (2018) Gallic Acid Targets Acute Myeloid Leukemia via Akt/mTOR-Dependent Mitochondrial Respiration Inhibition. Biomed Pharmacother, 105, 491-497.
https://doi.org/10.1016/j.biopha.2018.05.158
[95] Lin, M.-L. and Chen, S.-S. (2017) Activation of Casein Kinase II by Gallic Acid Induces BIK-BAX/BAK-Mediated ER Ca++-ROS-Dependent Apoptosis of Human Oral Cancer Cells. Frontiers in Physiology, 8, 761. http://europepmc.org/abstract/MED/29033852
https://europepmc.org/articles/PMC5627504
https://europepmc.org/articles/PMC5627504?pdf=render
https://doi.org/10.3389/fphys.2017.00761
[96] Pang, J.-H.S., Yen, J.-H., Wu, H.-T., et al. (2017) Gallic Acid Inhibited Matrix Invasion and AP-1/ETS-1-Mediated MMP-1 Transcription in Human Nasopharyngeal Carcinoma Cells. International Journal of Molecular Sciences, 18, 1354. http://europepmc.org/abstract/MED/28672814
https://europepmc.org/articles/PMC5535847
https://europepmc.org/articles/PMC5535847?pdf=render
https://doi.org/10.3390/ijms18071354
[97] Variya, B.C., Bakrania, A.K. and Patel, S.S. (2019) Antidiabetic Potential of Gallic Acid from Emblica officinalis: Improved Glucose Transporters and Insulin Sensitivity through PPAR-γ and Akt Signaling. Phytomedicine, 2019, Article ID: 152906.
https://doi.org/10.1016/j.phymed.2019.152906
[98] Punithavathi, V.R., Prince, P.S.M., Kumar, R., et al. (2011) Antihyperglycaemic, Antilipid Peroxidative and Antioxidant Effects of Gallic Acid on Streptozotocin Induced Diabetic Wistar Rats. European Journal of Pharmacology, 650, 465-471.
https://doi.org/10.1016/j.ejphar.2010.08.059
[99] Huang, D.-W., Chang, W.-C., Wu, J.S.-B., et al. (2016) Gallic Acid Ameliorates Hyperglycemia and Improves Hepatic Carbohydrate Metabolism in Rats Fed a High-Fructose Diet. Nutrition Research, 36, 150-160.
https://doi.org/10.1016/j.nutres.2015.10.001
[100] de Oliveira, L.S., Thomé, G.R., Lopes, T.F., et al. (2016) Effects of Gallic Acid on Delta—Aminolevulinic Dehydratase Activity and in the Biochemical, Histological and Oxidative Stress Parameters in the Liver and Kidney of Diabetic Rats. Biomed Pharmacother, 84, 1291-1299.
https://doi.org/10.1016/j.biopha.2016.10.021
[101] Garud, M.S. and Kulkarni, Y.A. (2018) Gallic Acid Attenuates Type I Diabetic Nephropathy in Rats. Chemico-Biological Interactions, 282, 69-76.
https://doi.org/10.1016/j.cbi.2018.01.010
[102] Abdel-Moneim, A., Yousef, A.I., Abd El-Twab, S.M., et al. (2017) Gallic Acid and p-Coumaric Acid Attenuate Type 2 Diabetes-Induced Neurodegeneration in Rats. Metabolic Brain Disease, 32, 1279-1286.
https://doi.org/10.1007/s11011-017-0039-8
[103] Huang, D.W., Chang, W.-C., Yang, H.-J., et al. (2018) Gallic Acid Alleviates Hypertriglyceridemia and Fat Accumulation via Modulating Glycolysis and Lipolysis Pathways in Perirenal Adipose Tissues of Rats Fed a High-Fructose Diet. International Journal of Molecular Sciences, 19, 254.
https://doi.org/10.3390/ijms19010254
[104] Ferk, F., Kundi, M., Brath, H., et al. (2018) Gallic Acid Improves Health-Associated Biochemical Parameters and Prevents Oxidative Damage of DNA in Type 2 Diabetes Patients: Results of a Placebo-Controlled Pilot Study. Molecular Nutrition & Food Research, 62, Article ID: 1700482.
https://doi.org/10.1002/mnfr.201700482
[105] Yan, X., Zhang, Q.Y., Zhang, Y.L., et al. (2020) Gallic Acid Attenuates Angiotensin II-Induced Hypertension and Vascular Dysfunction by Inhibiting the Degradation of Endothelial Nitric Oxide Synthase. Frontiers in Pharmacology, 11, 1121.
https://doi.org/10.3389/fphar.2020.01121
[106] Du, Y.-Y., Zou, L., Wang, X.-X., et al. (2020) Inhibitory Effect of Gallic Acid on Voltage-Gated Na+ Channels in Rat Cardiomyocytes. Clinical and Experimental Pharmacology & Physiology, 47, 771-779.
[107] Jin, L., Piao, Z.H., Sun, S., et al. (2017) Gallic Acid Reduces Blood Pressure and Attenuates Oxidative Stress and Cardiac Hypertrophy in Spontaneously Hypertensive Rats. Scientific Reports, 7, Article ID: 15607.
https://doi.org/10.1038/s41598-017-15925-1
[108] Mori, T., Koyama, N., Yokoo, T., et al. (2020) Gallic Acid is a Dual α/β-Secretase Modulator that Reverses Cognitive Impairment and Remediates Pathology in Alzheimer Mice. The Journal of Biological Chemistry, 295, 16251-16266.
https://doi.org/10.1074/jbc.RA119.012330
[109] Park, C.S., Lee, J.Y., Choi, H.Y., et al. (2020) Gallic Acid Attenuates Blood-Spinal Cord Barrier Disruption by Inhibiting Jmjd3 Expression and Activation after Spinal Cord Injury. Neurobiology of Disease, 145, Article ID: 105077.
https://doi.org/10.1016/j.nbd.2020.105077
[110] Wang, X.X., Liu, K., Ruan, M.Y., et al. (2018) Gallic Acid Inhibits Fibroblast Growth and Migration in Keloids through the AKT/ERK Signaling Pathway. Acta Biochimica et Biophysica Sinica, 50, 1114-1120.
https://doi.org/10.1093/abbs/gmy115
[111] Seyed, N., Solomon, H., Arianna, D.L., et al. (2016) Post-Stroke Depression Modulation and in Vivo Antioxidant Activity of Gallic Acid and Its Synthetic Derivatives in a Murine Model System. Nutrients, 8, 248.
https://doi.org/10.3390/nu8050248
[112] Guo, L., Cao, J.-H., Wei, T.-T., et al. (2019) Gallic Acid Attenuates Thymic Involution in the d-Galactose Induced Accelerated Aging Mice. Immunobiology, 2019, Article ID: 151870.
https://doi.org/10.1016/j.imbio.2019.11.005