血栓素A2在支气管哮喘中的作用
The Role of Thromboxane A2 in Bronchial Asthma
DOI: 10.12677/ACM.2021.112073, PDF, HTML, XML, 下载: 403  浏览: 736 
作者: 张子平:山东中医药大学,山东 济南;陈 娜:威海市中医院,山东 威海;张才擎*:山东省第二人民医院,山东省耳鼻喉医院,山东 济南
关键词: 支气管哮喘TXA2TXA2受体Bronchial Asthma TXA2 TXA2 Receptor
摘要: 血栓素A2 (Thromboxane, TXA2)是血小板花生四烯酸通过环氧合酶途径代谢所产生的一种脂质介质,也是目前所知最强的促血小板聚集剂和气道平滑肌收缩剂之一。根据目前研究,TXA2可由巨噬细胞、中性粒细胞、上皮细胞和平滑肌细胞等多种细胞和肺组织产生且分布广泛。近年来,国内外对支气管哮喘发病机制有诸多研究及结果,其中TXA2参与血管和呼吸道平滑肌的收缩,影响气道壁增厚与重塑,进而导致气道高反应性,这是哮喘发生的一个典型临床特征。进一步综合了解TXA2及其受体的生物学特性,阐明TXA2在支气管哮喘中的作用,以及目前抑制TXA的策略,有助于进一步为治疗支气管哮喘提供新的干预思路与方法。
Abstract: Thromboxane A2 (TXA2) is a lipid mediator produced by the metabolism of platelet arachidonic acid through the cyclocase pathway. It is also one of the most powerful platelet aggregation agents and airway smooth muscle contractors known to date. According to current studies, TXA2 can be produced and widely distributed by macrophages, neutrophils, epithelial cells, smooth muscle cells and other cells and lung tissues. In recent years, there have been many studies and results on the pathogenesis of bronchial asthma at home and abroad. Among them, TXA2 is involved in the contraction of vascular and respiratory smooth muscle, which affects the thickening and remodeling of airway wall and thus leads to airway hyperreactivity, which is a typical clinical feature of asthma. Further comprehensive understanding of the biological characteristics of TXA2 and its receptors, elucidating the role of TXA2 in bronchial asthma and current strategies for inhibiting TXA will help to further provide new ideas and methods for the treatment of bronchial asthma.
文章引用:张子平, 陈娜, 张才擎. 血栓素A2在支气管哮喘中的作用[J]. 临床医学进展, 2021, 11(2): 512-518. https://doi.org/10.12677/ACM.2021.112073

1. 引言

支气管哮喘(Bronchial asthma,简称哮喘,BA)是一种慢性气道炎症性的异质性疾病,由淋巴细胞、嗜酸性粒细胞、肥大细胞等多种炎症细胞介导和多种炎症介质如组胺、白三烯、血小板活化因子和前列腺素等共同参与的以可逆性气流受限为特征 [1]。慢性炎症过程导致了气道重塑中杯状细胞增生、上皮损伤、气道平滑肌增生和血管增多的主要特征 [2]。临床症状随时间和强度而变化,包括胸闷,气喘,气短,咳嗽,气道阻塞甚至急性加重等表现 [3]。哮喘的普遍性和治疗的复杂性,使其成为当今社会最重要的医学和社会问题之一 [4]。

在哮喘的病理生理学中,诱发哮喘发生的特征包括支气管收缩、气道炎症、气道高反应性和气道重构等 [5]。白三烯、前列腺素和血栓素A2是花生四烯酸代谢所产生的脂质介质,在哮喘的发病机制中发挥着重要作用。在摩尔基础上,这些介质比组胺、乙酰胆碱等更能诱发支气管的收缩、增加微血管的通透性、诱导黏膜水肿、增加粘液分泌,而这些都是哮喘的特征性表现 [6]。在这些炎症介质中,TXA2因其强大的支气管收缩活性而作为哮喘病理生理学的重要介质而备受关注。TXA2目前已被证实参与过敏、获得性免疫调节、粥样硬化形成、癌细胞的新生血管和转移 [7] [8]。TXA2参与血管和呼吸道平滑肌的收缩、气道壁增厚与重塑,进而导致气道高反应性,诱发哮喘的发生 [9] [10]。现就目前研究中TXA2及其受体的生理功能、TXA2信号通路、在哮喘中的作用及目前抑制TXA的策略进行综述,旨为今后通过调节抑制TXA2介质的活动为支气管哮喘的治疗提供新的干预思路。

2. 血栓素A2

血栓素A2 (TXA2)属于二十烷类脂类,是一种不稳定的花生四烯酸的代谢产物 [11],由磷脂酶A2、COX-1/COX-2和TXA2合酶(TXS)三种酶依次作用产生 [12]。TXA2是在环氧合酶(COX)催化血栓素合成酶(TXS)下产生的六元环化学结构的物质,该合成酶具有较强的催化活性,多在肺、肾、肝、单核细胞和巨核细胞中表达 [13]。TXA2最初被认为由血小板释放,而现在研究已知除血小板之外,还由巨噬细胞、中性粒细胞、上皮细胞和平滑肌细胞等多种细胞共同释放 [14] [15] [16]。Rolin等人 [17] 通过豚鼠过敏原诱导咳嗽模型研究证实气道黏膜细胞是TXA2的重要来源,TXA2可引起的气道平滑肌收缩造成咳嗽。但由于TXA2性质不稳定,生物半衰期只有30s,临床上最常用的稳定的模拟物是U-46619。TXA2在无酶的情况下易水解成为稳定的无明显生物活性的血栓素B2 (TXB2) [18],可在血浆、支气管肺泡灌洗液及尿液中检测到该介质。TXA2的短半衰期表明它以一种自分泌/旁分泌的发挥作用,其作用仅限于接近其合成源的组织 [19]。Li Yu等 [20] 通过观察豚鼠气道中变应原诱导肥大细胞介质释放的自分泌和旁分泌调节,发现旁分泌信号级联可间接导致豚鼠气道中过敏原刺激后血栓素的合成,继发于气道壁内结构细胞和/或白细胞上的cylt1受体激活,以及二十烷类化合物的COX-2依赖合成。

3. 血栓素A2受体

血栓素A2受体(TXA2R)是G蛋白偶联受体家族中的成员之一,TXA2R位于染色体19p13、31上,包含4个总长度为15kb的外显子 [21]。其中TXA2R的第二胞外环是一个重要的配体结合位点,Asp193是一种关键的氨基酸。TXA2R主要与Gq和G13通讯,导致磷脂酶C活化和RhoGEF活化,此外,TXA2R与G11、G12、G13、G14、G15、G16、Gi、Gs和Gh均有耦合作用 [22]。TXA2R分布广泛并在胸腺和脾脏中高度表达。TXRA2有两种亚型,分别为有343个氨基酸的TPα和有407个氨基酸的TPβ [23],二者在n端有相同的328个残基序列,只有在c端尾部有所不同 [24]。虽然这两种亚型均导致磷脂酶C激活、钙释放和蛋白激酶C激活 [25],但当与G蛋白结合时,它们具有相反的功能:TPα激活腺苷酸环化酶,通过cAMP水平的增加和cAMP依赖的细胞内信号通路的诱导,而TPβ则抑制它们 [26]。不仅如此,TXA2受体的多态性也与哮喘的发生存在联系。据研究表明 [27] [28],TXA2受体基因924位点的多态性与哮喘的发病有明显相关性。而且A. M. Davies等 [29] 发现变应性鼻炎患者鼻粘膜中TXA2受体mRNA的表达较强,且TXA2受体的多态性与IgE的产生呈正相关性,因此可以预测TXA2受体拮抗剂的抗过敏作用。

4. TXA2信号通路

目前已知TXA2作用于TXA2受体介导血小板聚集和血管收缩,同时,乙酰胆碱的血管收缩反应是由TXA2R激活介导的,这提供了TXA2是一种内皮依赖性的收缩因子的证据 [30] [31]。除此之外,钙离子载体A23187、前列腺素前体AA均可引起TXA2相关的内皮依赖性收缩 [25]。TXA2诱导TXA2R对气道平滑肌(ASM)的收缩作用,通过信号通路Gq/11g蛋白介导的肌球蛋白轻链磷酸酶(导致磷脂酶C活化和细胞内钙离子浓度增加)以及G12/13g蛋白(导致RhoA激酶介导)增加Ca2+的敏感性 [32]。这种作用是通过JNK(c-Jun氨基末端激酶,c-Jun N-terminal kinase)在MAPK (mitogen-activated protein kinase,丝裂原活化蛋白激酶)信号介导中产生的,并刺激细胞外钙内流 [33],增加对TXA2R的刺激。而且,Lei Y等人 [34] 研究指出,JNK、MAPK活性和细胞内钙水平是TXA2受体信号转导的必要条件。Jaime M Cyphert等 [35] 指出,气道对TXA2的反应是复杂的:它不仅仅取决于G蛋白偶联受体的表达,还取决于信号通路所在的生理环境。在健康的气道中,TXA2介导的气道收缩依赖于平滑肌细胞TP受体的表达。而在具有炎症的肺组织中,TXA2对平滑肌细胞TP受体的直接作用不再是促进支气管收缩;相反,在过敏性的肺病中,TXA2介导的气道收缩依赖于神经元TP受体。

5. TXA2在哮喘中的作用

TXA2是一种强大的支气管收缩剂,有研究 [36] 表明了它参与诱导了豚鼠的气道高反应性(Airway hyper responsiveness, AHR)。Fujimura M等 [37] 发现TXA2受体拮抗剂可抑制哮喘患者的AHR,TXA2合成酶抑制剂可抑制臭氧暴露后狗的AHR。这些结果为TXA2参与AHR提供了进一步证据,也为支气管哮喘AHR的发病机理开拓思路。除了影响AHR外,M Hayashi等 [38] 认为TXA2还在气道过敏性炎症中起重要作用,与Th2淋巴细胞和嗜酸性粒细胞的浸润有关,因此有研究表明 [39] TXA2合成酶抑制剂OKY-046可以抑制在变应性炎症小鼠肺部嗜酸性粒细胞的积累和产生Th2细胞因子。苗润宏 [40] 通过研究急性发作期哮喘患者血浆中的TXB2和降钙素基因相关肽(CGRP)水平,发现TXB2与CGRP之间其相关系数r = 0.615 (P = 0.001 < 0.05),两者具有正相关性,且促使炎症细胞特别是嗜酸性粒细胞在气道内的浸润。不仅如此,Jeremy Mark Hernandez等 [41] 研究表明,TXA2在气道上皮的释放和TP受体的激活在扩大气道牵张拉伸的作用,也为哮喘患者双诱导支气管收缩的机制提供了新的见解。此外,Tao Liu等 [42] 发现白三烯C4 (LT-C4)介导小鼠气道炎症时,信号传导通路需要产生TXA2,且通过TP受体依赖机制可以降低血液中嗜酸性粒细胞的浓度。因此,TXA2的自分泌和旁分泌功能还可作用于血小板LT-C4/2型胞浆细胞受体信号的下游,通过肺血管途径显著放大嗜酸性粒细胞的募集,这一发现提示了TXA2受体在高水平胞囊哮喘病例中的应用。不可否认,TXA2不论是促进平滑肌细胞收缩,参与诱导AHR,亦或牵张拉伸扩大气道,促进炎症细胞的聚集等,都在支气管哮喘的发病机制甚至治疗应用中都发挥着重要作用。

6. TXA2抑制策略

就目前而言,抑制TXA2的生物利用度和(或)效应可能成为支气管哮喘的治疗靶点。随着国内外对TXA2的生物药理性质的深入研究,抑制TXA2的策略包括主要血栓素受体拮抗剂和血栓素合成酶(TXS)抑制剂两大方面 [43],血栓素合成酶抑制剂主要是减少血小板中TXA2的合成,而血栓素受体拮抗剂则阻断下游TXA2受体的激活,二者在诸多临床研究及动物模型中已取得一定的效果,但TXA2拮抗或抑制剂用于呼吸方面的研究略有不足,因此在治疗哮喘方面TXA2的抑制策略还有待进一步研究探讨。

自20世纪80年代以来,诸多制药业已有TXA2受体拮抗剂和TXA2合成酶抑制剂的问世,随后短期临床研究和动物模型中使用TXA2受体拮抗剂和TXS合成酶抑制剂也随之出现,以此来判断TXA2对气道反应性的影响,是否抑制抗原引起的支气管收缩及气道炎症。AA-2414是一种TXA2受体拮抗剂,Makoto Hoshino等人 [44] 通过临床双盲试验,通过观察受试者治疗前后的肺功能及支气管活检标本对甲基乙酰胆碱的反应性,得出AA-2414治疗组的肺功能及支气管反应性明显改善,且伴随着黏膜下嗜酸性粒细胞显著减少,还有部分抑制巨噬细胞和上皮细胞的趋化作用。Jing An等 [45] 研究塞洛司特(Seratrodast)——一种TXA2受体拮抗剂可能通过MAPK信号通路减少体内香烟烟雾诱导气道粘液的产生。血栓素合成酶(TXS)抑制剂也已经历了部分临床实验与对比,如OKY-046等。Li Yi等 [46] 人通过观察应用OKY-046对过敏性小鼠嗜酸性粒细胞(EOS)的气道浸润现象,发现经过OKY-046处理后,小鼠肺泡灌洗液(BALF)中的EOS显著减少,且使TXB2水平呈剂量相关性降低。此外,林秀杰等 [47] 认为TXA2受体拮抗剂比TXA2合成酶抑制剂具有更大的临床潜力,且同时具有两种作用的药物可以表现出更高的抑制能力,如双重TXA2合成酶抑制剂/TXA2受体拮抗剂等目前仍在临床发展中,具体临床资料还有待进一步评价。

综上所述,TXA2是参与气道平滑肌收缩、引发气道高反应性、诱发哮喘发生的重要脂质介质。有关TXA2的短期临床数据及动物模型均证实了这种脂质介质在气道平滑肌及气道过敏性反应中发挥着重要的作用。除白三烯受体拮抗剂(LTRAs)以外的抗过敏药物中,一些其他介质(如TXA2)的抑制剂、拮抗剂在日本一直使用到上世纪末,随着本世纪糖皮质激素(ICS)/长效β激动剂(LABA)联合应用治疗哮喘后 [48],这些药物的使用也迅速减少。然而其他抗过敏药物对哮喘的治疗也是局限的,因此,仍需要有效的研究进一步验证TXA2抑制剂、拮抗剂在治疗哮喘中的真正价值,为哮喘的治疗开拓新思路、新方法。

NOTES

*通讯作者。

参考文献

[1] Takemura, M., Niimi, A., Matsumoto, H., et al. (2017) Imbalance of Endogenous Prostanoids in Moderate-to-Severe Asthma. Allergology International, 66, 83-88.
https://doi.org/10.1016/j.alit.2016.05.013
[2] Gandhi, N.A., Gandhi, N.A., Bennett, B.L., et al. (2016) Targeting Key Proximal Drivers of Type 2 Inflammation in Disease. Nature Reviews Drug Discovery, 15, 35-50.
https://doi.org/10.1038/nrd4624
[3] Andrea, M., et al. (2020) The Emerging Role of Type 2 Inflammation in Asthma. Expert Review of Clinical Immunology, 1-9.
https://doi.org/10.1080/1744666X.2020.1860755
[4] Kytikova, O., Novgorodtseva, T., Denisenko, Y., Antonyuk, M. and Gvozdenko, T. (2019) Pro-Resolving Lipid Mediators in the Pathophysiology of Asthma. Medicina (Kaunas), 55, 284.
https://doi.org/10.3390/medicina55060284
[5] Sokolowska, M., Rovati, G.E., Diamant, Z., et al. (2020) Current Perspective on Eicosanoids in Asthma and Allergic Diseases—EAACI Task Force Consensus Report, Part I. Allergy, 76, 114-130.
[6] Dogné, J.M., de Leval, X., Benoit, P., Delarge, J. and Masereel, B. (2002) Thromboxane A2 Inhibition: Therapeutic Potential in Bronchial Asthma. American Journal of Respiratory Medicine, 1, 11-17.
https://doi.org/10.1007/BF03257158
[7] Fontana, P., Zufferey, A., Daali, Y. and Reny, J.L. (2014) Antiplatelet Therapy: Targeting the TxA2 Pathway. Journal of Cardiovascular Translational Research, 7, 29-38.
https://doi.org/10.1007/s12265-013-9529-1
[8] Ekambaram, P., Lambiv, W., Cazzolli, R., Ashton, A.W. and Honn, K.V. (2011) The Thromboxane Synthase and Receptor Signaling Pathway in Cancer: An Emerging Paradigm in Cancer Progression and Metastasis. Cancer and Metastasis Reviews, 30, 397-408.
https://doi.org/10.1007/s10555-011-9297-9
[9] Endo, S. and Akiyama, K. (1996) Thromboxane A2 Receptor Antagonist in Asthma Therapy. Nihon Rinsho, 54, 3045-3048.
[10] Idzko, M., Pitchford, S. and Page, C. (2015) Role of Platelets in Allergic Airway Inflammation. The Journal of Allergy and Clinical Immunology, 135, 1416-1423.
https://doi.org/10.1016/j.jaci.2015.04.028
[11] Nakahata, N. (2008) Thromboxane A2: Physiology/Pathophysiology, Cellular Signal Transduction and Pharmacology. Pharmacology & Therapeutics, 118, 18-35.
https://doi.org/10.1016/j.pharmthera.2008.01.001
[12] Rucker, D. and Dhamoon, A.S. (2020) Physiology, Thromboxane A2. StatPearls Publishing, Treasure Island.
[13] Ruan, K.H. (2004) Advance in Understanding the Biosynthesis of Prostacyclin and Thromboxane A2 in the Endoplasmic Reticulum Membrane via the Cyclooxygenase Pathway. Mini-Reviews in Medicinal Chemistry, 4, 639-647.
https://doi.org/10.2174/1389557043403710
[14] Tamada, T. and Ichinose, M. (2017) Leukotriene Receptor Antagonists and Antiallergy Drugs. In: Handbook of Experimental Pharmacology, Springer, Berlin, Vol. 237, 153-169.
https://doi.org/10.1007/164_2016_72
[15] Nusing, R., Lesch, R. and Ullrich, V. (1990) Immunohistochemical Localization of Thromboxane Synthase in Human Tissues. Eicosanoids, 3, 53-58.
[16] Widdicombe, J.H., Ueki, I.F., Emery, D., Margolskee, D., Yergey, J. and Nadel, J.A. (1989) Release of Cyclooxygenase Products from Primary Cultures of Tracheal Epithelia of Dog and Human. American Journal of Physiology, 257, L361-L365.
https://doi.org/10.1152/ajplung.1989.257.6.L361
[17] Rolin, S., Masereel, B. and Dogne, J. (2006) Prostanoids as Pharmacological Targets in COPD and Asthma. European Journal of Pharmacology, 533, 89-100.
https://doi.org/10.1016/j.ejphar.2005.12.058
[18] Betz, M. and Fox, B.S. (1991) Prostaglandin E2 Inhibits Production of Th1 Lymphokines But Not of Th2 Lymphokines. Journal of Immunology, 146, 108-113.
[19] Hernandez, J.M. and Janssen, L.J. (2015) Revisiting the Usefulness of Thromboxane-A2 Modulation in the Treatment of Bronchoconstriction in Asthma. Canadian Journal of Physiology and Pharmacology, 93, 111-117.
https://doi.org/10.1139/cjpp-2014-0364
[20] Yu, L., Liu, Q. and Canning, B.J. (2018) Evidence for Autocrine and Paracrine Regulation of Allergen-Induced Mast Cell Mediator Release in the Guinea Pig Airways. European Journal of Pharmacology, 822, 108-118.
https://doi.org/10.1016/j.ejphar.2017.11.017
[21] Pan, Y., Li, S., Xie, X. and Li, M. (2016) Association between Thromboxane A2 Receptor Polymorphisms and Asthma Risk: A Meta-Analysis. Journal of Asthma, 53, 576-582.
https://doi.org/10.3109/02770903.2015.1126849
[22] Kapoor, Y. and Kumar, K. (2020) Structural and Clinical Impact of Anti-Allergy Agents: An Overview. Bioorganic Chemistry, 94, Article ID: 103351.
https://doi.org/10.1016/j.bioorg.2019.103351
[23] 傅毅, 卢钟娇, 陈生弟. 血栓素A2受体及基因多态性在脑血管疾病中的研究进展[J]. 中华临床医师杂志(电子版), 2013, 7(7): 3134-3136.
[24] Fan, H., Chen, S., Yuan, X., et al. (2019) Structural Basis for Ligand Recognition of the Human Thromboxane A2 Receptor. Nature Chemical Biology, 15, 27-33.
https://doi.org/10.1038/s41589-018-0170-9
[25] Claar, D., Hartert, T.V. and Peebles, R.S. (2015) The Role of Prostaglandins in Allergic Lung Inflammation and Asthma. Expert Review of Respiratory Medicine, 9, 55-72.
https://doi.org/10.1586/17476348.2015.992783
[26] Hirata, T., Ushikubi, F., Kakizuka, A., Okuma, M. and Narumiya, S. (1996) Two Thromboxane A2 Receptor Isoforms in Human Platelets. Opposite Coupling to Adenylyl Cyclase with Different Sensitivity to Arg60 to Leu Mutation. Journal of Clinical Investigation, 97, 949-956.
https://doi.org/10.1172/JCI118518
[27] 王雪艳, 张宏艳, 刘长山, 韩忠. 血栓素A_2受体基因多态性与哮喘遗传易感性的相关研究[J]. 天津医药, 2010, 38(8): 667-669.
[28] 黄加忠, 李靖, 金跃, 周黎阳. 血栓素A_2受体基因多态性与哮喘相关性研究[J]. 山东医药, 2012, 52(16): 62-63.
[29] Davies, A.M., et al. (2017) Allosteric Mechanism of Action of the Therapeutic Anti-IgE Antibody Omalizumab. Journal of Biological Chemistry, 292, 9975.
https://doi.org/10.1074/jbc.M117.776476
[30] Feletou, M., Huang, Y. and Vanhoutte, P.M. (2011) Endothelium-Mediated Control of Vascular Tone: COX-1 and COX-2 Products. British Journal of Pharmacology, 164, 894-912.
https://doi.org/10.1111/j.1476-5381.2011.01276.x
[31] Feletou, M., Huang, Y. and Vanhoutte, P.M. (2010) Vasoconstrictor Prostanoids. Pflügers Archiv, 459, 941-950.
https://doi.org/10.1007/s00424-010-0812-6
[32] Chen, H. (2018) Role of Thromboxane A2 Signaling in Endothelium-Dependent Contractions of Arteries. Prostaglandins & Other Lipid Mediators, 134, 32-37.
https://doi.org/10.1016/j.prostaglandins.2017.11.004
[33] Bayat, H., Xu, S., Pimentel, D., Cohen, R.A. and Jiang, B. (2008) Activation of Thromboxane Receptor Upregulates Interleukin (IL)-1Beta-Induced VCAM-1 Expression through JNK Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 127-134.
https://doi.org/10.1161/ATVBAHA.107.150250
[34] Lei, Y., Cao, Y., Zhang, Y., Edvinsson, L. and Xu, C.B. (2011) Enhanced Airway Smooth Muscle Cell Thromboxane Receptor Signaling via Activation of JNK MAPK and Extracellular Calcium Influx. European Journal of Pharmacology, 650, 629-638.
https://doi.org/10.1016/j.ejphar.2010.10.038
[35] Cyphert, J.M., Allen, I.C., Church, R.J., et al. (2012) Allergic Inflammation Induces a Persistent Mechanistic Switch in Thromboxane-Mediated Airway Constriction in the Mouse. American Journal of Physiology Lung Cellular and Molecular Physiology, 302, L140-L151.
https://doi.org/10.1152/ajplung.00152.2011
[36] Saito, M., Fujimura, M., Sakamoto, S., Miyake, Y., Shintani, H., Yasui, M. and Matsuda, T. (1992) Involvement of Arachidonate Cyclooxygenase Products in Bronchial Hyperresponsiveness Induced by Subthreshold Concentration of Aerosolized Thromboxane A2 Analogue (STA2) in Guinea Pigs. Allergy, 47, 181.
https://doi.org/10.1111/j.1398-9995.1992.tb00961.x
[37] Fujimura, M., Sakamoto, S., Saito, M., Miyake, Y. and Matsuda, T. (1991) Effect of a Thromboxane A2 Receptor Antagonist (AA-2414) on Bronchial Hyperresponsiveness to Methacholine in Subjects with Asthma. The Journal of Allergy and Clinical Immunology, 87, 23.
https://doi.org/10.1016/0091-6749(91)90208-6
[38] Hayashi, M., Koya, T., Kawakami, H., et al. (2010) A Prostacyclin Agonist with Thromboxane Inhibitory Activity for Airway Allergic Inflammation in Mice. Clinical & Experimental Allergy, 40, 317-326.
https://doi.org/10.1111/j.1365-2222.2009.03418.x
[39] Shi, H., Yokoyama, A., Kohno, N., et al. (1998) Effect of Thromboxane A2 Inhibitors on Allergic Pulmonary Inflammation in Mice. European Respiratory Journal, 11, 624-629.
[40] 苗润宏. 哮喘患者血浆血栓素A_2和降钙素基因相关肽水平的变化及临床意义[J]. 中国实用医药, 2008(12): 53-54.
[41] Hernandez, J.M. and Janssen, L.J. (2011) Thromboxane Prostanoid Receptor Activation Amplifies Airway Stretch-Activated Contractions Assessed in Perfused Intact Bovine Bronchial Segments. Journal of Pharmacology and Experimental Therapeutics, 339, 248-256.
https://doi.org/10.1124/jpet.111.182246
[42] Liu, T., Garofalo, D., Feng, C., et al. (2015) Platelet-Driven Leukotriene C4-Mediated Airway Inflammation in Mice Is Aspirin-Sensitive and Depends on T Prostanoid Receptors. Journal of Immunology, 194, 5061-5068.
https://doi.org/10.4049/jimmunol.1402959
[43] Kontogiorgis, C. and Hadjipavlou-Litina, D. (2010) Thromboxane Synthase Inhibitors and Thromboxane A2 Receptor Antagonists: A Quantitative Structure Activity Relationships (QSARs) Analysis. Current Medicinal Chemistry, 17, 3162-3214.
https://doi.org/10.2174/092986710792231978
[44] Hoshino, M., Sim, J., Shimizu, K., Nakayama, H. and Koya, A. (1999) Effect of AA-2414, a Thromboxane A2 Receptor Antagonist, on Airway Inflammation in Subjects with Asthma. Journal of Allergy and Clinical Immunology, 103, 1054-1061.
https://doi.org/10.1016/S0091-6749(99)70179-X
[45] An, J., Li, J.Q., Wang, T., et al. (2013) Blocking of Thromboxane A2 Receptor Attenuates Airway Mucus Hyperproduction Induced by Cigarette Smoke. European Journal of Pharmacology, 703, 11-17.
https://doi.org/10.1016/j.ejphar.2013.01.042
[46] Li, Y., Shi, H. 血栓素A_2合成酶抑制剂OKY-046对抗原引起气道嗜酸性粒细胞浸润的影响[J]. 广西医科大学学报, 1998(3): 3-5.
[47] 刘秀杰, 方林, 程卯生. TXA_2合成酶抑制剂和TXA_2受体拮抗剂的研究进展[J]. 药学进展, 2002(3): 143-146.
[48] Kwah, J.H. and Peters, A.T. (2019) Asthma in Adults: Principles of Treatment. Allergy & Asthma Proceedings, 40, 396-402.
https://doi.org/10.2500/aap.2019.40.4256