肝内巨噬细胞在代谢相关脂肪性肝病中的研究进展
Research Progress of Intrahepatic Macrophages in Metabolism-Related Fatty Liver Disease
DOI: 10.12677/ACM.2021.114231, PDF, HTML, XML, 下载: 473  浏览: 865  国家自然科学基金支持
作者: 廖 凯:重庆市公共卫生医疗救治中心平顶山院区,重庆;杨 连, 龚建平:重庆医科大学附属第二医院,重庆
关键词: 巨噬细胞代谢相关脂肪性肝病治疗综述Macrophages Metabolism Associated Fatty Liver Disease Therapy Review
摘要: 目的:总结肝内巨噬细胞与代谢相关脂肪性肝病的发生及治疗的研究进展。方法:通过阅读近几年国内外的相关文献,肝内巨噬细胞与代谢相关脂肪性肝病的发生及治疗的研究进展进行归纳总结。结果:近年研究表明,肝内单核巨噬细胞组成和功能变化是代谢相关脂肪性肝病进展的关键,单核巨噬细胞在疾病发展中的作用至关重要。结论:代谢相关脂肪性肝病仍是慢性肝病中的关注重点,在代谢相关脂肪性肝病发病中关于单核巨噬细胞的功能作用和组成变化已取得一定进展,为代谢相关脂肪性肝病的治疗提供了新思路。
Abstract: Objective: To summarize the research progress in the occurrence and treatment of macrophage and metabolic associated fatty liver disease (MAFLD). Methods: The research progress in the occurrence and treatment of macrophage and MAFLD was summarized by reading the domestic and international literatures published in recent years. Results: Recent studies have shown that the changes of the composition and function of monocytes/macrophages in the liver are the key to the progression of MAFLD, and the role of mononuclear macrophages in the development of the disease is very important. Conclusions: MAFLD is still the focus of chronic liver disease. Some progress has been made in the function and composition of macrophages in the pathogenesis of MAFLD, which provides a new insight for the treatment of MAFLD.
文章引用:廖凯, 杨连, 龚建平. 肝内巨噬细胞在代谢相关脂肪性肝病中的研究进展[J]. 临床医学进展, 2021, 11(4): 1608-1614. https://doi.org/10.12677/ACM.2021.114231

1. 引言

代谢相关脂肪性肝病(MAFLD)原名为非酒精性脂肪性肝病,是许多国家最常见的肝病,为脂肪性肝炎的炎症性亚型是疾病进展到肝硬化、肝细胞癌、肝移植和死亡的驱动因素,但也会导致肝外并发症,包括心血管疾病、糖尿病和慢性肾脏疾病 [1]。据统计,全球MAFLD平均发病率高达25.2% [2],中国MAFLD的全国患病率已高达29.2%,在亚洲,中国是与MAFLD相关的患病率、发病率和年死亡率最高的国家 [3]。目前研究表明,MAFLD的发生发展离不开肝巨噬细胞的作用,肝巨噬细胞自我维持能力的改变也影响着MAFLD的进展。本实验就在MAFLD中巨噬细胞自身组成变化及其相关的治疗策略的新近研究进展进行综述。

2. 肝内巨噬细胞的来源和分类

肝脏中的巨噬细胞根据来源可分为来源于胚胎早期卵黄囊时期的红髓祖细胞和来源于骨髓造血干细胞经血液循环募集至肝脏的单核巨噬细胞2大类 [4]。在哺乳动物的正常肝脏中,巨噬细胞群主要由来源于卵黄囊的红髓祖细胞组成,通常被称为库普弗细胞(KCs)。骨髓单核细胞来源的巨噬细胞在肝脏中只是一小部分;根据不同的估计,它们占总肝巨噬细胞的5%到30% [5]。传统上,巨噬细胞被定义为两个大亚群:经典活化的促炎巨噬细胞(M1)和选择性活化的抗炎巨噬细胞(M2)。然而,人们已经认识到巨噬细胞可以根据组织微环境分化为多种功能各异的表型 [6]。肝脏巨噬细胞中的M1型/M2型比例影响MAFLD的病理表现 [7]。

3. 肝巨噬细胞在MAFLD肝脏炎症的作用

巨噬细胞具有高度的通用性,而大量的实验和临床数据表明,肝巨噬细胞在MAFLD的发展中起着核心作用 [8]。有研究发现人类MAFLD病程进展中肝巨噬细胞在门静脉周围的蓄积,尤其是其纤维化和肝硬化阶段 [9]。有学者证实了在MAFLD发病初期KCs即可通过分泌肿瘤坏死因子-α等炎症因子启动肝脏炎症反应,并促进单核巨噬细胞向肝脏募集加重肝脏炎症反应 [10]。在动物模型中,KCs的耗竭减缓了非酒精性脂肪性肝炎的进展 [11]。另有学者发现经三氯化钆清除肝巨噬细胞的MAFLD小鼠的肝脏脂肪变和炎细胞浸润减少,证实在MAFLD中巨噬细胞起到了促进肝细胞脂肪变性和加速炎症反应的作用 [12]。在多重饮食诱导的脂肪性肝炎小鼠模型中,p38丝裂原活化蛋白激酶在MAFLD患者的肝脏中上调,p38诱导巨噬细胞M1极化和促炎细胞因子分泌促进脂肪性肝炎进展 [13]。最近的研究表明,高脂饮食喂养的小鼠肝细胞中的线粒体DNA可以激活KCs,并通过干扰素基因刺激物(STING)途径诱导脂肪变性和炎症。在非酒精性脂肪性肝炎小鼠模型中,STING缺陷小鼠的肝脏纤维化、炎症和脂肪变性减轻。STING激动剂,二甲基黄蒽酮-4-乙酸,可增强野生型小鼠KCs产生的肿瘤坏死因子-α和白细胞介素-6,而这种增加在STING缺陷小鼠中减弱 [14]。目前的文献表明,活化的肝巨噬细胞促进了MAFLD的进展。相比之下,Du等人 [15] 研究发现,在蛋氨酸和胆碱缺乏饮食诱导的MAFLD模型中,肝巨噬细胞上T细胞免疫球蛋白与粘蛋白结构域蛋白-3 (TIM-3)的表达显著增加。在同一项研究中,TIM3缺乏增加了肝巨噬细胞活性氧的释放,并促进了蛋氨酸和胆碱缺乏饮食诱导的肝纤维化和脂肪变性。这些结果提示了肝巨噬细胞抑制MAFLD发生的机制。

4. 巨噬细胞在MAFLD发展中的变化

组织驻留巨噬细胞对于维持组织内稳态至关重要 [16]。肝巨噬细胞由库普弗细胞和募集的巨噬细胞组成,是肝脏中最大的天然免疫细胞群。在健康的啮齿动物肝脏中,巨噬细胞约占非实质细胞的20%~25%;高占有率意味着肝巨噬细胞在维持肝功能和体内平衡方面起着至关重要的作用 [17]。KCs以胚胎方式发育 [18],在健康成年人中独立于循环单核细胞维持,依靠局部增殖进行自我更新和长期维持。库普弗细胞是稳态中参与稳态的主要肝巨噬细胞,肝脏代谢或毒性损伤会导致骨髓单核细胞来源的巨噬细胞大量渗透到受损的肝脏中。在非酒精性脂肪性肝病患者中,随着疾病的严重程度的增加,肝脏巨噬细胞数目也逐渐增加,主要源于大量浸润的单核细胞被招募进入肝脏 [19]。例如,当通过高剂量辐射 [20] 或白喉毒素介导的杀伤 [21] 耗尽时,胚胎来源的巨噬细胞被骨髓单核细胞来源的巨噬细胞取代。几项证据表明,骨髓单核细胞来源的巨噬细胞是在单核细胞增多性李斯特菌感染期间产生的 [22] 或在发生大量红细胞溶解的小鼠模型中产生的,但这种骨髓单核细胞来源的巨噬细胞可能不会长期保持 [23]。有研究发现当小鼠喂食高脂或高胆固醇食物时,发现肝巨噬细胞的平衡向单核细胞来源的细胞转移,而远离常驻的巨噬细胞群体 [24]。有学者采用蛋氨酸–胆碱缺乏饮食诱导的小鼠MAFLD模型中发现肝脏停留的巨噬细胞、KCs在发病早期丢失,随后Ly-6C+单核细胞来源的巨噬细胞大量浸润,并保持动态表型,遗传图谱显示巨噬细胞亚群之间炎症基因表达的不同模式 [11]。在肝脏损伤早期,肝脏中的KCs、肝实质细胞分泌趋化因子CCL2增多,与循环中的Ly6C + 单核细胞表面趋化因子受体CCR2结合并被招募进入肝脏,促进肝星形细胞分泌促纤维化细胞因子,促进纤维化的进展 [25]。有研究证明,胚胎来源的巨噬细胞的自我更新在非酒精性脂肪性肝炎过程中受到损害,导致胚胎来源的巨噬细胞被单核细胞来源的巨噬细胞取代,大多数单核细胞来源的巨噬细胞在非酒精性脂肪性肝炎发展过程中尚未完全成熟,胚胎来源的巨噬细胞比单核细胞来源的巨噬细胞更具炎症性,从而改变肝脏对脂质过载的反应 [26]。最近的一项研究使用单细胞RNA测序,在单细胞分辨率下提供了人类肝脏的全面图谱,并揭示了不同的肝内单核/巨噬细胞群体具有独特的功能途径 [27]。更重要的是,最近的一项研究报告了非酒精性脂肪性肝炎小鼠模型中浸润巨噬细胞和库普弗细胞之间的转录组差异,某些基因的表达存在显著差异;例如,1500个基因在浸润的巨噬细胞中富集,1690个基因在库普弗细胞细胞中富集 [28]。因此,慢性脂肪性肝炎中KCs池的改变,对肝脏稳态和功能有潜在的长期影响。

5. 基于巨噬细胞的MAFLD的治疗方法

大量文献报道,在代谢相关脂肪性肝病中,过度激活的细胞通过受体感知危险信号,分泌大量的炎性分子、趋化因子、促进炎症细胞的浸润,影响代谢相关脂肪性肝病的炎症和疾病进展。鉴于巨噬细胞在代谢相关脂肪性肝病中发挥的作用,目标靶向巨噬细胞治疗代谢相关脂肪性肝病的策略可从抑制巨噬细胞活化、抑制单核巨噬细胞的募集浸润等方面讨论。

5.1. 抑制库普弗细胞的激活

当肝损伤接踵而至时,KCs通过不同的机制在肝脏启动炎性级联反应,从而加剧肝细胞的坏死性炎症程度,导致MAFLD的发生。抑制KCs过度激活可能逆转该病的进程。KCs通过模式识别受体(PRRs)、NF-κB信号和NLRP3 (NOD-like receptor family, pyrin domain containing 3)炎症小体激活等途径,通过损伤相关分子模式(DAMP)/病原体相关分子模式(PAMP)介导细胞窘迫或肝细胞损伤的早期信息传递 [29]。以释放的DAMP为靶点,如高迁移率族蛋白1 (HMGB1)和组蛋白。文献报道,在代谢相关脂肪性肝病患者以及饮食诱导的代谢相关脂肪性肝病小鼠模型中,高迁移率族蛋白b1通过TLR4,促进p38磷酸化、活化NF-κB,增强LPS介导的巨噬细胞促炎表型的活化 [30]。在小鼠模型中,HMGB1中和抗体被证明可以减轻肝脏损伤 [31]。NLRP3炎性小体是巨噬细胞胞浆中一类重要的模式识别受体,大量文献已经证实,在代谢相关脂肪性肝病患者和模型中,炎性小体处于活化状态,并促进代谢相关脂肪性肝病的疾病进展,抑制其活化,可以减轻代谢相关脂肪性肝病的肝脏炎症和脂肪变 [32]。柚皮素是一种具有较强抗炎活性的黄酮类化合物,柚皮素通过下调KCs的NLRP3/NF-κB信号通路,对蛋氨酸–胆碱缺乏饮食诱导的小鼠MAFLD有明显的减轻作用 [33]。异硫氰酸苄酯(BITC)是十字花科蔬菜中含量丰富的有机硫化合物。最近,Chen等人的研究结果显示,BITC通过抑制库普弗细胞中胆固醇晶体激活的NLRP3炎症小体来改善高脂肪/高胆固醇饮食的效果,从而防止饮食诱导的非酒精性脂肪性肝炎的发展 [34]。在炎症反应过程中,脂多糖(LPS)可通过TLR4通路发出信号激活KCs,诱导各种炎症因子的产生 [35]。Song等人发现LPS/TLR4途径与Yes相关蛋白(YAP)关系密切,YAP抑制剂,维替普芬,可减轻高脂饮食诱导的MAFLD小鼠的肝脏炎症 [36]。

5.2. 减少单核巨噬细胞向肝脏的募集

在代谢相关脂肪性肝病进展中,活化的KCs不仅可以分泌炎性细胞因子,还可以通过分泌多种趋化因子调控单核来源的巨噬细胞。单核巨噬细胞被招募到肝脏,在那里它们放大和维持肝脏炎症。减少单核巨噬细胞向肝脏的募集,可以减轻肝脏炎症,这些治疗大多基于干扰单核巨噬细胞的趋化因子信号。研究表明,在代谢相关脂肪性肝病和非酒精性肝炎患者的血清中CCL2/MCP-1的水平均升高 [37]。CCR2敲除或者CCR2抑制剂处理的小鼠,脂肪变、炎性细胞浸润和纤维化减轻 [38]。Krenkel及其同事的研究表明,Cenicriviroc (CVC),一种CCR2/CCR5双重抑制剂,可有效阻止CCL2介导的单核巨噬细胞募集到肝脏,并在喂养西方饮食和蛋氨酸–胆碱缺乏饮食诱导的小鼠慢性肝损伤模型中具有抗脂肪性肝炎和抗纤维化作用 [39]。Elizabeth等人的研究结果提示整体抑制CCR2信号可能有利于降低高龄大鼠肝脏甘油三酯水平和炎症基因表达,进一步支持了靶向CCL2-CCR2通路可能是减少肝脏脂肪堆积和炎症的发生和发展的一种有前途的策略 [40]。胰高血糖素样肽1 (GLP-1)受体激动剂是一种治疗MAFLD应用前景的药物,如重组醋酸艾塞那肽,其在MAFLD的小鼠中可以降低CCL2的表达和减少炎性巨噬细胞的招募 [41]。另有学者在蛋氨酸–胆碱缺乏饮食喂养的MAFLD小鼠模型中,使用间接GLP-1激动剂,如格列吡嗪,可减少肝脏炎症单核细胞/巨噬细胞的数量,减缓炎症进程 [42]。非酒精性脂肪性肝炎整合素β1介导单核细胞黏附到肝窦内皮细胞,促进单核细胞黏附和肝脏炎症,在非酒精性脂肪性肝炎小鼠模型中,阻断整合素β1可降低肝脏炎症、损伤和纤维化,提示抑制整合素β1可能是治疗非酒精性脂肪肝的治疗靶点 [43]。伊马替尼为一种酪氨酸激酶抑制剂,有学者在高脂饮食小鼠NASH模型,发现应用伊马替尼3个月的小鼠肝组织中巨噬细胞数量明显减少并且肿瘤坏死因子-α表达也显著降低,提示伊马替尼会减少巨噬细胞向肝脏募集并抑制巨噬细胞向促炎表型极化 [44]。

6. 小结

MAFLD仍是慢性肝病中的关注重点,众多研究证据也表明MAFLD是一种代谢紊乱相关的多系统疾病。在MAFLD发病中关于肝巨噬细胞的功能作用和组成变化取得一定进展,但疾病的具体发病机制还有待阐明。针对巨噬细胞治疗MAFLD的靶向药物目前大多在基础研究中显示有效,而临床还未有应用或尚未完成临床试验,且多数药物研究也仅仅围绕单一靶点展开的,故针对不同靶点的多种药物联合干预治疗将是未来研究的方向,应该使用哪些药物组合仍有待阐明,但巨噬细胞靶向治疗应该是一种可行的选择。

致谢

廖凯负责整理收集数据,杨连负责完成稿件撰写,感谢龚建平参与论文选题和设计并给予指导及支持性贡献。

基金项目

国家自然科学基金:31730753。

参考文献

[1] Mohammed, E., Sanyal, A.J., Jacob, G., et al. (2020) A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology, 158, 1999-2014.
https://doi.org/10.1053/j.gastro.2019.11.312
[2] Younossi, Z.M., Marchesini, G., Pinto-Cortez, H., et al. (2018) Epidemiology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis: Implications for Liver Transplantation. Transplantation, 103, 22-27.
https://doi.org/10.1097/TP.0000000000002484
[3] Zhou, J., Zhou, F., Wang, W.X., et al. (2020) Epidemiological Features of Nafld from 1999 to 2018 in China. Hepatology, 71, 1851-1864.
https://doi.org/10.1002/hep.31150
[4] Shan, Z. and Ju, C. (2020) Hepatic Macrophages in Liver Injury. Frontiers in Immunology, 11, 322.
https://doi.org/10.3389/fimmu.2020.00322
[5] Elchaninov, A.V., Fatkhudinov, T.K., Vishnyakova, P.A., et al. (2019) Phenotypical and Functional Polymorphism of Liver Resident Macrophages. Cells, 8, 1032.
https://doi.org/10.3390/cells8091032
[6] Bansal, R., Mandrekar, P., Mohanty, S.K., et al. (2020) Editorial: Macrophages in Liver Disease. Frontiers in Immunology, 11, 1754.
https://doi.org/10.3389/fimmu.2020.01754
[7] Ritz, T., Krenkel, O. and Tacke, F. (2018) Dynamic Plasticity of Macrophage Functions in Diseased Liver. Cellular Immunology, 330, 175-182.
https://doi.org/10.1016/j.cellimm.2017.12.007
[8] Kazankov, K., Jørgensen, S., Thomsen, K., et al. (2019) The Role of Macrophages in Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Nature Reviews Gastroenterology & Hepatology, 16, 145-159.
https://doi.org/10.1038/s41575-018-0082-x
[9] Krenkel, O. and Tacke, F. (2017) Liver Macrophages in Tissue Homeostasis and Disease. Nature Reviews Immunology, 17, 306-321.
https://doi.org/10.1038/nri.2017.11
[10] Tosello-Trampont, A., Landes, S., Nguyen, V., et al. (2012) Kuppfer Cells Trigger Nonalcoholic Steatohepatitis Development in Diet-Induced Mouse Model through Tumor Necrosis Factor—Α Production. Journal of Biological Chemistry, 287, 40161-40172.
https://doi.org/10.1074/jbc.M112.417014
[11] Reid, D.T., Reyes, J.L., Mcdonald, B.A., et al. (2016) Kupffer Cells Undergo Fundamental Changes during the Development of Experimental Nash and Are Critical in Initiating Liver Damage and Inflammation. PLoS ONE, 11, e0159524.
https://doi.org/10.1371/journal.pone.0159524
[12] Li, D., Tong, J., Li, Y.H., et al. (2019) Melatonin Safeguards against Fatty Liver by Antagonizing Trafs-Mediated Ask1 Deubiquitination and Stabilization in a Β-Arrestin-1 Dependent Manner. Journal of Pineal Research, 67, E12611.
https://doi.org/10.1111/jpi.12611
[13] Zhang, X., Fan, L., Wu, J., et al. (2019) Macrophage P38α Promotes Nutritional Steatohepatitis through M1 Polarization. Journal of Hepatology, 71, 163-174.
https://doi.org/10.1016/j.jhep.2019.03.014
[14] Yu, Y., Liu, Y., An, W., et al. (2019) Sting-Mediated Inflammation in Kupffer Cells Contributes to Progression of Nonalcoholic Steatohepatitis. Journal of Clinical Investigation, 129, 546-555.
https://doi.org/10.1172/JCI121842
[15] Du, X., Wu, Z., Xu, Y., et al. (2019) Increased Tim-3 Expression Alleviates Liver Injury by Regulating Macrophage Activation in Mcd-Induced Nash Mice. Cellular & Molecular Immunology, 16, 878-886.
https://doi.org/10.1038/s41423-018-0032-0
[16] Dou, L., Shi, X., He, X., et al. (2019) Macrophage Phenotype and Function in Liver Disorder. Frontiers in Immunology, 10, 3112.
https://doi.org/10.3389/fimmu.2019.03112
[17] Gomez Perdiguero, E., Klapproth, K., Schulz, C., et al. (2015) Tissue-Resident Macrophages Originate from Yolk-Sac-Derived Erythro-Myeloid Progenitors. Nature, 518, 547-551.
https://doi.org/10.1038/nature13989
[18] Hoeffel, G., Chen, J., Lavin, Y., et al. (2015) C-Myb(+) Erythro-Myeloid Progenitor-Derived Fetal Monocytes Give Rise to Adult Tissue-Resident Macrophages. Immunity, 42, 665-678.
https://doi.org/10.1016/j.immuni.2015.03.011
[19] Park, J.W., Leong, G., Kim, S.J., et al. (2007) Predictors Reflecting the Pathological Severity of Non-Acoholic Fatty Liver Disease: Comprehensive Study of Clinical and Immunohistochemical Findings in Younger Asian Patients. Journal of Gastroenterology and Hepatology, 22, 491-497.
https://doi.org/10.1111/j.1440-1746.2006.04758.x
[20] Beattie, L., Sawtell, A., Mann, J., et al. (2016) Bone Marrow-Derived and Resident Liver Macrophages Display Unique Transcriptomic Signatures but Similar Biological Functions. Journal of Hepatology, 65, 758-768.
https://doi.org/10.1016/j.jhep.2016.05.037
[21] Scott, C., T'jonck, W., Martens, L., et al. (2018) The Transcription Factor Zeb2 Is Required to Maintain the Tissue-Specific Identities of Macrophages. Immunity, 49, 312-325.E5.
https://doi.org/10.1016/j.immuni.2018.07.004
[22] Blériot, C., Dupuis, T., Jouvion, G., et al. (2015) Liver-Resident Macrophage Necroptosis Orchestrates Type 1 Microbicidal Inflammation and Type-2-Mediated Tissue Repair during Bacterial Infection. Immunity, 42, 145-158.
https://doi.org/10.1016/j.immuni.2014.12.020
[23] Theurl, I., Hilgendorf, I., Nairz, M., et al. (2016) On-Demand Erythrocyte Disposal and Iron Recycling Requires Transient Macrophages in the Liver. Nature Medicine, 22, 945-951.
https://doi.org/10.1038/nm.4146
[24] Nakashima, H., Nakashima, M., Kinoshita, M., et al. (2016) Activation and Increase of Radio-Sensitive Cd11b+ Recruited Kupffer Cells/Macrophages in Diet-Induced Steatohepatitis in Fgf5 Deficient Mice. Scientific Reports, 6, Article No. 34466.
https://doi.org/10.1038/srep34466
[25] Tsuchida, T. and Frendman, S.L. (2017) Mechanisms of Hepatic Stellate Cell Activation. Nature Reviews Gastroenterology & Hepatology, 14, 397-411.
https://doi.org/10.1038/nrgastro.2017.38
[26] Tran, S., Baba, I., Poupel, L., et al. (2020) Impaired Kupffer Cell Self-Renewal Alters the Liver Response to Lipid Overload during Non-Alcoholic Steatohepatitis. Immunity, 53, 627-640.E5.
https://doi.org/10.1016/j.immuni.2020.06.003
[27] Macparland, S.A., Liu, J.C., Ma, X.Z., et al. (2018) Single Cell RNA Sequencing of Human Liver Reveals Distinct Intrahepatic Macrophage Populations. Nature Communications, 9, 4383.
https://doi.org/10.1038/s41467-018-06318-7
[28] Mcgettigan, B., Mcmahan, R., Orlicky, D., et al. (2019) Dietary Lipids Differentially Shape Nonalcoholic Steatohepatitis Progression and the Transcriptome of Kupffer Cells and Infiltrating Macrophages. Hepatology, 70, 67-83.
https://doi.org/10.1002/hep.30401
[29] Brenner, C., Galluzzi, L., Kepp, O., et al. (2013) Decoding Cell Death Signals in Liver Inflammation. Journal of Hepatology, 59, 583-594.
https://doi.org/10.1016/j.jhep.2013.03.033
[30] Qin, Y.H., Dai, S.M., Tang, G.S., et al. (2009) HMGB1 Enhances the Proinflammatory Activity of Lipopolysaccharide by Promoting the Phosphorylation of MAPK P38 through Receptor for Advanced Glycation End Products. Journal of Immunology, 183, 6244-6250.
https://doi.org/10.4049/jimmunol.0900390
[31] Triantafyllou, E., Woollard, K.J., Mcphail, M.J.W., et al. (2018) The Role of Monocytes and Macrophages in Acute and Acute-on-Chronic Liver Failure. Frontiers in Immunology, 9, 2948.
https://doi.org/10.3389/fimmu.2018.02948
[32] Ito, S., Yukawa, T., Uetake, S., et al. (2007) Serum Intercellular Adhesion Molecule-1 in Patients with Nonalcoholic Steatohepatitis: Comparison with Alcoholic Hepatitis. Alcoholism: Clinical and Experimental Research, 31, S83-S87.
https://doi.org/10.1111/j.1530-0277.2006.00292.x
[33] Wang, Q., Ou, Y., Hu, G., et al. (2020) Naringenin Attenuates Non-Alcoholic Fatty Liver Disease by Down-Regulating the Nlrp3/Nf-Κb Pathway in Mice. British Journal of Pharmacology, 177, 1806-1821.
https://doi.org/10.1111/bph.14938
[34] Chen, H.W., Yen, C.C., Kuo, L.L., et al. (2020) Benzyl Isothiocyanate Ameliorates High-Fat/Cholesterol/Cholic Acid Diet-Induced Nonalcoholic Steatohepatitis through Inhibiting Cholesterol Crystal-Activated Nlrp3 Inflammasome in Kupffer Cells. Toxicology and Applied Pharmacology, 393, Article ID: 114941.
https://doi.org/10.1016/j.taap.2020.114941
[35] Chen, J., Deng, X., Liu, Y., et al. (2020) Kupffer Cells in Non-Alcoholic Fatty Liver Disease: Friend or Foe? International Journal of Biological Sciences, 16, 2367-2378.
https://doi.org/10.7150/ijbs.47143
[36] Song, K., Kwon, H., Han, C., et al. (2020) Yes-Associated Protein in Kupffer Cells Enhances the Production of Proinflammatory Cytokines and Promotes the Development of Nonalcoholic Steatohepatitis. Hepatology, 72, 72-87.
https://doi.org/10.1002/hep.30990
[37] Haukeland, J.W., Damas, J.K., Konopski, Z., et al. (2006) Systemic Inflammation in Nonalcohoulic Fatty Liver Disease Is Characterized by Elevated Level of CCL2. Hepatology, 44, 1167-1174.
https://doi.org/10.1016/j.jhep.2006.02.011
[38] Baeck, C., Wehr, A., Karlmark, K.R., et al. (2012) Pharmacological Inhibition of the Chemokine CCL2 (MCP-1) Diminishes Liver Macrophage Infiltration and Steatphepatitis in Chronic Hepatic Injury. Gut, 61, 416-426.
https://doi.org/10.1136/gutjnl-2011-300304
[39] Krenkel, O., Puengel, T., Govaere, O., et al. (2018) Therapeutic Inhibition of Inflammatory Monocyte Recruitment Reduces Steatohepatitis and Liver Fibrosis. Hepatology, 67, 1270-1283.
https://doi.org/10.1002/hep.29544
[40] Stahl, E.C., Delgado, E.R., Alencastro, F., et al. (2020) Inflammation and Ectopic Fat Deposition in the Aging Murine Liver Is Influenced by Ccr2. The American Journal of Pathology, 190, 372-387.
https://doi.org/10.1016/j.ajpath.2019.10.016
[41] Yamamoto, T., Nakade, Y., Yamauchi, T., et al. (2016) Glucagon-Like Peptide-1 Analogue Prevents Nonalcoholic Steatohepatitis in Non-Obese Mice. World Journal of Gastroenterology, 22, 2512-2523.
https://doi.org/10.3748/wjg.v22.i8.2512
[42] Wang, X., Hausding, M., Weng, S.Y., et al. (2018) Gliptins Suppress Inflammatory Macrophage Activation to Mitigate Inflammation, Fibrosis, Oxidative Stress, and Vascular Dysfunction in Models of Nonalcoholic Steatohepatitis and Liver Fibrosis. Antioxidants & Redox Signaling, 28, 87-109.
https://doi.org/10.1089/ars.2016.6953
[43] Guo, Q., Furuta, K., Lucien, F., et al. (2019) Integrin Β-Enriched Extracellular Vesicles Mediate Monocyte Adhesion and Promote Liver Inflammation in Murine Nash. Journal of Hepatology, 71, 1193-1205.
https://doi.org/10.1016/j.jhep.2019.07.019
[44] Alasfoor, S., Rohm, T.V., Bosch, A.J.T., et al. (2018) Imatinib Reduces Non-Alcoholic Fatty Liver Disease in Obese Mice by Targeting Inflammatory and Lipogenic Pathways in Macrophages and Liver. Scientific Reports, 8, Article No. 15331.
https://doi.org/10.1038/s41598-018-32853-w