Theta脉冲刺激联合认知训练对卒中后认知障碍的疗效观察
The Effect of Theta Burst Stimulation Combined with Cognitive Training on Patients with Post-Stroke Cognitive Impairment
DOI: 10.12677/ACM.2021.114240, PDF, HTML, XML, 下载: 346  浏览: 530 
作者: 李闻宇, 丛小萌, 杨传美, 宋 晨, 张子青, 李展菲, 王玉阳, 潘晓娜, 李 江*:青岛大学附属医院康复医学科,山东 青岛;张 宇:青岛大学附属医院放射科,山东 青岛
关键词: 脑卒中认知障碍重复经颅磁刺激theta脉冲刺激磁共振波谱Stroke Cognitive Dysfunction Repetitive Transcranial Magnetic Stimulation Theta Burst Stimulation Magnetic Resonance Spectroscopy
摘要: 目的:观察theta脉冲刺激(theta burst stimulation, TBS)联合认知训练对卒中后认知障碍(post-stroke cognitive impairment, PSCI)患者的认知以及日常生活活动能力的疗效。方法:38例PSCI患者按照随机数字表法分为3组,最终36例病人完成本研究,其中双侧刺激组12例,单侧刺激组12例,假刺激组12例。3组患者均进行常规康复训练(包括认知训练)和常规药物治疗(包括改善认知药物)。在进行上述治疗的基础上,双侧刺激组给予左前额叶背外侧间歇性TBS和右前额叶背外侧持续性TBS,单侧刺激组给予左前额叶背外侧间歇性TBS和右前额叶背外侧的假刺激,假刺激组给予双侧的假刺激,5次/周,共治疗3周。治疗前后采用简易智力状态检查(Mini-mental State Examination, MMSE)、蒙特利尔认知评估(Montreal Cognitive Assessment, MoCA)评价认知功能,采用磁共振波谱分析(magnetic resonance spectroscopy, MRS)评估脑组织代谢及影像学变化,采用改良Barthel指数(Modified Barthel Index, MBI)评估患者日常生活活动能力。结果:双侧及单侧刺激组患者治疗后的MMSE、MoCA、MBI评分较治疗前显著改善(P < 0.05),假刺激组MBI评分较治疗前显著改善(P < 0.05)。与治疗后假刺激组比较,双侧刺激组的MoCA评分、MMSE中语言能力(命名、复述、阅读、三步指令、书写、结构能力总分)评分显著改善(P < 0.05)。双侧及单侧刺激组治疗后双侧海马区MRS代谢值NAA/Cr显著升高(P < 0.05)。与治疗后假刺激组比较,双侧刺激组NAA/Cr升高更为明显(P < 0.05)。3组患者治疗前后双侧海马区MRS代谢值NAA/Cr差值与MoCA评分差值呈中度正相关(r = 0.663~0.710, P < 0.05)。结论:TBS联合认知训练可改善PSCI患者的认知功能,双侧前额叶背外侧刺激可能疗效更佳。
Abstract: Objective: To observe the effect of theta burst stimulation (TBS) combined with cognitive function training on cognitive and daily living ability in patients with post-stroke cognitive impairment (PSCI). Methods: According to the random number table, 38 patients with PSCI were divided into 3 groups. Finally, 36 patients completed this study, including 12 patients in the bilateral stimulation group, 12 patients in the unilateral stimulation group, and 12 patients in the sham stimulation group. 3 groups of patients were given routine rehabilitation training (including cognitive function training) and conventional drug treatment (including improving cognitive drugs). On the basis of the above treatment, the bilateral stimulation group was given intermittent TBS in the left dorsolateral prefrontal cortex (DLPFC) and continuous TBS in the right DLPFC. The unilateral stimulation group was given intermittent TBS in the left DLPFC and sham stimulation in the right DLPFC. The sham stimulation group was given bilateral sham stimulation in the bilateral DLPFC. All 3 groups were treated 5 times per week for 3 weeks. Before and after the treatment, Mini-mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) were used to evaluate cognitive function, magnetic resonance spectroscopy (MRS) was used to evaluate brain tissue metabolism and imaging changes, and the Modified Barthel Index (MBI) was used to evaluate the patients’ daily living ability. Results: After treatment, MMSE, MoCA and MBI score of patients in the bilateral and unilateral stimulation group were significantly improved compared with those before treatment (P < 0.05). MoCA score and LANGUAGE (naming, repetition, comprehension, reading, writing, copying total score) of MMSE score were significantly improved in the bilateral stimulation group (P < 0.05). After bilateral and unilateral stimulation, the NAA/Cr of MRS metabolism in bilateral hippocampus was significantly increased (P < 0.05). Compared with the sham stimulation group, NAA/Cr increase was more significant in the bilateral stimulation group (P < 0.05). The difference value of NAA/Cr in MRS metabolism of bilateral hippocampus and MoCA score of 3 groups of patients before and after treatment was moderately correlated (r = 0.663~0.710, P < 0.05). Conclusions: Theta burst stimulation combined with cognitive function training can significantly improve the cognitive function of patients with PSCI. And bilateral DLPFC stimulation may be more effective.
文章引用:李闻宇, 丛小萌, 杨传美, 宋晨, 张子青, 李展菲, 王玉阳, 潘晓娜, 张宇, 李江. Theta脉冲刺激联合认知训练对卒中后认知障碍的疗效观察[J]. 临床医学进展, 2021, 11(4): 1672-1679. https://doi.org/10.12677/ACM.2021.114240

1. 引言

卒中后认知障碍(post-stroke cognitive impairment, PSCI)是卒中发生后常见的功能障碍之一,严重者可为患者及家庭带来沉重负担。目前PSCI的治疗多为改善认知药物、认知康复训练等。然而,患者及家属对药物治疗的费用及副作用常有抵触心理,在认知训练的过程中也存在患者配合度差等问题。Theta脉冲刺激(theta burst stimulation, TBS)是重复经颅磁刺激(repetitive transcranial magnetic stimulation, rTMS)的新模式,通过间歇性或持续性的脉冲串作用于颅骨,时间短疗效强,已在许多研究中获得初步验证 [1] [2]。另外,Wang等 [3] 在荟萃分析中发现,与单独应用rTMS相比,rTMS联合认知训练对患者的认知功能似乎产生了更大的改善。本研究旨在通过不同的TBS处方治疗PSCI患者的效果比较来发掘更优治疗方案,为进一步的临床应用提供帮助。

2. 对象与方法

2.1. 研究对象

经青岛大学附属医院伦理学委员会审核(QYFY WZLL 25937)通过后,选取2019年9月至2020年8月青岛大学附属医院黄岛院区康复医学科脑卒中患者38例,纳入标准:① 疾病诊断均符合《中国急性缺血性脑卒中诊治指南2018》及《中国脑出血诊治指南(2019)》。② 符合2017年6月中国《卒中后认知障碍管理专家共识》提出的PSCI诊断标准。③ 年龄18~80岁,首次发病,病程处于恢复早期和中期(3周至3月)。④ 患者为右利手。⑤ 患者签署知情同意书。排除标准:① 排除脑卒中以外疾病导致认知障碍以及本次卒中前即有认知功能损害患者。② 患者有严重的理解表达障碍不能完成神经心理学测试。③ 患者病情有加重趋势,或存在严重的基础疾病。④ 患者有癫痫发作病史。⑤ 颅内、心脏等体内有植入金属物件者。

将患者按照随机数字表法分为双侧刺激组(13例)、单侧刺激组(13例)和假刺激组(12例)。双侧及单侧刺激组中各有1名患者因无法耐受TBS而退出。3组患者的性别、年龄、病变类型、病程、学历之间的差异无统计学意义(P > 0.05),具有可比性,见表1

Table 1. Comparison of general data of the three groups of patients ( x ¯ ± s )

表1. 3组患者的一般资料比较( x ¯ ± s )

2.2. 试验方法

1) 基础治疗:3组患者常规进行以下干预:① 常规康复训练:包括运动疗法、平衡训练、肌力训练、针灸、推拿、理疗、吞咽功能训练等以及认知功能训练,内容主要包括:定向能力、专注能力、结构能力、计算能力、记忆能力、推理能力、语言能力等,训练时间为30分钟/次,5次/周,共3周。② 常规药物治疗:包括抗血小板、营养神经、调脂降压降糖等常规药物,以及改善认知药物盐酸多奈哌齐5毫克/晚。

2) TBS治疗:采用依瑞德公司开发的CCY-I型磁刺激仪,使用圆型线圈,TBS模式进行刺激。TBS模式特点在于,它将3个爆发式脉冲每200毫秒(即5 Hz)以50 Hz的频率发送 [4]。其主要分为两种,间歇性TBS (intermittent theta burst stimulation, iTBS)和持续性TBS (continuous theta burst stimulation, cTBS)。iTBS模式为2秒钟刺激后进行8秒钟间歇,而后继续这一循环,共600脉冲;cTBS模式无间歇进行,共600脉冲。静息运动阈值(resting motor threshold, rMT)测量方法为:连接运动诱发电位电极片于拇短展肌处,将圆型线圈中心点对准M1区,自低强度开始刺激,直至连续10次刺激中产生5次高于50 uv肌电,5次低于50 uv肌电,这时的刺激强度即为该患者的rMT。本研究刺激强度设置为75% rMT [5]。

3) 组刺激方案如下:① 双侧刺激组:先进行左前额叶背外侧的iTBS模式刺激,600脉冲;后在右前额叶背外侧进行cTBS模式刺激,600脉冲,5次/周,共3周。② 单侧刺激组:先进行左前额叶背外侧的iTBS模式刺激,此步骤与双侧刺激组相同;后进行右前额叶背外侧cTBS模式的假刺激,线圈垂直于颅骨,患者可听到声音但没有实质刺激,5次/周,共3周。③ 假刺激组:先后于左前额叶背外侧及右前额叶背外侧进行假刺激,方法与上述假刺激相同,5次/周,共3周。

2.3. 评估方法

3组治疗前后均由经过专门培训的专业康复医师在诊疗室进行评估,采用双盲法,评估者及患者对分组和治疗方案均不知情。

1) 神经心理学量表:① 简易智力状态检查(Mini-mental State Examination, MMSE) [6]:从定向、记忆、注意、计算、回忆、语言能力几个方面对患者进行筛查,总分30分,<27分被认为存在认知功能障碍。② 蒙特利尔认知评估(Montreal Cognitive Assessment, MoCA) [7]:从视空间与执行功能、命名、记忆、注意、语言、抽象、延迟回忆、定向几个方面进行详细认知评定,总分30分,受教育年限 ≤ 12年则加1分,≥26分为正常。

2) 日常生活活动能力:改良Barthel指数(Modified Barthel Index, MBI) [8] 是常用的评估日常生活活动能力的量表,包括进食、修饰、更衣、大小便控制、用厕、床椅转移、行走、上下楼梯几项指标,满分100分,大于60分为基本生活自理,60分以下根据得分多少区分不同的依赖程度。

3) 磁共振波谱分析:磁共振波谱分析(Magnetic Resonance Spectroscopy, MRS)是无创检测对脑组织中部分成分进行定量的方法,近年来常被用来检测认知。采用随机数字表法在3组中各选取6名患者进行MRS检查。仪器采用美国GE3.0TMR,型号3.0T SIGNA HDXT,多体素模式,扫描序列为:3-pl Loc、Asset Cal、PROBE-SI 144,线圈:HDNV Head,PROBE-SI 144扫描参数:TR:1000 ms,TE:144 ms,FOV:24 cm,Voxel Thickness:10.0 mm,NEX:1,扫描时间为5分28秒。感兴趣区(region of interest, ROI)选择海马头体部,采集N-乙酰天门冬氨酸(NAA)、肌酸(Cr)及二者的比值。其代谢物化学频移位置为NAA 2.0 ppm,Cr 3.0 ppm。

2.4. 统计学方法

采用SPSS Statistics 25.0进行统计学分析,所得计量资料符合正态分布且通过方差齐性检验后以(`x ± s)表示,一般资料的比较中计量资料采用单因素方差分析,一般计数资料采用双向无序列联表分析,等级资料采用Kruskal-Wallis检验,治疗前后数据采用配对t检验,治疗前后组间比较采用单因素方差分析,计量资料相关性分析采用Pearson相关分析,P < 0.05表示差异有统计学意义。

3. 结果

3.1. 3组患者治疗前后MMSE、MoCA、MBI评分比较

3组患者治疗前MMSE、MoCA、MBI评分组间差异无显著统计学意义(P > 0.05)。治疗后组内比较得出,双侧及单侧刺激组的MMSE、MoCA、MBI评分均高于治疗前,差异有显著统计学意义(P < 0.05),假刺激组MBI评分高于治疗前,差异有显著统计学意义(P < 0.05)。治疗后组间比较得出,3组之间MoCA评分、MMSE分项语言能力评分之间差异有显著统计学意义(P < 0.05),MMSE总评分与MBI评分组间比较差异无显著统计学意义(P > 0.05)。进一步两两比较得出,双侧刺激组治疗后MoCA评分优于假刺激组治疗后MoCA评分,差异有统计学意义(P < 0.05)。双侧刺激组治疗后MMSE中语言能力评分优于假刺激组治疗后相应的评分,差异有统计学意义(P < 0.05),见表2

Table 2. Comparison of scores of patients in the 3 groups before and after treatment (scores, x ¯ ± s )

表2. 3组患者治疗前后各项评分比较(分, x ¯ ± s )

注:与组内治疗前比较,aP < 0.05;与假刺激组相同指标比较,bP < 0.05。

3.2. 3组患者治疗前后MRS代谢值比较及相关性分析

3组患者治疗前双侧海马区MRS代谢值NAA/Cr差异无显著统计学意义(P > 0.05),治疗后组内比较得出,双侧及单侧刺激组治疗后双侧海马区MRS代谢值NAA/Cr显著升高,差异有统计学意义(P < 0.05)。治疗后组间比较得出,与假刺激组相比,双侧刺激组NAA/Cr升高更为明显(P < 0.05)。相关性分析得出,3组患者治疗前后双侧海马区MRS代谢值NAA/Cr差值与MoCA评分差值呈中度正相关(r = 0.663~0.710,P < 0.05),见表3表4

Table 3. Comparison of NAA/Cr of MRS metabolism in bilateral hippocampus of patients in the 3 groups before and after treatment ( x ¯ ± s )

表3. 3组患者治疗前后双侧海马区MRS代谢值NAA/Cr比较( x ¯ ± s )

注:与组内治疗前比较,aP < 0.05;与假刺激组相同指标比较,bP < 0.05。

Table 4. Correlation analysis between MoCA difference and NAA/Cr difference of MRS metabolic value in bilateral hippocampus of 18 patients before and after treatment

表4. 18位患者治疗前后MoCA差值与双侧海马区MRS代谢值NAA/Cr差值的相关性分析

注:表内数据为相关系数。

4. 讨论

rTMS结合认知训练及改善认知药物对增强认知功能可能具有协同效应 [9],已在多项试验中得到支持 [10] [11] [12]。本研究得出,theta脉冲式的rTMS改善了PSCI患者的认知功能,其原因可能为:rTMS通过影响离子通道活性 [13]、改变相关代谢产物如γ-氨基丁酸的浓度 [14]、促进脑血流量重新分布 [15]、调节星形胶质细胞极化 [16] 等途经,提高或降低皮质兴奋性,调控认知网络。TBS是rTMS的模式化刺激,其参数基于对啮齿动物和人脑的研究而开发,更接近大脑的自然放电模式 [17]。iTBS或高频rTMS可使皮层兴奋性增高,cTBS或低频rTMS常降低皮层兴奋性 [18]。研究表明,与常规模式相比,TBS治疗时间短,对皮层兴奋性的诱导更加持久和稳定 [19]。

本研究结果显示,MoCA评分中双侧刺激组患者的认知功能较假刺激组患者改善明显,其原因除了二者疗效的简单相加外,认知训练和rTMS对从事不同任务的同一神经网络产生联合影响,诱发突触强化,可能会增加其功效,即“赫布理论”(Hebbian theory) [20]。与此同时,rTMS诱导的长时程增强(long-term potentiation, LTP)效应可能与记忆和学习过程有关,当rTMS与技能训练或练习相结合时,会加速相关大脑皮层区域的学习技能 [21]。这一结合是“中枢-外周-中枢”闭环康复模式 [22] 的充分利用,中枢系统调控刺激产生外周效应,这一结果再正反馈于中枢系统,二者相互促进,产生远胜于简单相加的效果。另外,前额叶背外侧(dorsolateral prefrontal cortex,DLPFC)在工作记忆、运算、注意控制和双重任务处理等方面扮演着重要的角色 [23] [24]。双侧刺激组对两侧DLPFC均进行了刺激,我们观察到双侧刺激组对比假刺激组患者认知功能得到提高,而单刺激组暂未发现与假刺激组的明显不同,这也近似于Wang等 [3] 在荟萃分析中发现的结果,多部位rTMS优于单部位rTMS。

在对患者的不同评估方法进行结果分析时,我们发现双侧刺激组的MMSE总分较假刺激组无明显差异,其原因可能为:MMSE以生活常用技能为主,除认知训练外其他康复训练也可小范围提高患者MMSE评分。而MoCA更为细致,其内容部分涉及逻辑思维等更高级的认知领域,敏感性更高 [25],可能需要疗效更佳的专业认知康复的干预来获得更大的改善。有趣的是,在MMSE评分内语言能力这一部分,双侧刺激组患者比假刺激组提高明显。其原因可能在于,刺激前额叶背外侧有助于改善患者的语言功能 [26] [27]。在训练过程中,所有信息均通过听视觉等传入中枢,由语言输出,在认知训练和TBS的联合治疗下,患者的语言能力得到不断地强化。语言在认知领域中起着核心作用,并且可能是认知能力下降的最早迹象之一 [28]。因此,这一发现可能对指导治疗以语言能力下降为主的PSCI患者起到一定的帮助。另外,治疗后3组病人的MBI显著改善,而3组之间的差异不明显,可能是由于许多PSCI患者同时合并有严重的运动、吞咽等功能的下降,因此认知功能的显著改善未在病人的整体生活活动能力提升中得到体现。

本研究还随机在3组各选取了6名患者进行双侧海马区的MRS检查。海马区与学习和记忆等高级认知功能密切相关。我们发现,3组患者治疗前后双侧海马区MRS代谢值NAA/Cr差值与MoCA评分差值呈中度正相关。其原因在于,NAA是一种神经元标记,反映神经元功能,其减少通常表示神经元功能障碍或丧失 [29];Cr主要由肌酸和磷酸肌酸组成,含量较为稳定,多用作其他代谢物标准化的内标 [30]。Meng等 [31] 的研究表明,NAA/Cr降低可能敏感地反映了认知能力下降,并且梗塞病变可能导致双侧海马均出现神经元功能障碍。另外,在治疗后双侧刺激组患者两侧海马区NAA/Cr升高较假刺激组显著,这与Wang等 [30] 的研究结果相符合。Wang等选择了PSCI患者、卒中对照患者、健康者进行MRS检查,发现PSCI组双侧海马的NAA/Cr低于卒中对照组和健康组,并且在治疗后,PSCI组和卒中组的患者均出现NAA/Cr升高。这进一步支持了我们的结果:双侧刺激组患者认知功能得到提高。

本研究也存在一系列不足:第一,本研究最终只分析了36位病人治疗前后的认知功能变化,18位病人进行了MRS检查,样本数量少;第二,本研究TBS采用圆形线圈并选择经验性DLPFC位置(M1区向前平移5 cm)进行刺激,未借助神经导航系统进行精确定位;第三, 我们未对治疗结束后的病人进行长期的随访,无法研究该刺激模式的远期效应。

5. 结论

综上所述,我们推论:TBS联合认知训练可显著改善PSCI患者的认知功能,并且双侧DLPFC刺激可能疗效更佳。在未来的研究中需扩大样本量,结合MRS等检查进一步探索认知障碍的机制,为PSCI患者寻找更佳的治疗方案。

NOTES

*通讯作者。

参考文献

[1] Tsai, P.Y., Lin, W.S., Tsai, K.T., et al. (2020) High-Frequency versus Theta Burst Transcranial Magnetic Stimulation for the Treatment of Poststroke Cognitive Impairment in Humans. Journal of Psychiatry & Neuroscience, 45, 262-270.
https://doi.org/10.1503/jpn.190060
[2] Nyffeler, T., Vanbellingen, T., Kaufmann, B.C., et al. (2019) Theta Burst Stimulation in Neglect after Stroke: Functional Outcome and Response Variability Origins. Brain, 142, 992-1008.
https://doi.org/10.1093/brain/awz029
[3] Wang, X., Mao, Z., Ling, Z., et al. (2020) Repetitive Transcranial Magnetic Stimulation for Cognitive Impairment in Alzheimer’s Disease: A Meta-Analysis of Randomized Controlled Trials. Journal of Neurology, 267, 791-801.
https://doi.org/10.1007/s00415-019-09644-y
[4] Gutiérrez-Muto, A.M., Castilla, J., Freire, M., et al. (2020) Theta Burst Stimulation: Technical Aspects about TMS Devices. Brain Stimulation, 13, 562-564.
https://doi.org/10.1016/j.brs.2020.01.002
[5] Chung, S.W., Rogasch, N.C., Hoy, K.E., et al. (2018) Impact of Different Intensities of Intermittent Theta Burst Stimulation on the Cortical Properties during TMS-EEG and Working Memory Performance. Human Brain Mapping, 39, 783-802.
https://doi.org/10.1002/hbm.23882
[6] Folstein, M.F., Folstein, S.E. and McHugh, P.R. (1975) “Mini-Mental State”. A Practical Method for Grading the Cognitive State of Patients for the Clinician. Journal of Psychiatric Research, 12, 189-198.
https://doi.org/10.1016/0022-3956(75)90026-6
[7] Nasreddine, Z.S., Phillips, N.A., Bédirian, V., et al. (2005) The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. Journal of the American Geriatrics Society, 53, 695-699.
https://doi.org/10.1111/j.1532-5415.2005.53221.x
[8] Shah, S., Vanclay, F. and Cooper, B. (1989) Improving the Sensitivity of the Barthel Index for Stroke Rehabilitation. Journal of Clinical Epidemiology, 42, 703-709.
https://doi.org/10.1016/0895-4356(89)90065-6
[9] Brem, A.K. and Sensi, S.L. (2018) Towards Combinatorial Approaches for Preserving Cognitive Fitness in Aging. Trends in Neurosciences, 41, 885-897.
https://doi.org/10.1016/j.tins.2018.09.009
[10] Pulopulos, M., Allaert, J., Vanderhasselt, M.A., et al. (2020) Effects of HF-rTMS over the Left and Right DLPFC on Proactive and Reactive Cognitive Control. Social Cognitive and Affective Neuroscience.
https://doi.org/10.1093/scan/nsaa082
[11] Park, I.S. and Yoon, J.G. (2015) The Effect of Computer-Assisted Cognitive Rehabilitation and Repetitive Transcranial Magnetic Stimulation on Cognitive Function for Stroke Patients. The Journal of Physical Therapy Science, 27, 773-776.
https://doi.org/10.1589/jpts.27.773
[12] Cho, H.Y., Kim, K.T. and Jung, J.H. (2015) Effects of Computer Assisted Cognitive Rehabilitation on Brain Wave, Memory and Attention of Stroke Patients: A Randomized Control Trial. The Journal of Physical Therapy Science, 27, 1029-1032.
https://doi.org/10.1589/jpts.27.1029
[13] Tan, T., Xie, J., Tong, Z., et al. (2013) Repetitive Transcranial Magnetic Stimulation Increases Excitability of Hippocampal CA1 Pyramidal Neurons. Brain Research, 1520, 23-35.
https://doi.org/10.1016/j.brainres.2013.04.053
[14] Su, H., Chen, T., Zhong, N., et al. (2020) γ-Aminobutyric Acid and Glutamate/Glutamine Alterations of the Left Prefrontal Cortex in Individuals with Methamphetamine Use Disorder: A Combined Transcranial Magnetic Stimulation-Magnetic Resonance Spectroscopy Study. Annals of Translational Medicine, 8, 347.
https://doi.org/10.21037/atm.2020.02.95
[15] Shang, Y.Q., Xie, J., Peng, W., et al. (2018) Network-Wise Cerebral Blood Flow Redistribution after 20 Hz rTMS on Left Dorso-Lateral Prefrontal Cortex. European Journal of Radiology, 101, 144-148.
https://doi.org/10.1016/j.ejrad.2018.02.018
[16] Hong, Y., Liu, Q., Peng, M., et al. (2020) High-Frequency Repetitive Transcranial Magnetic Stimulation Improves Functional Recovery by Inhibiting Neurotoxic Polarization of Astrocytes in Ischemic Rats. Journal of Neuroinflammation, 17, 150.
https://doi.org/10.1186/s12974-020-01747-y
[17] Hoy, K.E., Bailey, N., Michael, M., et al. (2016) Enhancement of Working Memory and Task-Related Oscillatory Activity Following Intermittent Theta Burst Stimulation in Healthy Controls. Cerebral Cortex, 26, 4563-4573.
https://doi.org/10.1093/cercor/bhv193
[18] Wischnewski, M. and Schutter, D.J. (2015) Efficacy and Time Course of Theta Burst Stimulation in Healthy Humans. Brain Stimulation, 8, 685-692.
https://doi.org/10.1016/j.brs.2015.03.004
[19] Pichiorri, F., Vicenzini, E., Gilio, F., et al. (2012) Effects of Intermittent Theta Burst Stimulation on Cerebral Blood Flow and Cerebral Vasomotor Reactivity. Journal of Ultrasound in Medicine, 31, 1159-1167.
https://doi.org/10.7863/jum.2012.31.8.1159
[20] Brem, A.K., Di Iorio, R., Fried, P.J., et al. (2020) Corticomotor Plasticity Predicts Clinical Efficacy of Combined Neuromodulation and Cognitive Training in Alzheimer’s Disease. Frontiers in Aging Neuroscience, 12, 200.
https://doi.org/10.3389/fnagi.2020.00200
[21] Lee, J., Choi, B.H., Oh, E., et al. (2016) Treatment of Alzheimer’s Disease with Repetitive Transcranial Magnetic Stimulation Combined with Cognitive Training: A Prospective, Randomized, Double-Blind, Placebo-Controlled Study. Journal of Clinical Neurology, 12, 57-64.
https://doi.org/10.3988/jcn.2016.12.1.57
[22] 贾杰. “中枢–外周–中枢”闭环康复——脑卒中后手功能康复新理念[J]. 中国康复医学杂志, 2016, 31(11): 1180-1182.
[23] Weissman, D.H., Perkins, A.S. and Woldorff, M.G. (2008) Cognitive Control in Social Situations: A Role for the Dorsolateral Prefrontal Cortex. Neuroimage, 40, 955-962.
https://doi.org/10.1016/j.neuroimage.2007.12.021
[24] Lee, J., Dong, S., Jeong, J., et al. (2020) Effects of Transcranial Direct Current Stimulation over the Dorsolateral Prefrontal Cortex (PFC) on Cognitive-Motor Dual Control Skills. Perceptual and Motor Skills, 127, 803-822.
https://doi.org/10.1177/0031512520935695
[25] Shi, D., Chen, X. and Li, Z. (2018) Diagnostic Test Accuracy of the Montreal Cognitive Assessment in the Detection of Post-Stroke Cognitive Impairment under Different Stages and Cutoffs: A Systematic Review and Meta-Analysis. Neurological Sciences, 39, 705-716.
https://doi.org/10.1007/s10072-018-3254-0
[26] Cotelli, M., Manenti, R., Alberici, A., et al. (2012) Prefrontal Cortex rTMS Enhances Action Naming in Progressive Non-Fluent Aphasia. European Journal of Neurology, 19, 1404-1412.
https://doi.org/10.1111/j.1468-1331.2012.03699.x
[27] Cotelli, M., Fertonani, A., Miozzo, A., et al. (2011) Anomia Training and Brain Stimulation in Chronic Aphasia. Neuropsychological Rehabilitation, 21, 717-741.
https://doi.org/10.1080/09602011.2011.621275
[28] Beltrami, D., Gagliardi, G., Rossini Favretti, R., et al. (2018) Speech Analysis by Natural Language Processing Techniques: A Possible Tool for Very Early Detection of Cognitive Decline? Frontiers in Aging Neuroscience, 10, 369.
https://doi.org/10.3389/fnagi.2018.00369
[29] Wang, H., Tan, L., Wang, H.F., et al. (2015) Magnetic Resonance Spectroscopy in Alzheimer’s Disease: Systematic Review and Meta-Analysis. Journal of Alzheimer’s Disease, 46, 1049-1070.
https://doi.org/10.3233/JAD-143225
[30] Wang, S.Y., Wang, M., Wang, X.X., et al. (2017) Study on the Clinical Application of the MRS in the Cognitive Assessment after Stroke. European Review for Medical and Pharmacological Sciences, 21, 2437-2442.
[31] Meng, N., Shi, S. and Su, Y. (2016) Proton Magnetic Resonance Spectroscopy as a Diagnostic Biomarker in Mild Cognitive Impairment Following Stroke in Acute Phase. Neuroreport, 27, 559-563.
https://doi.org/10.1097/WNR.0000000000000555