老年高血压患者血压变异的研究进展
Research Progress of Blood Pressure Variation in Elderly Patients with Hypertension
DOI: 10.12677/ACM.2021.115351, PDF, HTML, XML, 下载: 453  浏览: 691 
作者: 费美美:青海大学,青海 西宁;李 蓉:青海大学附属医院,青海 西宁
关键词: 老年人高血压血压变异预后The Elderly High Blood Pressure Blood Pressure Variation The Prognosis
摘要: 随着人口老龄化的进展,老年高血压患病率逐年升高,且易合并心脑血管等靶器官损害。高血压相关疾病风险不仅依赖于血压的平均水平,且与血压变异性(BPV)密切相关,BPV是指一段时间内测定的血压波动情况,BPV相比平均血压水平能更好的评估靶器官损害和预后。现对BPV的分类标准、量化指标、24小时的动态血压监测(24 h-Ambulatory Blood Pressure Monitoring, 24 h-ABPM)与高血压管理及BPV预后进行系统综述。
Abstract: With the aging of the population, the prevalence of hypertension in the elderly is increasing year by year, and it is easy to be combined with damage to target organs such as cardiovascular and cerebrovascular vessels. The risk of hypertensive disease is not only dependent on the average level of blood pressure, but is closely related to blood pressure variability (BPV). BPV is the fluctuation of blood pressure measured over time, BPV refers to the fluctuation of blood pressure measured over a period of time, which reflects the dynamic regulation of the body’s environment. BPV is a better indicator of target organ damage and prognosis than average blood pressure. The classification criteria, quantitative indicators, evaluation methods and prognosis of BPV were systematically reviewed.
文章引用:费美美, 李蓉. 老年高血压患者血压变异的研究进展[J]. 临床医学进展, 2021, 11(5): 2436-2441. https://doi.org/10.12677/ACM.2021.115351

1. 引言

《中国居民营养与慢性病状况报告(2015年)》 [1] 指出2012年我国≥60岁人群高血压的患病率达到58.9%,10年间上升幅度接近20%。由于老年人血管壁僵硬度增加、顺应性下降,以致血压波动幅度大,昼夜节律消失,易合并心脑血管等多种并发症等,预后极差 [2]。

2. BPV的概念及分类

血压变异性(blood pressure variability, BPV)是指一定时间内测定的血压波动情况,与高血压靶器官损害和预后密切相关。其中根据变异原因将BPV可分为生理性、病理性以及药物性变异,生理性变异与环境因素和心动周期密切相关,病理性变异(指清晨、夜间及体位性高血压)、药物性变异(指瞬时、短时和长时BPV)。另外根据监测时长将BPV可分为以下四种类型:超短期BPV (指每次心搏之间的BPV)、短期BPV (24小时内的BPV)、中期BPV (连续数日或数周的BPV)和长期BPV (数月、季节和长期随访的BPV) [3]。

3. BPV的量化指标

BPV的量化指标暂未统一,能反映BPV水平的任何指标均可用来量化BPV。其中标准差(SD)是衡量BPV最简单的指标,通过计算一段时间内血压值SD与平均血压的比值从而得出变异系数(CV)。CV比平均血压更能准确的表示BPV。随着一些衡量BPV的新指标的出现,如独立于均值的变异(VIM)、平均真实变异性(ARV)、24小时加权标准差(WSD)、相对标准差(RSD)和血压变化时率(TR)等,其消除了平均血压对BPV的影响,因此预测BPV的能力可能比SD更强。此外,24 h WSD可最大程度减少SD因个体昼夜血压变化大对BPV产生的影响。ASCOT-BPLA研究表示,CV和VIM可较强的预测心脑血管疾病 [4]。一项荟萃分析指出,ARV较传统的BPV指标(SD、CV)能更好的预测动脉僵硬度以及内膜中层厚度,同时也是唯一与脑白质高信号、腔隙性脑梗死等具有相关性的指标 [5]。TR不依赖于昼夜血压波动,可反映血压变化速率 [6]。研究发现,内膜中层厚度与TR呈正相关,TR可作为早期预测动脉硬化的最佳指标。RSD被认为与左心室质量指数和心血管风险呈正相关 [7]。综上,关于BPV相关指标的标准化还需进一步研究。

4. 24 h-ABPM与高血压管理

24 h-ABPM已成为评估患者血压水平以及预测心脑血管事件的重要指标,其主要用于监测短期和中期BPV。欧洲心脏学会(European Society of Cardiology, ESC)的指南也以24 h-ABPM来定义高血压,研究表示,24 h-ABPM对高血压的控制率是普通血压监测的2倍多。正常人血压昼夜节律为双峰一谷,在上午6~10时和下午4~8时各有一高峰,而夜间血压明显降低。血压的昼夜节律变化可表现为杓型、非杓型、反杓型及超杓型等,其体现着机体的自我调节过程,对各器官脏器具有重要保护作用。其中反杓型和非杓型血压节律改变可影响机体的自我调节功能,导致靶器官损害及心脑血管疾病死亡风险增加 [8] [9]。血压昼夜节律异常常见于老年人群或未规律治疗的高血压患者,根据相关研究,在年龄 ≥ 60岁的老年人中69%人群为非杓型血压模式,年龄 ≥ 80岁的高龄老年人中血压昼夜节律消失比例为83.3% [10]。清晨高血压是指清晨血压 ≥ 135/85 mmHg和(或)诊室血压 ≥ 140/90 mmHg,清晨高血压与卒中事件关系密切,清晨血压每增高10 mmHg,卒中风险可增加44% [11]。控制清晨高血压可采用长效、足量、联合治疗方案 [12] [13]。最新的荟萃分析显示:夜间血压能独立于白天血压预测死亡风险。夜间收缩压每增加20 mmHg,心脑血管事件风险和全因死亡率分别增加约36%和23% [9]。在排除失眠、阻塞性睡眠呼吸暂停综合征等继发性因素后,推荐使用沙库巴曲缬沙坦等新型降压药物控制夜间血压,另外对于白天合并夜间高血压患者,可使用长效药物单独或联合治疗,或睡前加用中短效降压药物等 [14]。综上,通过24 h-ABPM可以指导临床用药,进一步防止高血压靶器官损害。

5. BPV的预后

研究表明,BPV是高血压患者靶器官损害的预测因子,通过测定BPV可进一步评估高血压患者心脑血管事件的发生风险 [15]。

5.1. BPV与心脏损害

研究发现,BPV的持续性增加可反映心血管调节机制或潜在病理状况的改变,可作为心血管系统损害的预测指标。一方面,BPV可通过激活炎症反应从而导致左心室肥厚。另外,BPV可调控肾素–血管紧张素系统,除了引起血管收缩外,还可以影响凝血和溶栓系统,导致血管炎症和血栓形成风险增加 [16]。Stevens等 [17] 人在观察队列和临床试验荟萃分析中发现,短期BPV值增加与心血管事件以及心血管死亡和全因死亡率风险显著相关。寇惠娟等 [18] [19] 研究发现,血压昼夜变化为杓型、非杓型及超杓型的原发性高血压患者左心室重量指数存在显著差异,其夜间血压不下降或呈上升模式,与夜间交感神经活性增加有关。此外,Muntner等 [20] 研究也指出,高血压患者并发心力衰竭与BPV引起的自主神经功能障碍有关。

5.2. BPV与脑血管损害

高血压作为卒中等脑血管疾病的独立危险因素,严重者可导致脑组织损害 [20]。动物研究表明,较大的BPV可能通过抑制CO的产生从而导致血管内皮功能损伤,最终引起血管神经受损和脑血管疾病发生 [21]。Filomena等 [22] 研究指出,夜间血压下降及清晨血压上升幅度较大的原发性高血压患者脑卒中的发生率显著升高。尹俊雄等 [23] 发现,随着高血压患者BPV增大,其并发脑梗死后脑出血性的可能性就越高。BPV不仅会增高卒中等脑血管疾病的发生风险,而且会导致老年人的认知功能发生障碍,有报道称,BPV随时间的变化越大,其患痴呆症的风险就越高 [24]。也有研究发现,随着年龄的增长,老年人血管壁僵硬程度加重,血压波动幅度增大,可能会损害大脑的微血管系统,导致脑萎缩和脑小血管疾病,进而导致痴呆症 [25]。

5.3. BPV与动脉粥样硬化

研究表明,BPV增加可通过提高细胞因子内皮的表达来促进血管炎症,从而导致巨噬细胞聚集和动脉粥样硬化斑块形成。一项关于动物和人内皮培养实验研究结果表明,较高的BPV可导致动脉壁重塑,如血管平滑肌细胞增殖和细胞外基质沉积,还导致血管内皮的振荡剪切力及粘附分子表达增加,此外还引起一氧化氮的生物利用度降低 [26] [27]。血管壁的这些结构和功能变化可作为动脉僵硬的常见指征 [28]。较高的BPV通过增加动脉僵硬度最终导致血管风险事件的发生,因此,动脉僵硬度是心血管事件的独立危险因素 [29]。高血压颈动脉内膜中层厚度(IMT)与BPV密切相关,IMT值可随着BPV指标的增加而增加,其数值增高在一定程度上预示着动脉壁早期受损 [30]。

5.4. BPV与肾脏损害

目前已有证据指出,异常BPV是肾功能不全发展的独立预测因素,而肾功能不全可作为高血压患者心血管风险增加的预测指标。BPV和肾损害之间的潜在生物学机制可能包括肾血流动力改变、主动脉肥大和重塑、炎症因子激活、氧化应激、内皮细胞功能障碍、肾素-血管紧张素系统的激活、细胞外基质沉积和肾小球硬化等 [26] [31] [32]。赵海丹等 [33] 研究指出,与无肾功能受损的对照组相比,原发性高血压且合并早期肾损伤患者其收缩压SD和CV均较高,故表明BPV与其早期肾损伤的发生率具有相关性。最近一项回顾性研究发现,终末期肾衰竭的发展风险随着收缩压的变异性增加而显著增加 [34]。RENAAL和ALLHAT等研究和日本前瞻性观察研究也表明,收缩期BPV增加是慢性肾病发展和进展至终末期肾衰竭的危险因素 [35] [36] [37]。故临床工作者应注重高血压患者的BPV,对该人群尽早进行ABPM,有助于预防早期肾损伤的发生。

6. 总结

ABPM在确诊高血压、预测心脑血管事件风险以及指导个体化降压治疗等方面具有重要的应用价值。因此临床工作者应提高对老年高血压患者BPV的重视程度,加强血压监测质量,优化高血压管理,减少其并发症,保持其BPV稳定,降低心脑血管事件发生风险,从而提高病人的远期生存率。

参考文献

[1] Muller, M., Smulders, Y.M., Leeuw, P., et al. (2014) Treatment of Hypertension in the Oldest Old. Journal of Personality & Social Psychology, 81, 1205-1224.
https://doi.org/10.1161/HYPERTENSIONAHA.113.00911
[2] 苏镇培. 老年单纯收缩期高血压个体化诊治兼评“老年高血压特点与临床诊治流程专家建议” [J]. 中华高血压杂志, 2015, 23(6): 518-521.
[3] Parati, G., Ochoa, J.E., Lombardi, C., et al. (2015) Blood Pressure Variability: Assessment, Predictive Value, and Potential as a Therapeutic Target. Current Hypertension Reports, 17, 537.
https://doi.org/10.1007/s11906-015-0537-1
[4] Dolan, E. and O’Brien, E. (2010) Blood Pressure Variability: Clarity for Clinical Practice. Hypertension, 56, 179-181.
https://doi.org/10.1161/HYPERTENSIONAHA.110.154708
[5] Mena, L.J., Felix, V.G., Melgarejo, J.D., et al. (2017) 24-Hour Blood Pressure Variability Assessed by Average Real Variability: A Systematic Review and Meta-Analysis. Journal of the American Heart Association, 6, e006895.
https://doi.org/10.1161/JAHA.117.006895
[6] Yuan, R., Wei, W., Yan, J., et al. (2016) Time Rate of Blood Pressure Variation Is Associated with Endothelial Function in Patients with Metabolic Syndrome. International Heart Journal, 57, 226-233.
https://doi.org/10.1536/ihj.15-322
[7] Stergiou, G.S., Kollias, A. and Ntineri, A. (2014) Assessment of Drug Effects on Blood Pressure Variability. Journal of Hypertension, 32, 1197-1200.
https://doi.org/10.1097/HJH.0000000000000201
[8] Thayer, J.F., Sollers, J.J., Friedman, B.H., et al. (2016) Gender Differences in the Relationship between Resting Heart Rate Variability and 24-Hour Blood Pressure Variability. Blood Pressure, 25, 58-62.
https://doi.org/10.3109/08037051.2016.1090721
[9] Yang, W.Y., Melgarejo, J.D., Thijs, L., et al. (2019) Association of Office and Ambulatory Blood Pressure with Mortality and Cardiovascular Outcomes. JAMA: The Journal of the American Medical Association, 322, 409.
https://doi.org/10.1001/jama.2019.9811
[10] Verdecchia, P., Angeli, F., Mazzotta, G., et al. (2012) Day-Night Dip and Early-Morning Surge in Blood Pressure in Hypertension: Prognostic Implications. Hypertension, 60, 34-42.
https://doi.org/10.1161/HYPERTENSIONAHA.112.191858
[11] Kario, K., Ishikawa, J., Pickering, T.G., et al. (2006) Morning Hypertension: The Strongest Independent Risk Factor for Stroke in Elderly Hypertensive Patients. Hypertension Research, 29, 581-587.
https://doi.org/10.1291/hypres.29.581
[12] Wang, J.G., Kario, K., Chen, C.H., et al. (2018) Management of Morning Hypertension: A Consensus Statement of an Asian Expert Panel. The Journal of Clinical Hypertension, 20, 39-44.
https://doi.org/10.1111/jch.13140
[13] Wang, J.G., Kario, K., Park, J.B., et al. (2017) Morning Blood Pressure Monitoring in the Management of Hypertension. Journal of Hypertension, 35, 1554-1563.
https://doi.org/10.1097/HJH.0000000000001379
[14] Wang, J.G., Yukisada, K., Sibulo, A., et al. (2017) Efficacy and Safety of Sacubitril/Valsartan (LCZ696) Add-On to Amlodipine in Asian Patients with Systolic Hypertension Uncontrolled with Amlodipine Monotherapy. Journal of Hypertension, 35, 877-885.
https://doi.org/10.1097/HJH.0000000000001219
[15] Dolan, E. and O’Brien, E. (2015) Is It Daily, Monthly, or Yearly Blood Pressure Variability that Enhances Cardiovascular Risk. Current Cardiology Reports, 17, 93.
https://doi.org/10.1007/s11886-015-0649-x
[16] Strawn, W.B. and Ferrario, C.M. (2002) Mechanisms Linking Angiotensin II and Atherogenesis. Current Opinion in Lipidology, 13, 505-512.
https://doi.org/10.1097/00041433-200210000-00006
[17] Stevens, S.L., Wood, S., Koshiaris, C., et al. (2016) Blood Pressure Variability and Cardiovascular Disease: Systematic Review and Meta-Analysis. BMJ (Online), 354, i4098.
https://doi.org/10.1136/bmj.i4098
[18] 寇惠娟, 汪鑫, 高登峰, 等. 高血压患者血压昼夜节律、B型脑钠肽与左心室肥厚的关系[J]. 中国医学科学院学报, 2016, 38(5): 514-521.
[19] Grassi, G. (2008) Adrenergic, Metabolic, and Reflex Abnormalities in Reverse and Extreme Dipper Hypertensives. Hypertension, 52, 925-931.
https://doi.org/10.1161/HYPERTENSIONAHA.108.116368
[20] Muntner, P., Whittle, J., Lynch, A.I., et al. (2015) Visit-to-Visit Variability of Blood Pressure and Coronary Heart Disease, Stroke, Heart Failure, and Mortality: A Cohort Study. Annals of Internal Medicine, 163, 329-338.
https://doi.org/10.7326/M14-2803
[21] Abbott, N.J., Ronnback, L. and Hansson, E. (2006) Astrocyte-Endothelial Interactions at the Blood-Brain Barrier. Nature Reviews Neuroscience, 7, 41-53.
https://doi.org/10.1038/nrn1824
[22] Filomena, J., Riba-Llena, I., Vinyoles, E., et al. (2015) Short-Term Blood Pressure Variability Relates to the Presence of Subclinical Brain Small Vessel Disease in Primary Hypertension. Hypertension, 66, 634.
https://doi.org/10.1161/HYPERTENSIONAHA.115.05440
[23] 尹俊雄, 王欣, 霍晓丽, 等. 血压变异性与脑梗死后自发性出血性转化的关系[J]. 临床神经病学杂志, 2015, 28(6): 453-455.
[24] Alperovitch, A., Blachier, M., Soumare, A., Ritchie, K., Dartigues, J.F., Richard-Harston, S., et al. (2014) Blood Pressure Variability and Risk of Dementia in an Elderly Cohort, the Three-City Study. Alzheimer’s & Dementia, 10, S330-S337.
https://doi.org/10.1016/j.jalz.2013.05.1777
[25] Bos, D., Wolters, F.J., Darweesh, S.K.L., Vernooij, M.W., de Wolf, F., Ikram, M.A., et al. (2018) Cerebral Small Vessel Disease and the Risk of Dementia: A Systematic Review and Meta-Analysis of Population-Based Evidence. Alzheimer’s & Dementia, 14, 1482-1492.
https://doi.org/10.1016/j.jalz.2018.04.007
[26] Aoki, Y., Kai, H., Kajimoto, H., et al. (2014) Large Blood Pressure Variability Aggravates Arteriolosclerosis and Cortical Sclerotic Changes in the Kidney in Hypertensive Rats. Circulation Journal: Official Journal of the Japanese Circulation Society, 78, 2284-2291.
https://doi.org/10.1253/circj.CJ-14-0027
[27] Miao, C.Y., Xie, H.H., Zhan, L.S., et al. (2006) Blood Pressure Variability Is More Important than Blood Pressure Level in Determination of End-Organ Damage in Rats. Journal of Hypertension, 24, 1125-1135.
https://doi.org/10.1097/01.hjh.0000226203.57818.88
[28] Stefanadis, C., Kasiakogias, A., Ba Fakis, I., et al. (2012) The Role of Matrix Metalloproteinases in Diabetes Mellitus. Current Topics in Medicinal Chemistry, 12, 1159-1165.
https://doi.org/10.2174/1568026611208011159
[29] Mitchell, G.F., Hwang, S.J., Vasan, R.S., et al. (2010) Response to Letters Regarding Article, “Arterial Stiffness and Cardiovascular Events: The Framingham Heart Study”. Circulation, 122, e515.
https://doi.org/10.1161/CIRCULATIONAHA.110.967141
[30] Cannon, C.P., Braunwald, E., Mccabe, C.H., et al. (2004) Intensive versus Moderate Lipid Lowering with Statins after Acute Coronary Syndromes. New England Journal of Medicine, 350, 1495-1504.
https://doi.org/10.1056/NEJMoa040583
[31] Sun, Y., Fan, J., Chai, D., et al. (2016) Oxidative Stress Is Involved in the Renal Dysfunction Induced by Sinoaortic Denervation in Rats. Chemical & Pharmaceutical Bulletin, 64, 1458.
https://doi.org/10.1248/cpb.c16-00318
[32] Freitas, F., Gilberto, A., Porto, M.L., et al. (2016) Increased Blood Pressure Variability Prior to Chronic Kidney Disease Exacerbates Renal Dysfunction in Rats. Frontiers in Physiology, 7, 428.
https://doi.org/10.3389/fphys.2016.00428
[33] 赵海丹, 周春华, 刘佳. 中年原发性高血压患者血压变异性与高血压早期肾损伤的关系[J]. 中国医药, 2012, 7(12): 1489-1490.
[34] Gosmanova, E.O., et al. (2016) Association of Systolic Blood Pressure Variability with Mortality, Coronary Heart Disease, Stroke, and Renal Disease. Journal of the American College of Cardiology, 68, 1375-1386.
https://doi.org/10.1016/j.jacc.2016.06.054
[35] Whittle, J., Lynch, A.I., Tanner, R.M., et al. (2016) Visit-to-Visit Variability of BP and CKD Outcomes: Results from the ALLHAT. Clinical Journal of the American Society of Nephrology, 11, 471-480.
https://doi.org/10.2215/CJN.04660415
[36] Yano, Y., Fujimoto, S., Kramer, H., et al. (2015) Long-Term Blood Pressure Variability, New-Onset Diabetes Mellitus, and New-Onset Chronic Kidney Disease in the Japanese General Population Novelty and Significance. Hypertension, 66, 30-36.
https://doi.org/10.1161/HYPERTENSIONAHA.115.05472
[37] Mcmullan, C.J., Heerspink, H.L., Parving, H.H., et al. (2014) Visit-to-Visit Variability in Blood Pressure and Kidney and Cardiovascular Outcomes in Patients with Type 2 Diabetes and Nephropathy: A Post Hoc Analysis from the RENAAL Study and the Irbesartan Diabetic Nephropathy Trial. American Journal of Kidney Diseases, 64, 714-722.
https://doi.org/10.1053/j.ajkd.2014.06.008