NGAL在糖尿病肾病临床诊断中的作用
The Effect of Neutrophil Gelatinase-Associated Lipocalin in the Clinical Diagnosis of Diabetic Kidney Disease
摘要: 糖尿病肾病是糖尿病最常见的严重微血管并发症之一,是DM患者发病率和死亡率增加的原因之一,已经超越原发性肾小球疾病,成为慢性肾脏病的首位病因。目前,DKD最常用的临床指标是尿白蛋白排泄率(AER)。然而在一些患者中尚未出现微量白蛋白尿时已经存在肾小管损伤,这一定程度上增加了糖尿病肾病疾病进展的风险。近年来,研究发现肾小管损伤标志物如中性粒细胞相关脂蛋白(NGAL)、肾损伤分子-1 (Kim-1)、肝脂肪酸结合蛋白(L-FABP)等有望成为糖尿病肾病临床诊断的潜在生物标记物。本文就NGAL在临床诊断DKD的作用进行综述,为临床诊断DKD提供新的依据。
Abstract: Diabetic kidney disease is one of the most common serious microvascular complications of diabetes and one of the reasons for the increase of morbidity and mortality in patients with DM. It has surpassed primary glomerular disease and become the first cause of chronic kidney disease. At present, the most commonly used clinical indicator of DKD is urinary albumin excretion rate (AER). However, renal tubular damage already exists in some patients without microalbuminuria, which increases the risk of progression of diabetic nephropathy to some extent. In recent years, it has been found that renal tubular injury markers such as Neutrophil gelatinase-associated lipocalin (NGAL), renal injury molecule-1 (Kim-1) and liver fatty acid binding protein (L-FABP) are expected to be potential biomarkers for clinical diagnosis of diabetic nephropathy. This article reviews the role of NGAL in clinical diagnosis of DKD, in order to provide a new basis for clinical diagnosis of DKD.
文章引用:巩艳, 杨小娟. NGAL在糖尿病肾病临床诊断中的作用[J]. 临床医学进展, 2021, 11(7): 3328-3332. https://doi.org/10.12677/ACM.2021.117483

1. 引言

糖尿病肾病(diabetic kidney disease, DKD)是一组以异质性病理生理和临床表现为特征的代谢性疾病。糖尿病(diabetes mellitus, DM)患病率在全球范围内呈上升趋势,在2型糖尿病和1型糖尿病患者中,分别有40%和30%的患者发生肾脏受累 [1]。据估计,预计到2030年将有5.78亿人患有糖尿病,到2045年患病人数将增加51%,糖尿病患者将达7亿之多 [2]。在我国张路霞等 [3] 统计显示,从2011年开始,糖尿病已经超过肾小球肾炎成为我国城市居民住院患者中导致慢性肾脏(chronic kidney disease, CKD)的首位病因,同时有研究显示糖尿病是进展为终末期肾病(end-stage renal disease, ESRD)发生肾衰竭的主要危险因素 [4]。众所周知,微量白蛋白尿是临床诊断DKD的标志物,但是蛋白尿在临床诊断DKD中存在不足,首先,部分患者没有进展为大量蛋白尿,而是保持微量白蛋白尿,甚至可恢复到正常白蛋白尿 [5];其次,部分患者遵循非蛋白尿途径,其中尿白蛋白排泄率(AER)的增加和肾小球滤过率(GFR)的降低没有密切关系 [6]。因此,寻找比AER更敏感和特异性更高的肾脏生物标记物在临床诊断糖尿病患者肾脏损伤和其进展中尤为重要。近年来越来越多研究显示,中性粒细胞相关脂蛋白等肾小管标志物(Neutrophil gelatinase-associated lipocalin, NGAL)可作为临床诊断DKD的生物标志物,本综述着重就NGAL在糖尿病肾病临床诊断中的作用进行论述。

2. NGAL的结构和功能

2.1. NGAL的结构

人NGAL是脂蛋白家族的25 kda糖基化蛋白,是lipocalin的一种,lipocalin的共同二级和三级结构对应于一个围绕中心带的八股反平行β-桶,该中心带能够结合低分子量配体 [7]。NGAL最初被认为是一种抗菌免疫因子,通过pocket捕获铁载体(如细菌性肠螯蛋白和哺乳动物内源性儿茶酚胺)的能力,这些铁载体以高亲和力结合铁,导致铁消耗,从而抑制细菌细胞生长 [8] [9]。已有研究表明NGAL有多种亚型,一种是30 kDa的NGAL亚型,可能是由糖基化差异引起的 [10];另一种NGAL还以46 kDa二硫键联的同源二聚体(健康受试者中最丰富的形式)和135 kDa的异二聚体的形式存在于基质金属蛋白酶-9 (proMMP-9)的非活性酶原形式 [8] [11]。

2.2. NGAL的功能

作为一种抑菌因子,NGAL阻碍了细菌对铁的摄取,从而抑制了细菌的生长 [9]。作为宿主营养免疫的一部分,NGAL除了稳定铁载体结合的不稳定铁池外,还可促进系统性、细胞性和粘膜低铁血症的炎症 [9]。NGAL在感染性和炎症性肠病中起主要的保护作用,而在神经退行性疾病、代谢综合征、肾脏疾病、皮肤疾病和癌症中都有有益和有害的功能 [9]。在生理条件下,NGAL在肾脏、气管、肺、胃和结肠中的表达水平非常低。它以低浓度存在于血液中,并经由肾小球滤过,然后在肾近端小管中以巨球蛋白介导的内吞机制几乎完全吸收。远曲小管的损伤导致肾小管合成NGAL及尿液分泌的NGAL增加,这两部分是尿液NGAL (uNGAL)的主要组成部分 [12] [13]。2003年,在寻找心脏手术患者缺血性和中毒性肾损伤的新标记物的研究中,NGAL被确定为肾脏损伤的早期生物标记物 [12]。由此可见,肾小管功能障碍将引起uNGAL浓度的增加。

3. NGAL在糖尿病肾病临床诊断中的作用

NGAL是一种低分子量蛋白(25 KDa),属于Lipocalin蛋白家族,由中性粒细胞和包括肾小管细胞在内的其他上皮细胞释放 [14]。它可反映肾小管的功能,在肾小管损伤时迅速而大量地产生 [15]。

3.1. NGAL在1型糖尿病肾病临床诊断中的作用

1型糖尿病(T1DM)是一种常见的自身免疫性疾病,由于T1DM常发病于中青年,进展为ESRD期也较早,因此它对病人和社会来讲是一个巨大的负担 [16] [17]。据报道,非白蛋白性DKD在T1DM中的患病率为2% [18]。Nektraria等 [19] 在对T1DM患者随访的一年期间发现,纳入的受试对象中部分患者出现微量白蛋白尿,出现蛋白尿患者重新评估后发现部分患者蛋白尿消失,部分患者出现持续性微量白蛋白尿,同时研究发现血清NGAL (sNGAL)值在T1DM在随访期间升高,在EGFR降低时更显著,并且发现sNGAL值与EGFR、T1DM病程呈负相关,且不受患者年龄及T1DM发病年龄的影响。此外,在Kathryn M [20] 等人的研究中发现在1型糖尿病中uNGAL排泄增加,且与血糖控制的多项指标即HbA1c (糖化血红蛋白)、FPG (空腹血糖)呈显著正相关。除此之外Kathryn M [20] 研究还发现uNGAL/肌酐(Cr)也与疾病持续时间呈正相关,且与AER有关。这表明uNGAL有可能成为T1DN临床诊断的生物标志物并可能成为评估肾脏预后的生物标记物。

3.2. NGAL在2型糖尿病肾病临床诊断中的作用

2型糖尿病(T2DM)是最常见的碳水化合物代谢紊乱类型。在大多数国家,T2DM患病率不断上升,并且上升速度快于人口增长的速度 [21]。在大多数情况下,对DKD的识别是基于检测结果,如蛋白尿、血肌酐、EGFR的估计值或肾脏成像。然而蛋白尿、血肌酐、EGFR的估计值的改变或肾脏成像的改变通常发生在疾病的晚期,且不具特征性。研究发现此类患者中肾脏活检结果显示肾小管间质组织有严重的损伤 [22]。并且有研究发现DKD的预后由肾小管间质的变化来决定 [23] [24] [25]。因此,由KDIGO [26] 提出的用于CKD进展的临床评估和预测肾小球损伤(肾小球期)的指标即EGFR和蛋白尿可能不足以评估T2DM患者的肾功能。

近年来有很多国内外研究发现NGAL有望成为2型糖尿病合并糖尿病肾病的临床诊断生物标志物,Glaucia Veiga [27] 等人在研究中发现在DM2的患者中,无论病程长短,一些与肾损伤相关的标志物如NGAL和SMAD1的变化已经存在,在肾功能或GFR没有改变的DM患者中sNGAL表达增加,且sNGAL灵敏度为27%、特异性为97%,明显高于对典型标记物(如微量白蛋白尿)的敏感性和特异性值,这表明sNGAL可作为DKD的早期生物标志物。付文瑾 [28] 等人在对病程少于5年的T2DM患者的尿肾小管生物标志物横断面研究中发现在正常蛋白尿的T2DM患者中uNGAL已经开始升高,在微量蛋白尿组uNGAL和UACR之间的正相关(R = 0.556),大量蛋白尿组中uNGAL和eGFR之间存在显著的负相关(R = −0.81)。此外,该研究 [28] 还发现表明随着尿白蛋白水平的增加,肾小管损伤标记物uNGAL也增加,这表明uNGAL可能成为临床诊断糖尿病肾病并评估肾脏预后生物标记物。

4. 小结

NGAL由中性粒细胞和肾小管细胞在内的其他上皮细胞释放,尤其在肾小管受损时生成明显增多。目前我们通常以蛋白尿评估DKD的肾功能,但蛋白尿主要评估肾小球的功能,且部分DKD患者在病程中未出现蛋白尿,众多学者以NGAL为靶点进行研究,发现血、尿NGAL可能成为临床诊断DKD的生物标志物。但目前的研究多处于实验阶段,尚未应用于临床,仍需更多研究论证,以期待将NGAL为靶点的生物标志物用于临床诊断糖尿病肾病,并评估肾脏预后。

参考文献

[1] Alicic, R.Z., Rooney, M.T. and Tuttle, K.R. (2017) Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clinical Journal of the American Society of Nephrology, 12, 2032-2045.
https://doi.org/10.2215/CJN.11491116
[2] Saeedi, P., et al. (2019) Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Research and Clinical Practice, 157, Article ID: 107843.
https://doi.org/10.1016/j.diabres.2019.107843
[3] Zhang, L., Long, J., Jiang, W., Ying, S. and Wang, H. (2016) Trends in Chronic Kidney Disease in China. New England Journal of Medicine, 375, 905-906.
https://doi.org/10.1056/NEJMc1602469
[4] 郑文, 潘少康, 刘东伟, 刘章锁. 糖尿病肾病治疗进展[J]. 中华肾脏病志, 2020, 36(6): 476-480.
[5] Vaidya, V.S., Niewczas, M.A., Ficociello, L.H., Johnson, A.C., Collings, F.B., Warram, J.H., et al. (2011) Regression of Microalbuminuria in Type 1 Diabetes Is Associated with Lower Levels of Urinary Tubular Injury Biomarkers, Kidney Injury Molecule-1, and n-acetyl-β-d-glucosaminidase. Kidney International, 79, 464-470.
https://doi.org/10.1038/ki.2010.404
[6] Jerums, G., Panagiotopoulos, S., Premaratne, E. and Macisaac, R.J. (2009) Integrating Albuminuria and gfr in the Assessment of Diabetic Nephropathy. Nature Reviews Nephrology, 5, 397.
https://doi.org/10.1038/nrneph.2009.91
[7] Kern, E., Erhard, P., Sun, W., Genuth, S. and Weiss, M.F. (2010) Early Urinary Markers of Diabetic Kidney Disease: A Nested Case-Control Study from the Diabetes Control and Complications Trial (DCCT). American Journal of Kidney Diseases, 55, 813-816.
https://doi.org/10.1053/j.ajkd.2009.11.009
[8] Chakraborty, S., et al. (2012) The Multifaceted Roles of Neutrophil Gelatinase Associated lipocalin (NGAL) in Inflammation and Cancer. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1826, 129-169.
https://doi.org/10.1016/j.bbcan.2012.03.008
[9] Xiao, X., Yeoh, B.S. and Vijay-Kumar, M. (2017) Lipocalin 2: An Emerging Player in Iron Homeostasis and Inflammation. Annual Review of Nutrition, 37, 103-130.
https://doi.org/10.1146/annurev-nutr-071816-064559
[10] Rudd, P.M., Mattu, T.S., Masure, S., Bratt, T., Van, D., Wormald, M.R., et al. (1999) Glycosylation of Natural Human Neutrophil Gelatinase B and Neutrophil Gelatinase B-Associated Lipocalin. Biochemistry, 38, 13937-13950.
https://doi.org/10.1021/bi991162e
[11] Kjeldsen, L., Johnsen, A.H., Sengelo, V.H. and Borregaard, N. (1993) Isolation and Primary Structure of NGAL, a Novel Protein Associated with Human Neutrophil Gelatinase. Journal of Biological Chemistry, 268, 10425-10432.
https://doi.org/10.1016/S0021-9258(18)82217-7
[12] Mishra, J. (2003) Identification of Neutrophil Gelatinase-Associated Lipocalin as a Novel Early Urinary Biomarker for Ischemic Renal Injury. Journal of the American Society of Nephrology, 14, 2534.
https://doi.org/10.1097/01.ASN.0000088027.54400.C6
[13] Haase, M., Bellomo, R. and Haase-Fielitz, A. (2010) Neutrophil Gelatinase-Associated Lipocalin. Current Opinion in Critical Care, 16, 526.
https://doi.org/10.1097/MCC.0b013e328340063b
[14] Temesgen, F. and Zemenu, T. (2016) Urinary Markers of Tubular Injury in Early Diabetic Nephropathy. International Journal of Nephrology, 2016, Article ID: 4647685.
[15] Mori, K. and Nakao, K. (2007) Neutrophil Gelatinase-Associated Lipocalin as the Real-Time Indicator of Active Kidney Damage. Kidney International, 71, 967-970.
https://doi.org/10.1038/sj.ki.5002165
[16] Chou, K.M., Lee, C.C., Chen, C.H., Sun, C.Y. and Ashton, N. (2013) Clinical Value of NGAL, l-fabp and Albuminuria in Predicting GFR Decline in Type 2 Diabetes Mellitus Patients. PLoS ONE, 8, e54863.
https://doi.org/10.1371/journal.pone.0054863
[17] Wu, J. (2013) Urinary TNF-Α and NGAL Are Correlated with the Progression of Nephropathy in Patients with Type 2 Diabetes. Experimental & Therapeutic Medicine, 6, 1482-1488.
https://doi.org/10.3892/etm.2013.1315
[18] Thorn, L.M., Gordin, D., Harjutsalo, V., Hgg, S., Masar, R., Saraheimo, M., et al. (2015) The Presence and Consequence of Nonalbuminuric Chronic Kidney Disease in Patients with Type 1 Diabetes. Diabetes Care, 38, 2128.
https://doi.org/10.2337/dc15-0641
[19] Papadopoulou-Marketou, N., Skevaki, C., Kosteria, I., Peppa, M., Chrousos, G., Papassotiriou, I., et al. (2014) Ngal and Cystatin C: Two Possible Early Markers of Diabetic Nephropathy in Young Patients with Type 1 Diabetes Mellitus: One Year Follow Up. Hormones, 14, 232-240.
https://doi.org/10.14310/horm.2002.1520
[20] Thrailkill, K.M., Moreau, C.S., Cockrell, G.E., Jo, C.H., Bunn, R.C., et al. (2010) Disease and Gender-Specific Dysregulation of NGAL and mmp-9 in Type 1 Diabetes Mellitus. Endocrine, 37, 336-343.
https://doi.org/10.1007/s12020-010-9308-6
[21] Fernandes, J.R., Ogurtsova, K., Linnenkamp, U., Guariguata, L., Seuring, T., Zhang, P., et al. (2016) IDF Diabetes Atlas Estimates of 2014 Global Health Expenditures on Diabetes. Diabetes Research & Clinical Practice, 117, 48-54.
https://doi.org/10.1016/j.diabres.2016.04.016
[22] Espinel, E., Agraz, I., Ibernon, M., Ramos, N., Fort, J. and Seron, D. (2015) Renal Biopsy in Type 2 Diabetic Patients. Journal of Clinical Medicine, 4, 998-1009.
https://doi.org/10.3390/jcm4050998
[23] Phillips, A.O. and Steadman, R. (2002) Diabetic Nephropathy: The Central Role of Renal Proximal Tubular Cells in Tubulointerstitial Injury. Histology and Histopathology, 17, 247-252.
[24] Gilbert, R.E. and Cooper, M.E. (1999) The Tubulointerstitium in Progressive Diabetic Kidney Disease: More than an Aftermath of Glomerular Injury? Kidney International, 56, 1627-1637.
https://doi.org/10.1046/j.1523-1755.1999.00721.x
[25] Phillips, A.O. (2003) The Role of Renal Proximal Tubular Cells in Diabetic Nephropathy. Current Diabetes Reports, 3, 491-496.
https://doi.org/10.1007/s11892-003-0013-1
[26] Sarnak Mark, J., Bloom, R., Muntner, P., Rahman, M., Saland Jeffrey, M., Wilson Peter, W.F. and Fried, L. (2015) KDOQI US Commentary on the 2013 KDIGO Clinical Practice Guideline for Lipid Management in CKD. American Journal of Kidney Diseases, 65, 354-366.
https://doi.org/10.1053/j.ajkd.2014.10.005
[27] Veiga, G., Alves, B., Perez, M., Alcantara Luiz, V., Raimundo, J., Zambrano, L., Encina, J., Pereira Edimar, C., Bacci, M., Murad, N. and Fonseca, F. (2020) NGAL and Expression in the Early Detection of Diabetic Nephropathy by Liquid Biopsy. Journal of Clinical Pathology, 73, 713-721.
https://doi.org/10.1136/jclinpath-2020-206494
[28] Fu, W.-J., Xiong, S.-L., Fang, Y.-G., Wen, S., Chen, M.-L., Deng, R.-T., Zheng, L., Wang, S.-B., Pen, L.-F. and Wang, Q. (2012) Urinary Tubular Biomarkers in Short-Term Type 2 Diabetes Mellitus Patients: A Cross-Sectional Study. Endocrine, 41, 82-88.
https://doi.org/10.1007/s12020-011-9509-7