提高神经导管生物活性的策略
Strategies to Improve the Biological Activity of Nerve Conduits
DOI: 10.12677/BP.2021.113003, PDF, HTML, XML, 下载: 378  浏览: 1,145 
作者: 陈晓莉, 汤晓璇, 顾心逸, 凌 珏*, 杨宇民:南通大学,教育部/江苏省神经再生重点实验室/神经再生协同创新中心,江苏 南通
关键词: 神经导管仿生微环境周围神经修复 Nerve Conduits Bionic Microenvironment Peripheral Nerve Regeneration
摘要: 随着组织工程学研究的不断深入,神经导管的研究也已从简单的初级制备过渡到高级的仿生和功能制备。越来越多的研究表明,由组织工程产品材料的表面特性构成的微环境对组织工程和器官再生具有重要影响。例如材料的表面拓扑在指导细胞行为方面起着非常重要的作用,包括细胞形态、细胞粘附、分化和轴突引导。神经营养因子也被尝试引入神经导管,这些神经营养因子可控制细胞的命运,轴突的生长和引导,树突结构和修剪,突触的形成和突触可塑;而外源性电刺激能促进细胞增殖、神经细胞分化、轴突生长和伸展,并促进神经营养因子的产生。仅仅依靠单一因素,很难达到修复长距离神经缺损的理想效果,而研制具有多种因素组合调控的人工神经移植物,或成为神经再生领域的新思路。
Abstract: The development of nerve conduits for repairing peripheral nerve injury is now focusing on their advanced bionic and multifunctional properties rather than the primary structures, as the continuous studies in tissue engineering field. More and more studies have shown that the microenvironment formed by the surface properties of biomaterials has an important impact on tissue regeneration. For example, the surface microstructure of materials plays a very important role in guiding cell behavior, including cell morphology, cell adhesion, differentiation and axon guidance. On the other hand, neurotrophic factors that are introduced in innerve conduits can also improve axon growth and guidance, dendritic structure and pruning, synapse formation and synaptic plasticity; moreover, exogenous electrical stimulation can promote cell proliferation, nerve cell differentiation, axon growth and the production of neurotrophic factors. However, successful repair of long-distance peripheral still remains challenges only relying on single factor; therefore, development of nerve conduits with multi-cues may shed some light on peripheral nerve regeneratıon.
文章引用:陈晓莉, 汤晓璇, 顾心逸, 凌珏, 杨宇民. 提高神经导管生物活性的策略[J]. 生物过程, 2021, 11(3): 19-29. https://doi.org/10.12677/BP.2021.113003

1. 引言

周围神经受到损伤后,损伤神经发生一系列病理生理事件,受损处远侧神经纤维全程发生瓦勒溃变,主要包括轴突和髓鞘变性、崩解,施万细胞增生,巨噬细胞和肥大细胞浸润,以及轴突和髓鞘碎屑的清除等一系列变化 [1]。虽然周围神经系统损伤后轴突再生能力强于中枢神经系统,但自发性周围神经修复几乎不完全,功能恢复差。近百年来,为了改善治疗效果,人们进行了各种类型的治疗研究。目前,端到端无张力缝合是最直接有效的方法 [2]。自体神经移植是与其他治疗方法相比较的金标准技术,然而,自体神经移植有其固有的缺点,包括供体神经供应有限、需要第二次手术、供体部位并发症、供体神经与受体部位不匹配等 [3]。因此,寻找理想的自体神经移植替代物来补充甚至替代自体神经移植是周围神经修复的一大挑战。

神经导管可以在受损神经周围提供一个简单的结构,但为了提高修复效果,必须建立一个有更多元素的活跃环境,以控制细胞与周围环境的相互作用,促进轴突再生。因此,组织工程学已被广泛认为是修复周围神经损伤的一种有前途的策略,并成为未来治疗的金标准。它借鉴工程学和生命科学的原理,在受损部位提供适当的生理环境来恢复和修复组织功能。一种常见的方法是在3D支架上体外培养细胞,然后将其输送到患者体内所需的位置 [4]。另一种选择是直接在体内植入支架,并利用宿主的环境因素和支架的活动线索来促进和指导体内组织的形成 [5]。然而,由于组织的损伤愈合过程具有挑战性,周围神经修复对支架的要求是多方面的。为了获得最佳的神经再生效果,该结构必须在修复过程中保持纵向强度,以防止失去连续性。应促进雪旺细胞的迁移,并优化营养引导信号将神经突起吸引到远端神经并减少神经瘤的形成,同时阻止可能阻碍再生的非神经组织的生长 [6]。因此,目前亟需开发一种生物活性神经管道,并模仿自体神经移植的要素——具有神经外膜的屏障功能,能够维持修复所需的物理完整性,以及定向引导信号,良好的免疫相容性并支持细胞的融合,以及血管丛在体内的可用性。

越来越多的研究开始关注导管的管壁和管腔,使得神经导管支架具有以下功能:1) 定向轴突生长,雪旺细胞迁移和表型表达 [7],2) 细胞的维持 [8],3) 外源生长因子的储存库 [9]。

2. 拓扑结构的线性引导作用

根据接触引导理论,在周围神经损伤的修复过程中,再生轴突向着其突触目标不断生长的方向性会显著影响周围神经的修复效果 [10]。因此,在细胞水平上通过创建高度有序的微/纳米结构的表面形貌来起到物理支撑和引导结构的作用是引导神经轴突和施万细胞的有效途径之一 [11]。

事实上,已经有大量研究发现神经细胞可以对一系列线性引导因素做出反应,而且已经证明以通道和微槽形式的拓扑结构因素可以增强细胞排列和轴突生长 [12] [13]。例如,Mobasseri等人的实验结果显示,内腔带有凹槽的PCL/PLA导管与自体神经移植物具有相似的实验结果,是一种潜在的替代治疗方法 [14]。此外,以微/纳米纤维形式排列的拓扑结构也被认为是模仿神经内管的定向内部结构的因素之一,并通过物理引导神经元生长来最大限度地增加靶神经再支配的机会 [14] [15]。排列的微/纳米纤维(250 nm至2 µm)具有独特的形貌特性,可显著增强细胞功能,并通过改善神经细胞及其轴突的排列,以及随后施万细胞向Büngner带的过渡,起到细胞接触引导的作用 [16]。除了纤维取向外,纤维直径的变化也被报道在调节增殖和分化行为方面起着至关重要的作用 [17]。例如,研究表明,神经干细胞前体细胞的增殖、分化和细胞沿单个纤维轴的伸展程度随着纤维直径的减小而增加,细胞聚集程度较低 [18]。接下来,本综述将从宏观、微观和纳米尺度介绍神经导管中拓扑结构的线性引导作用。

2.1. 神经导管的宏观线性引导作用

人工神经移植物的基本结构是单通道导管,然而,中空的导管修复较大的神经缺损时表现出次优的性能(见图1)。为了提高导管的线性引导作用,许多研究人员转向使用填充管道来提供额外的支撑结构,如纤维、凝胶等,以提高其生物学性能 [19] [20]。这些管腔内置的填充物有助于细胞的导向迁移,更好地起到桥梁作用。例如,Wang等人制备了内置聚乙醇酸(PGA)内取向纤维的微孔壳聚糖神经引导导管,并用于修复犬30 mm的坐骨神经缺损,实验结果发现其可以获得与自体神经移植相似修复效果 [21]。

另一种提高引导作用的方式是制备多通道导管。与空心神经引导导管相比,该结构的管腔内的多个通道可以帮助减少轴突分散,并帮助控制靶向轴突再支配,动物实验结果提示一定通道数量的导管具有较好的修复效果。然而,尽管多通道管道可以减少轴突的分散,但大尺度的管腔信号本身并不能提供增强轴突寻路和施万细胞迁移所需的细胞–材料相互作用 [22]。

Figure 1. Structure of artificial nerve conduits

图1. 人工神经导管的结构模式

2.1.1. 神经导管的微观线性引导作用

随着更先进的制造技术的出现,管腔内微观结构的修改已经成为可能。微尺度引导信号通过影响轴突寻径和增加施万细胞迁移,提供指导单向排列的能力,以增强细胞水平的修复 [23]。例如,在20世纪90年代末,使用聚酰胺微丝(10~20 µm)成功地修复了从小到大的神经间隙缺损,可以单独使用,也可以作为管腔的一部分使用 [23] [24]。此外,Hsu等人在壳聚糖和PLA表面制备了微槽,并检测到施万细胞和胶质细胞系C6可以通过微沟成功对准,并表达与神经营养因子产生相关的基因,将内表面有微槽的聚合物导管植入大鼠体内来修复损伤的坐骨神经,与光滑导管相比,这种微槽导管可以促进周围神经再生 [25]。与此同时,除了促进轴突生长和施万细胞迁移,微尺度信号已被证明可以减少炎症反应并限制异物对构建物的反应 [26]。在这方面,Reeves等人通过丝素蛋白开发出了基于加入抗炎细胞因子的治疗策略,将巨噬细胞表型从M1调节到M2极化(即减少炎症和促进组织修复),并可用于为神经修复提供增强的再生反应 [27] [28] [29]。

2.1.2. 神经导管中的纳米尺度因素

目前,纳米尺度上构筑图案已被实现,并可能对神经再生产生重大影响。大多数已有的关于纳米尺度的研究都是在2D基质上进行的,已经探索了宽度在500 nm到2 µm之间的沟槽,实现了更好的神经排列 [30] [31],研究报告称,小于神经前体细胞大小(<20 µm)的2D表面图案化可实现出色的细胞排列,并通过限制每个细胞的神经突起数量来最大化轴突长度,从而限制非靶标再神经支配的风险 [32] [33]。这开辟了图案化技术应用于具有纳米结构修改的管状结构的可能性。

目前已有多种制造技术应用于神经支架微结构的开发 [34],其中,用于神经修复的大多数纤维丝基支架都是基于电纺结构的。静电纺丝是一种简单、通用、低成本的技术,广泛用于制备排列有序的纳米/微纤维多孔神经导管 [35]。例如,250~400 nm范围的静电纺丝再生丝素纤维已被用作植入体内的中空神经导管的纳米形貌图,并显示出与自体神经移植物相当的良好的运动功能恢复 [36]。在大鼠坐骨神经10 mm的缺损中,移植物的再生效果和功能恢复也得到了改善 [37]。此外,还有研究使用模板电纺法,在3D电纺结构中用排列好的缝线对微通道进行微图案化,作为一种模拟在天然神经中发现的束状结构和纤维细胞外基质的方法 [38]。材料科学的进步表明,纳米尺度将很快完全融入下一代神经引导结构中,导管管壁和管腔内的微/纳米尺度排列的组合可能实现定向引导神经突起的长距离延伸。

3. 负载蛋白或生长因子

为了使人工神经导管更具生物活性,以促进损伤后的组织修复和再生,加入可以增强细胞功能、减少神经元死亡的元素也是至关重要的。这些疗法大多基于生物化学信号的共价连接,如蛋白质、肽序列和生长因子 [39] [40] [41] [42]。

3.1. 蛋白质和多肽序列的修饰

周围神经的发育和修复受到层粘连蛋白和纤维连接蛋白的重要影响,这两种基质蛋白存在于周围神经中,与施万细胞密切相关 [43]。与其他细胞外基质成分相比,层粘连蛋白调节雪旺细胞的增殖和存活,并促进一些感觉神经元的轴突生长 [44] [45];另一方面,纤维连接蛋白在外周神经系统细胞的迁移中起着至关重要的作用 [46]。例如,施万细胞的运动和轴突的生长都受纤维连接蛋白的调节 [47]。目前在重组蛛丝蛋白的研究中,已经报道通过基因工程将纤维连接蛋白衍生的序列掺入,以进一步增强它们的细胞支持能力,据报道,这些基底层蛋白与丝素蛋白的共价结合可以促进神经再生 [48]。

多肽序列也被用于改善神经组织修复的结果。纤维连接蛋白中发现的精氨酸–甘氨酸–天冬氨酸(Arg-Gly-Asp, RGD)通过启动特定的内部信号通路来促进细胞粘附和分化 [49]。其他序列,如Ile-Lys-Val-Ala-Val (IKVAV)和Tyr-Ile-Gly-Ser-Arg (YIGSR),主要存在于层粘连蛋白中,也被证明了能促进轴突生长,并增强施万细胞在底物上的附着 [50] [51]。例如,Zhu等人在聚己内酯(PCL)导管表面通过自组装的方式修饰了RGD和YIGSR多肽,体外研究表明,这两种多肽能协同增强PCL支持施万细胞黏附和增殖的能力,并能促进背根神经节轴突的生长,同时,该导管可以用于修复大鼠15 mm坐骨神经缺损,展现了良好的轴突再生和功能修复的效果,RGD/YIGSR/PCL导管组还可以观察到更多的血管形成 [52]。Chen等人的研究发现,YIGSR接枝聚丙烯酰胺/氧化石墨烯/明胶/海藻酸钠复合水凝胶可以促进施万细胞的体外生长和体内坐骨神经再生 [53]。

3.2. 生长因子的修饰

神经营养因子天然参与神经细胞的存活、生长和分化;它们主要由施万细胞产生,在神经细胞周转中起着稳态作用。考虑到它们在神经损伤和再生中的作用,它们的靶向传递有望减少神经元死亡,促进再生,并支持施万细胞聚集 [54]。这一点已经在实验研究中得到证实,这些生物分子中的几个已经单独或联合被结合到人工神经导管中 [55] [56] [57] [58] [59]。例如,Rich等人在硅胶中预先填充了NGF的生理盐水溶液,来桥接大鼠坐骨神经缺损,实验发现,在神经引导导管中加入NGF可以增加有髓轴突的数量和髓鞘厚度,有效地改善了再生神经的成熟度 [9]。在本课题组之前的实验中,通过京尼平成功地将NGF固定在壳聚糖导管中,来桥接大鼠坐骨神经缺损,取得了良好的修复效果 [59]。在另一项研究中,Fine等人基于乙烯–乙烯乙酸酯共聚体、牛血清白蛋白和神经营养因子(GDNF或NGF)制备了一种神经引导导管,该导管可以缓慢释放神经营养因子,同时通过大鼠15 mm坐骨神经缺损模型发现,术后7周,加入神经营养因子的两种导管中均可见到再生神经,而且GDNF组无论在髓神经纤维的数量、荧光金逆行标记的脊髓前角运动神经元数量还是逆行标记的背根神经节感觉神经元数量均远远多于NGF组,提示GDNF可能有更好地促进坐骨神经再生 [57]。

尽管使用几种生长因子单独或联合使用的各种体外和体内研究都显示了令人振奋的结果,但它们可能存在不可预测的相互作用:过量的生长因子可能不利于再生。为了让细胞重新分化和重新成髓鞘,生长因子的水平可能需要随着时间的推移逐渐降低。神经组织的修复是由多种生长因子和细胞因子通过多步骤过程调控的,这些生长因子和细胞因子以一种集中的、依赖于时间的方式发挥作用,其作用可能取决于各种不同的因素。理想的因素组合,以及控制它们的连接和释放仍然是具有挑战性的。因此,可控以及浓度梯度化的负载近期受到了很大关注 [60] [61] [62]。

3.3. 浓度梯度化负载

梯度化处理可以有效避免了异常修复和细胞过量,并可提供更长时间的持续输送来增强神经的长期修复,确保细胞获得更合适的及时暴露剂量。目前,各种图案形状和分布的浓度梯度对细胞的影响已逐渐被研究 [63]。例如,含有浓度梯度NGF的聚甲基丙烯酸2-羟乙酯微孔凝胶可在8 d内保持释放,并以引导轴突在体外生长 [60]。在另一项研究中,一种空间控制的NGF和GDNF多组分梯度被固定在3D打印硅胶/明胶–甲基丙烯酸酯水凝胶管道中,它们的释放显示在1个月内保持良好 [61]。Shoichet等人于2006年首次将神经营养素-3按照一定的浓度梯度固定在聚甲基丙烯酸2-羟乙酯和聚(L-赖氨酸)的细胞穿透性粘合支架中 [62]。此后,人们探索了几种梯度浓度的细胞外基质分子,通常涉及纤维连接蛋白和层粘连蛋白的组合,显示出促进轴突沿着更复杂的模式延伸 [64]。例如,表面结合层粘连蛋白和含有IKVAV多肽的梯度被证明足以指导轴突生长 [65]。

4. 神经导管中的电刺激和电活性成分

4.1. 充足的电刺激以增强修复

虽然健康组织的电位差通常很小,但损伤后会增加,上皮屏障被打破,跨上皮电位差被短路,形成流向受损上皮的电流,并建立横向电场。这些被认为是被动离子泄漏的结果,并在控制和整合多种细胞行为(例如,增殖、分裂、迁移和神经萌芽)中发挥作用 [66]。外源性电刺激(ES)可以模拟这些内源性电场,并且从1952年以来,大量研究表明,ES能促进施万细胞增殖、神经细胞分化、轴突生长和伸展,并促进神经营养因子的产生 [67]。有研究认为,细胞质在细胞极化和组织方面的重新分布、跨细胞膜离子电流的变化、基因表达的上调、生长分子的释放,这些都受到细胞外电信号的影响和调节 [68]。

众所周知,导电材料可以将ES直接输送到细胞。然而,在不同的参数下,ES对组织修复可能具有双重作用。例如,调控外加频率的大小可以影响神经纤维密度,与无刺激和高频率(20~200 Hz)相比,2 Hz的频率促进更快的神经传导速度和更大的轴突密度 [69]。另外,据报道,与4 mA以上的电流相比,1 mA左右的电流强度可以改善轴突和血管的数量,这表明虽然适当的电流强度可以加速神经的成熟,但过高的电流强度可能会阻碍其功能恢复 [70]。同样,在大鼠坐骨神经缺损中,在损伤后一到两周内短暂延迟ES的应用,已被证明可以促进神经成分的成熟度 [71]。

4.2. 电活性材料与细胞的相互作用

在基质中加入电活性部分可以增强缺损组织的再生能力。研究表明,与非导电支架相比,含有电活性部分(不需要外源性ES,即被动刺激)的支架可以显著促进干细胞的分化 [72]。研究报道,添加电活性部分,如苯胺、吡咯和碳基填充物或金粒子,对参与肌肉收缩、松弛和电耦合以及细胞骨架排列的心脏基因的表达有更广泛的影响 [73] [74]。然而,这些电活性部分对组织修复的影响研究很少。虽然确切的机制还没有被充分发现,但这可能是通过增强相邻细胞之间的电信号传输来实现的 [75]。导电基质可以改变支架的局部静电电荷,改善蛋白质的吸附,促使更多的血清蛋白质被吸附在支架上,这能够加速细胞粘附和促进细胞增殖和迁移。同时,支架中的电活性也作为静电结合位点与带负电荷的细胞膜结合,使细胞更接近支架表面,并建立更强的附着位点,有助于恢复受损组织中动作电位的传导,促进组织生长和细胞分化 [75] [76]。

电活性材料在神经组织中也可以产生类似的效应,促进细胞增殖和轴突生长,并通过改善传导速度和运动功能来跨越缝隙缺损。而内源性电场可以通过调节细胞因子的分泌,在调节组织再生方面发挥重要作用 [77] [78] [79]。例如,Wu等人的研究发现,可降解的导电聚氨酯材料可以增强施万细胞的髓鞘基因表达,并能促进其持续分泌神经营养因子,证明电活性材料在神经再生应用方面具有巨大的潜力 [79]。

5. 结论和未来展望

周围神经的再生取决于轴突的大量和快速生长、施万细胞对轴突的再髓鞘化以及再生神经纤维的成熟。广泛的动物实验证明,加入生长因子、蛋白质、多肽序列等生化因素对调节上述细胞行为是有效的,然而,使用什么哪些因子以及如何释放它们仍是持续存在的问题。虽已经考虑了浓度梯度策略,但这可能会导致巨大的成本,需要进一步的研究来充分开发它们在天然材料中的潜力。另一个问题是,生物分子的加入不允许在加工过程中出现极端的温度范围或极具侵蚀性的化学条件,这也是神经支架制造过程中需要克服的挑战。然而,这些疗法都还没有获得临床批准。此外,电刺激也可以促进神经再生,因此利用导电聚合物构建组织工程化神经移植物也是一个值得深入研究的新途径。目前许多工作都集中在评估电刺激(主动)后的效果,而将电活性部分引入支架(被动)的效果还没有得到充分的研究。这为电活性支架在促进受损神经修复过程中的使用提供了机会,它可以放大细胞间的交流,并在不需要外部刺激的情况下调节生长和细胞分化。针对如何改善人工神经移植物的生物功能以促进神经快速再生的研究层出不穷,然而,仅仅依靠单一因素,很难达到修复长距离神经缺损的理想效果。因此,开发具有多种因素组合调控的人工神经移植物,用以最大程度修复长距离神经缺损,或成为神经再生领域的热点。

NOTES

*通讯作者。

参考文献

[1] Rajaram, A., Chen, X.-B. and Schreyer, D.J. (2012) Strategic Design and Recent Fabrication Techniques for Bioengi-neered Tissue Scaffolds to Improve Peripheral Nerve Regeneration. Tissue Engineering Part B—Reviews, 18, 454-467.
https://doi.org/10.1089/ten.teb.2012.0006
[2] Faroni, A., Mobasseri, S.A., Kingham, P.J. and Reid, A.J. (2015) Peripheral Nerve Regeneration: Experimental Strategies and Future Perspectives. Advanced Drug Delivery Reviews, 82-83, 160-167.
https://doi.org/10.1016/j.addr.2014.11.010
[3] Tabakow, P., Jarmundowicz, W., Czapiga, B., Fortuna, W., Miedzybrodzki, R., Czyz, M., Huber, J., Szarek, D., Okurowski, S., Szewczyk, P., Gorski, A. and Raisman, G. (2013) Transplantation of Autologous Olfactory Ensheathing Cells in Complete Human Spinal Cord Injury. Cell Transplanta-tion, 22, 1591-1612.
https://doi.org/10.3727/096368912X663532
[4] Mano, J.F., Sousa, R.A., Boesel, L.F., Neves, N.M. and Reis, R.L. (2004) Bloinert, Biodegradable and Injectable Polymeric Matrix Composites for Hard Tissue Replacement: State of the Art and Recent Developments. Composites Science and Technology, 64, 789-817.
https://doi.org/10.1016/j.compscitech.2003.09.001
[5] Scotti, C., Tonnarelli, B., Papadimitropoulos, A., Scherber-ich, A., Schaeren, S., Schauerte, A., Lopez-Rios, J., Zeller, R., Barbero, A. and Martin, I. (2010) Recapitulation of En-dochondral Bone Formation Using Human Adult Mesenchymal Stem Cells as a Paradigm for Developmental Engineer-ing. Proceedings of the National Academy of Sciences of the United States of America, 107, 7251-7256.
https://doi.org/10.1073/pnas.1000302107
[6] Moskow, J., Ferrigno, B., Mistry, N., Jaiswal, D., Bulsara, K., Ru-draiah, S. and Kumbar, S.G. (2019) Review: Bioengineering Approach for the Repair and Regeneration of Peripheral Nerve. Bioactive Materials, 4, 107-113.
https://doi.org/10.1016/j.bioactmat.2018.09.001
[7] Teixeira, A.I., Abrams, G.A., Bertics, P.J., Murphy, C.J. and Nealey, P.F. (2003) Epithelial Contact Guidance on Well-Defined Micro- and Nanostructured Substrates. Journal of Cell Science, 116, 1881-1892.
https://doi.org/10.1242/jcs.00383
[8] Cai, J., Peng, X.J., Nelson, K.D., Eberhart, R. and Smith, G.M. (2005) Permeable Guidance Channels Containing Microfilament Scaffolds Enhance Axon Growth and Maturation. Journal of Biomedical Materials Research Part A, 75, 374-386.
https://doi.org/10.1002/jbm.a.30432
[9] Liu, Q., Huang, J., Shao, H., Song, L. and Zhang, Y. (2016) Dual-Factor Loaded Functional Silk Fibroin Scaffolds for Peripheral Nerve Regeneration with the Aid of Neovascularization. RSC Advances, 6, 7683-7691.
https://doi.org/10.1039/C5RA22054H
[10] Tsimbouri, P., Gadegaard, N., Burgess, K., White, K., Reynolds, P., Herzyk, P., Oreffo, R. and Dalby, M.J. (2014) Nanotopographical Effects on Mesenchymal Stem Cell Morphology and Phenotype. Journal of Cellular Biochemistry, 115, 380-390.
https://doi.org/10.1002/jcb.24673
[11] Spivey, E.C., Khaing, Z.Z., Shear, J.B. and Schmidt, C.E. (2012) The Fundamental Role of Subcellular Topography in Peripheral Nerve Repair Therapies. Biomaterials, 33, 4264-4276.
https://doi.org/10.1016/j.biomaterials.2012.02.043
[12] Sun, M., McGowan, M., Kingham, P.J., Terenghi, G. and Downes, S. (2010) Novel Thin-Walled Nerve Conduit with Micro-grooved Surface Patterns for Enhanced Peripheral Nerve Repair. Journal of Materials Science-Materials in Medicine, 21, 2765-2774.
https://doi.org/10.1007/s10856-010-4120-7
[13] Mobasseri, A., Faroni, A., Minogue, B.M., Downes, S., Terenghi, G. and Reid, A.J. (2015) Polymer Scaffolds with Preferential Parallel Grooves Enhance Nerve Regenera-tion. Tissue Engineering Part A, 21, 1152-1162.
https://doi.org/10.1089/ten.tea.2014.0266
[14] Wang, C.-Y., Zhang, K.-H., Fan, C.-Y., Mo, X.-M., Ruan, H.-J. and Li, F.-F. (2011) Aligned Natural-Synthetic Polyblend Nanofibers for Peripheral Nerve Regeneration. Acta Bio-materialia, 7, 634-643.
https://doi.org/10.1016/j.actbio.2010.09.011
[15] Zhang, K., Jinglei, W., Huang, C. and Mo, X. (2013) Fabrication of Silk Fibroin/P(LLA-CL) Aligned Nanofibrous Scaffolds for Nerve Tissue Engineering. Macromolecular Materials and Engineering, 298, 565-574.
https://doi.org/10.1002/mame.201200038
[16] Mahairaki, V., Lim, S.H., Christopherson, G.T., Xu, L., Nasonkin, I., Yu, C., Mao, H.-Q. and Koliatsos, V.E. (2011) Nanofiber Matrices Promote the Neuronal Differentiation of Human Embryonic Stem Cell-Derived Neural Precursors in Vitro. Tissue Engineering Part A, 17, 855-863.
https://doi.org/10.1089/ten.tea.2010.0377
[17] Zheng, J., Kontoveros, D., Lin, F., Hua, G., Reneker, D.H., Becker, M.L. and Willits, R.K. (2015) Enhanced Schwann Cell Attachment and Alignment Using One-Pot “Dual Click” GRGDS and YIGSR Derivatized Nanofibers. Biomacromolecules, 16, 357-363.
https://doi.org/10.1021/bm501552t
[18] Xie, J., MacEwan, M.R., Li, X., Sakiyama-Elbert, S.E. and Xia, Y. (2009) Neurite Outgrowth on Nanofiber Scaffolds with Different Orders, Structures, and Surface Properties. Acs Nano, 3, 1151-1159.
https://doi.org/10.1021/nn900070z
[19] Christopherson, G.T., Song, H. and Mao, H.-Q. (2009) The Influence of Fiber Diameter of Electrospun Substrates on Neural Stem Cell Differentiation and Proliferation. Biomaterials, 30, 556-564.
https://doi.org/10.1016/j.biomaterials.2008.10.004
[20] Newman, K.D., McLaughlin, C.R., Carlsson, D., Li, F., Liu, Y. and Griffith, M. (2006) Bioactive Hydrogel-Filament Scaffolds for Nerve Repair and Regeneration. International Journal of Artificial Organs, 29, 1082-1091.
https://doi.org/10.1177/039139880602901109
[21] Wang, X.D., Hu, W., Cao, Y., Yao, J., Wu, J. and Gu, X.S. (2005) Dog Sciatic Nerve Regeneration across a 30-mm Defect Bridged by a Chitosan/PGA Artificial Nerve Graft. Brain, 128, 1897-1910.
https://doi.org/10.1093/brain/awh517
[22] Yao, L., de Ruiter, G.C.W., Wang, H., Knight, A.M., Spinner, R.J., Yaszemski, M.J., Windebank, A.J. and Pandit, A. (2010) Controlling Dispersion of Axonal Regeneration Using a Mul-tichannel Collagen Nerve Conduit. Biomaterials, 31, 5789-5797.
https://doi.org/10.1016/j.biomaterials.2010.03.081
[23] Lundborg, G. and Kanje, M. (1996) Bioartificial Nerve Grafts. A Prototype. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 30, 105-110.
https://doi.org/10.3109/02844319609056391
[24] Lundborg, G., Dahlin, L., Dohi, D., Kanje, M. and Terada, N. (1997) A New Type of “Bioartificial” Nerve Graft for Bridging Extended Defects in Nerves. Journal of Hand Surgery (Edinburgh, Scotland), 22, 299-303.
https://doi.org/10.1016/S0266-7681(97)80390-7
[25] Hsu, S.-H., Lu, P.S., Ni, H.-C. and Su, C.-H. (2007) Fabri-cation and Evaluation of Microgrooved Polymers as Peripheral Nerve Conduits. Biomedical Microdevices, 9, 665-674.
https://doi.org/10.1007/s10544-007-9068-0
[26] McWhorter, F.Y., Davis, C.T. and Liu, W.F. (2015) Physical and Mechanical Regulation of Macrophage Phenotype and Function. Cellular and Molecular Life Sciences, 72, 1303-1316.
https://doi.org/10.1007/s00018-014-1796-8
[27] Reeves, A.R.D., Spiller, K.L., Freytes, D.O., Vunjak-Novakovic, G. and Kaplan, D.L. (2015) Controlled Release of Cytokines Using Silk-Biomaterials for Macrophage Polarization. Bio-materials, 73, 272-283.
https://doi.org/10.1016/j.biomaterials.2015.09.027
[28] Naskar, D., Nayak, S., Dey, T. and Kundu, S.C. (2014) Non-Mulberry Silk Fibroin Influence Osteogenesis and Osteoblast-Macrophage Cross Talk on Titanium Based Surface. Scientific Reports, 4, Article No. 4745.
https://doi.org/10.1038/srep04745
[29] Cui, X., Wen, J., Zhao, X., Chen, X., Shao, Z. and Jiang, J.J. (2013) A Pi-lot Study of Macrophage Responses to Silk Fibroin Particles. Journal of Biomedical Materials Research Part A, 101, 1511-1517.
https://doi.org/10.1002/jbm.a.34444
[30] Galeotti, F. andicsova, A., Yunus, S. and Botta, C. (2012) Precise Surface Patterning of Silk Fibroin Films by Breath Figures. Soft Matter, 8, 4815-4821.
https://doi.org/10.1039/c2sm25089f
[31] Mitropoulos, A.N., Marelli, B., Ghezzi, C.E., Applegate, M.B., Partlow, B.P., Kaplan, D.L. and Omenetto, F.G. (2015) Transparent, Nanostructured Silk Fibroin Hydrogels with Tunable Me-chanical Properties. Acs Biomaterials Science & Engineering, 1, 964-970.
https://doi.org/10.1021/acsbiomaterials.5b00215
[32] Wieringa, P., Tonazzini, I., Micera, S. and Cecchini, M. (2012) Nanotopography Induced Contact Guidance of the F11 Cell Line during Neuronal Differentiation: A Neuronal Model Cell Line for Tissue Scaffold Development. Nanotechnology, 23, Article ID: 275102.
https://doi.org/10.1088/0957-4484/23/27/275102
[33] Beduer, A., Vieu, C., Arnauduc, F., Sol, J.-C., Loubinoux, I. and Vaysse, L. (2012) Engineering of Adult Human Neural Stem Cells Differentiation through Surface Micropatterning. Biomaterials, 33, 504-514.
https://doi.org/10.1016/j.biomaterials.2011.09.073
[34] Wieringa, P.A., de Pinho, A.R.G., Micera, S., van Wezel, R.J.A. and Moroni, L. (2018) Biomimetic Architectures for Peripheral Nerve Repair: A Review of Biofabrication Strate-gies. Advanced Healthcare Materials, 7, Article ID: 1701164.
https://doi.org/10.1002/adhm.201701164
[35] Li, X., Li, M., Sun, J., Zhuang, Y., Shi, J., Guan, D., Chen, Y. and Dai, J. (2016) Radially Aligned Electrospun Fibers with Continuous Gradient of SDF1 alpha for the Guidance of Neural Stem Cells. Small, 12, 5009-5018.
https://doi.org/10.1002/smll.201601285
[36] Park, S.Y., Ki, C.S., Park, Y.H., Lee, K.G., Kang, S.W., Kweon, H.Y. and Kim, H.J. (2015) Functional Recovery Guided by an Electrospun Silk Fibroin Conduit after Sciatic Nerve Injury in Rats. Journal of Tissue Engineering and Regenerative Medicine, 9, 66-76.
https://doi.org/10.1002/term.1615
[37] Wang, Y., Kong, Y., Zhao, Y., Feng, Q., Wu, Y., Tang, X., Gu, X. and Yang, Y. (2016) Electrospun, Reinforcing Network-Containing, Silk Fibroin-Based Nerve Guidance Conduits for Pe-ripheral Nerve Repair. Journal of Biomaterials and Tissue Engineering, 6, 53-60.
https://doi.org/10.1166/jbt.2016.1417
[38] Jeffries, E.M. and Wang, Y. (2012) Biomimetic Micropatterned Mul-ti-Channel Nerve Guides by Templated Electrospinning. Biotechnology and Bioengineering, 109, 1571-1582.
https://doi.org/10.1002/bit.24412
[39] Yanagisawa, S., Zhu, Z., Kobayashi, I., Uchino, K., Tamada, Y., Tamura, T. and Asakura, T. (2007) Improving Cell-Adhesive Properties of Recombinant Bombyx mori Silk by Incorporation of Col-lagen or Fibronectin Derived Peptides Produced by Transgenic Silkworms. Biomacromolecules, 8, 3487-3492.
https://doi.org/10.1021/bm700646f
[40] Widhe, M., Johansson, U., Hillerdahl, C.-O. and Hedhammar, M. (2013) Recombinant Spider Silk with Cell Binding Motifs for Specific Adherence of Cells. Biomaterials, 34, 8223-8234.
https://doi.org/10.1016/j.biomaterials.2013.07.058
[41] Schuh, C.M.A.P., Monforte, X., Hackethal, J., Redl, H. and Teuschl, A.H. (2016) Covalent Binding of Placental Derived Proteins to Silk Fibroin Improves Schwann Cell Adhe-sion and Proliferation. Journal of Materials Science—Materials in Medicine, 27, 188.
https://doi.org/10.1007/s10856-016-5783-5
[42] Musson, D.S., Naot, D., Chhana, A., Matthews, B.G., McIntosh, J.D., Lin, S.T.C., Choi, A.J., Callon, K.E., Dunbar, P.R., Lesage, S., Coleman, B. and Cornish, J. (2015) In Vitro Evalu-ation of a Novel Non-Mulberry Silk Scaffold for Use in Tendon Regeneration. Tissue Engineering Part A, 21, 1539-1551.
https://doi.org/10.1089/ten.tea.2014.0128
[43] Yu, W.-M., Yu, H., Chen, Z.-L. and Strickland, S. (2009) Disruption of Laminin in the Peripheral Nervous System Impedes Nonmyelinating Schwann Cell Development and Impairs Nociceptive Sensory Function. Glia, 57, 850-859.
https://doi.org/10.1002/glia.20811
[44] Plantman, S., Patarroyo, M., Fried, K., Domogatskaya, A., Tryggvason, K., Hammarberg, H. and Cullheim, S. (2008) Integrin-Laminin Interactions Controlling Neurite Outgrowth from Adult DRG Neurons in Vitro. Molecular and Cellular Neuroscience, 39, 50-62.
https://doi.org/10.1016/j.mcn.2008.05.015
[45] Deister, C., Aljabari, S. and Schmidt, C.E. (2007) Effects of Colla-gen 1, Fibronectin, Laminin and Hyaluronic Acid Concentration in Multi-Component Gels on Neurite Extension. Journal of Biomaterials Science—Polymer Edition, 18, 983-997.
https://doi.org/10.1163/156856207781494377
[46] Gardiner, N.J. (2011) Integrins and the Extracellular Matrix: Key Mediators of Development and Regeneration of the Sensory Nervous System. Developmental Neurobiology, 71, 1054-1072.
https://doi.org/10.1002/dneu.20950
[47] Romano, N.H., Madl, C.M. and Heilshorn, S.C. (2015) Ma-trix RGD Ligand Density and L1CAM-Mediated Schwann Cell Interactions Synergistically Enhance Neurite Outgrowth. Acta Biomaterialia, 11, 48-57.
https://doi.org/10.1016/j.actbio.2014.10.008
[48] Widhe, M., Shalaly, N.D. and Hedhammar, M. (2016) A Fibron-ectin Mimetic Motif Improves Integrin Mediated Cell Biding to Recombinant Spider Silk Matrices. Biomaterials, 74, 256-266.
https://doi.org/10.1016/j.biomaterials.2015.10.013
[49] Yang, Y.J., Kwon, Y., Choi, B.-H., Jung, D., Seo, J.H., Lee, K.H. and Cha, H.J. (2014) Multifunctional Adhesive Silk Fibroin with Blending of RGD-Bioconjugated Mussel Adhesive Protein. Biomacromolecules, 15, 1390-1398.
https://doi.org/10.1021/bm500001n
[50] Zhang, N., He, L. and Wu, W. (2016) Self-Assembling Peptide Nano-fibrous Hydrogel as a Promising Strategy in Nerve Repair after Traumatic Injury in the Nervous System. Neural Regen-eration Research, 11, 717-718.
https://doi.org/10.4103/1673-5374.182687
[51] Xiao, W., Hu, X.Y., Zeng, W., Huang, J.H., Zhang, Y.G. and Luo, Z.J. (2013) Rapid Sciatic Nerve Regeneration of Rats by a Surface Modified Collagen-Chitosan Scaffold. Inju-ry—International Journal of the Care of the Injured, 44, 941-946.
https://doi.org/10.1016/j.injury.2013.03.029
[52] Zhu, L., Wang, K., Ma, T., Huang, L., Xia, B., Zhu, S., Yang, Y., Liu, Z., Quan, X., Luo, K., Kong, D., Huang, J. and Luo, Z. (2017) Noncovalent Bonding of RGD and YIGSR to an Electrospun Poly(epsilon-Caprolactone) Conduit through Peptide Self-Assembly to Synergistically Promote Sciatic Nerve Regeneration in Rats. Advanced Healthcare Materials, 6, Article ID: 1600860.
https://doi.org/10.1002/adhm.201600860
[53] Chen, S., Zhao, Y., Yan, X., Zhang, L., Li, G. and Yang, Y. (2019) PAM/GO/gel/SA Composite Hydrogel Conduit with Bioactivity for Repairing Peripheral Nerve Injury. Journal of Bio-medical Materials Research Part A, 107, 1273-1283.
https://doi.org/10.1002/jbm.a.36637
[54] Gordon, T. (2009) The Role of Neurotrophic Factors in Nerve Regeneration. Neurosurgical Focus, 26, E3.
https://doi.org/10.3171/FOC.2009.26.2.E3
[55] Rich, K.M., Alexander, T.D., Pryor, J.C. and Hollowell, J.P. (1989) Nerve Growth Factor Enhances Regeneration through Silicone Chambers. Experimental Neurology, 105, 162-170.
https://doi.org/10.1016/0014-4886(89)90115-5
[56] Yang, Y., Zhao, W., He, J., Zhao, Y., Ding, F. and Gu, X. (2011) Nerve Conduits Based on Immobilization of Nerve Growth Factor onto Modified Chitosan by Using Genipin as a Crosslinking Agent. European Journal of Pharmaceutics and Biopharmaceutics, 79, 519-525.
https://doi.org/10.1016/j.ejpb.2011.06.008
[57] Fine, E.G., Decosterd, I., Papaloizos, M., Zurn, A.D. and Aebischer, P. (2002) GDNF and NGF Released by Synthetic Guidance Channels Support Sciatic Nerve Regeneration across a Long Gap. The European Journal of Neuroscience, 15, 589-601.
https://doi.org/10.1046/j.1460-9568.2002.01892.x
[58] Zhang, H., Wang, K., Xing, Y. and Yu, Q. (2015) Ly-sine-Doped Polypyrrole/Spider Silk Protein/Poly(L-lactic) Acid Containing Nerve Growth Factor Composite Fibers for Neural Application. Materials Science & Engineering C—Materials for Biological Applications, 56, 564-573.
https://doi.org/10.1016/j.msec.2015.06.024
[59] Catrina, S., Gander, B. and Madduri, S. (2013) Nerve Conduit Scaffolds for Discrete Delivery of Two Neurotrophic Factors. European Journal of Pharmaceutics and Biopharmaceu-tics, 85, 139-142.
https://doi.org/10.1016/j.ejpb.2013.03.030
[60] Kapur, T.A. and Shoichet, M.S. (2004) Immobilized Concentration Gradients of Nerve Growth Factor Guide Neurite Outgrowth. Journal of Biomedical Materials Research Part A, 68, 235-243.
https://doi.org/10.1002/jbm.a.10168
[61] Johnson, B.N., Lancaster, K.Z., Zhen, G., He, J., Gupta, M.K., Kong, Y.L., Engel, E.A., Krick, K.D., Ju, A., Meng, F., Enquist, L.W., Jia, X. and McAlpine, M.C. (2015) 3D Printed Anatomical Nerve Regeneration Pathways. Advanced Functional Materials, 25, 6205-6217.
https://doi.org/10.1002/adfm.201501760
[62] Moore, K., Macsween, M. and Shoichet, M. (2006) Immobilized Concentration Gradients of Neurotrophic Factors Guide Neurite Outgrowth of Primary Neurons in Macroporous Scaf-folds. Tissue Engineering, 12, 267-278.
https://doi.org/10.1089/ten.2006.12.267
[63] Roy, J., Kennedy, T.E. and Costantino, S. (2013) Engineered Cell Culture Substrates for Axon Guidance Studies: Moving beyond Proof of Concept. Lab on a Chip, 13, 498-508.
https://doi.org/10.1039/c2lc41002h
[64] Wheeler, B.C., Corey, J.M., Brewer, G.J. and Branch, D.W. (1999) Mi-crocontact Printing for Precise Control of Nerve Cell Growth in Culture. Journal of Biomechanical Engineering, 121, 73-78.
https://doi.org/10.1115/1.2798045
[65] Adams, D.N., Kao, E.Y.C., Hypolite, C.L., Distefano, M.D., Hu, W.S. and Letourneau, P.C. (2005) Growth Cones Turn and Migrate up an Immobilized Gradient of the Laminin IKVAV Peptide. Journal of Neurobiology, 62, 134-147.
https://doi.org/10.1002/neu.20075
[66] Tung, T.H. (2015) Clinical Strategies to Enhance Nerve Regeneration. Neural Regeneration Research, 10, 22-24.
https://doi.org/10.4103/1673-5374.150641
[67] Geremia, N.M., Gordon, T., Brushart, T.M., Al-Majed, A.A. and Verge, V.M.K. (2007) Electrical Stimulation Promotes Sensory Neuron Regeneration and Growth-Associated Gene Ex-pression. Experimental Neurology, 205, 347-359.
https://doi.org/10.1016/j.expneurol.2007.01.040
[68] Kimura, K., Yanagida, Y., Haruyama, T., Kobatake, E. and Aizawa, M. (1998) Gene Expression in the Electrically Stimulated Differentiation of PC12 Cells. Journal of Biotechnol-ogy, 63, 55-65.
https://doi.org/10.1016/S0168-1656(98)00075-3
[69] Lu, M.-C., Ho, C.-Y., Hsu, S.-F., Lee, H.-C., Lin, J.-H., Yao, C.-H. and Chen, Y.-S. (2008) Effects of Electrical Stimulation at Different Frequencies on Regeneration of Tran-sected Peripheral Nerve. Neurorehabilitation and Neural Repair, 22, 367-373.
https://doi.org/10.1177/1545968307313507
[70] Lu, M.-C., Tsai, C.-C., Chen, S.-C., Tsai, F.-J., Yao, C.-H. and Chen, Y.-S. (2009) Use of Electrical Stimulation at Different Current Levels to Promote Recovery after Peripheral Nerve Injury in Rats. Journal of Trauma-Injury Infection and Critical Care, 67, 1066-1072.
https://doi.org/10.1097/TA.0b013e318182351a
[71] Yeh, C.-C., Lin, Y.-C., Tsai, F.-J., Huang, C.-Y., Yao, C.-H. and Chen, Y.-S. (2010) Timing of Applying Electrical Stimulation Is an Important Factor Deciding the Success Rate and Maturity of Regenerating Rat Sciatic Nerves. Neurorehabilitation and Neural Repair, 24, 730-735.
https://doi.org/10.1177/1545968310376758
[72] Li, L., Yu, M., Ma, P.X. and Guo, B. (2016) Electroactive De-gradable Copolymers Enhancing Osteogenic Differentiation from Bone Marrow Derived Mesenchymal Stem Cells. Journal of Materials Chemistry B, 4, 471-481.
https://doi.org/10.1039/C5TB01899D
[73] You, J.-O., Rafat, M., Ye, G.J.C. and Auguste, D.T. (2011) Nanoengi-neering the Heart: Conductive Scaffolds Enhance Connexin 43 Expression. Nano Letters, 11, 3643-3648.
https://doi.org/10.1021/nl201514a
[74] Martins, A.M., Eng, G., Caridade, S.G., Mano, J.F., Reis, R.L. and Vun-jak-Novakovic, G. (2014) Electrically Conductive Chitosan/Carbon Scaffolds for Cardiac Tissue Engineering. Biom-acromolecules, 15, 635-643.
https://doi.org/10.1021/bm401679q
[75] Kai, D., Prabhakaran, M.P., Jin, G. and Ramakrishna, S. (2011) Polypyr-role-Contained Electrospun Conductive Nanofibrous Membranes for Cardiac Tissue Engineering. Journal of Biomedical Materials Research Part A, 99, 376-385.
https://doi.org/10.1002/jbm.a.33200
[76] Mihardja, S.S., Sievers, R.E. and Lee, R.J. (2008) The Effect of Polypyr-role on Arteriogenesis in an Acute Rat Infarct Model. Biomaterials, 29, 4205-4210.
https://doi.org/10.1016/j.biomaterials.2008.07.021
[77] Das, S., Sharma, M., Saharia, D., Sarma, K.K., Sarma, M.G., Borthakur, B.B. and Bora, U. (2015) In Vivo Studies of Silk Based Gold Nano-Composite Conduits for Function-al Peripheral Nerve Regeneration. Biomaterials, 62, 66-75.
https://doi.org/10.1016/j.biomaterials.2015.04.047
[78] Altizer, A.M., Moriarty, L.J., Bell, S.M., Schreiner, C.M., Scott, W.J. and Borgens, R.B. (2001) Endogenous Electric Current Is Associated with Normal Development of the Ver-tebrate Limb. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 221, 391-401.
https://doi.org/10.1002/dvdy.1158
[79] Wu, Y., Wang, L., Guo, B., Shao, Y. and Ma, P.X. (2016) Electroactive Biodegradable Polyurethane Significantly Enhanced Schwann Cells Myelin Gene Expression and Neurotrophin Secretion for Peripheral Nerve Tissue Engineering. Biomaterials, 87, 18-31.
https://doi.org/10.1016/j.biomaterials.2016.02.010