析氢电催化剂的研究进展
Research Progress of Electrocatalyst for Hydrogen Evolution Reaction
DOI: 10.12677/NAT.2021.113019, PDF, HTML, XML, 下载: 705  浏览: 3,116  国家自然科学基金支持
作者: 程 煜, 徐新楠, 张莉芳, 刘 杰, 钱 涛:南通大学化学化工学院,江苏 南通;周 希:南通大学化学化工学院,江苏 南通;江苏省生物质能源与材料重点实验室,江苏 南京
关键词: 电催化析氢反应催化剂氢能源过渡金属 Electrocatalysis Hydrogen Evolution Reaction Catalyst Hydrogen Energy Transition Metal
摘要: 随着社会生活和科技的发展,人类赖以生存的化石燃料被过渡消耗,由此引发的能源危机及环境污染迫在眉睫,全球能源供应与相关的环境问题成为科学技术人员面临的最大挑战之一。针对以上问题,以太阳能、风能、生物质能、海洋能、地热能和核聚变能等为主的绿色能源备受关注。氢能由于具有高效、清洁、储量丰富、燃烧热值高(142 MJ/kg),连续性好等优势被认为是一种替代化石能源极具潜力的次世代燃料。利用电解水制氢是生产氢能的高效途径,但电解水制氢的顺利进行需要高效电催化剂的辅助。传统的贵金属电催化剂尽管具有高的催化活性,但由于其储量匮乏、成本高昂、长时间稳定性差等缺点,严重制约了其规模化应用。因此,急需开发高效、廉价、稳定且可宏量化制备的电催化剂,以实现氢经济”蓝图。本文综述了近几年电催化产氢(Hydrogen Evolution Reaction, HER)领域的研究进展。
Abstract: With the development of social life, science and technology, the fossil fuels on which humans depend for survival are being consumed excessively. The resulting energy crisis and environmental pollution are imminent. The global energy supply and related environmental issues have become one of the biggest challenges faced by scientific and technical personnel. In response to the above problems, green energy, mainly solar energy, wind energy, biomass energy, ocean energy, geothermal energy and nuclear fusion energy, has attracted much attention. Because of its high efficiency, cleanliness, abundant reserves, high combustion calorific value (142 MJ/kg), and good continuity, hydrogen energy is considered to be a next-generation fuel with great potential to replace fossil energy. Using water splitting to produce hydrogen is an efficient way, but the smooth progress of water splitting to produce hydrogen requires the assistance of highly efficient electrocatalysts. Despite its high activity, traditional precious metal electrocatalysts have severely restricted their large-scale applications due to their lack of reserves, high cost, and poor long-term stability. Therefore, there is an urgent need to develop electrocatalysts that are efficient, cheap, stable, and can be prepared in a macroscopic manner to achieve the “hydrogen economy” blueprint. This article reviews the research progress in the field of Hydrogen Evolution Reaction (HER) in recent years.
文章引用:程煜, 徐新楠, 张莉芳, 刘杰, 周希, 钱涛. 析氢电催化剂的研究进展[J]. 纳米技术, 2021, 11(3): 155-165. https://doi.org/10.12677/NAT.2021.113019

1. 引言

随着人类社会生活和科技的发展,对能源的需求与日俱增。由此引发的能源危机迫在眉睫。然而,当下人类使用的能源大部分属于化石燃料,是不可再资源(如煤、石油、天然气等) [1]。据国际能源署调查显示,2013年世界能源消耗量高达18 TW,预计2050年时此数值将增加至30 TW。另外,这些化石燃料的燃烧会生成二氧化碳(CO2)、一氧化碳(CO)、二氧化硫(SO2)、二氧化氮(NO2)以及可吸入颗粒物等,这将引起严重的空气污染、水污染、土壤污染等系列棘手的问题。因此,亟需开发一种可再生的新型清洁能源来作为传统的化石能源的替代品 [1] [2] [3]。

目前理想的绿色清洁能源包括:太阳能、氢能、潮汐能、风能、地热能等,但是其中多数能源具有不连续性。而氢能由于具有高效、燃烧热值高(142 MJ/kg)、清洁、储量丰富等优势被认为是一种替代化石能源极具潜力的次世代燃料 [3] [4]。目前,在氢能源领域,日本领先于世界,日本政府于2017年12月颁布的《氢能源基本战略》中表明,随着可再生能源的引入和输出控制量的增加,利用可长期大规模储存电力的氢气(Powder-to-Gas)将过剩能源进行高效储存是极其重要的 [3] [4]。所以,对于氢气的能量存储和利用,不仅要利用电力系统的供需平衡调整功能(需求响应)来最大化输出波动较大的可再生能源,而且还要根据氢的供需预测来优化系统的运行。鉴于此,日本新能源产业技术综合开发机构(NEDO),东芝能源系统,东北电力,以及岩谷产业,于2018年在福岛县浪江町建设了世界最大级(10 MW)可利用再生能源制取氢气的FH2R (Fukushima Hydrogen Energy Research Field)示范项目。由此可见,氢能源的规模化应用将会是世界新能源领域现阶段重要目标。

然而,目前的工业化制氢主要分为甲烷水蒸气法制氢、水煤气法制氢以及电解水制氢。其中,前两种方法依赖于化石燃料的重整和气化,同样会加速传统能源的使用和二氧化碳等温室气体的排放,且几乎95%的氢气是由这两种传统方法制得。而电分解水制氢技术可从根本上解决能源短缺及环境污染问题,但由于对电催化剂的依赖,导致其市场占有率仅为4%左右 [5] [6]。

尽管电催化分解水制备H2和O2的反应在理论上是可逆的,但由于现实中各种能耗和内阻的影响,H2和O2在析出时需要克服较高的反应能垒,导致实际的电解水电压远高于理论值1.23 V [7] [8] [9]。故开发高效、稳定且可弘量化制备的电催化剂来降低势垒,以实现“氢经济”蓝图(图1)。

Figure 1. Hydrogen energy society vision [9]

图1. 氢能源社会构想图 [9]

2. 电解水析氢催化剂研究进展

通常,可按照不同种类催化剂的氢吸附吉布斯自由能(ΔGH*)与交换电流密度(j0)之间的函数关系来绘制形成“火山型曲线图”,如图2所示,该图可作为评价HER电催化剂催化活性的重要参数 [7]。催化剂的HER性能越好,则所对应的ΔGH*越趋近于零,由图可知,贵金属Pt处于“火山型曲线图”的顶端,ΔGH*非常接近零,因此被认为是性能最佳的HER电催化剂。此外,我们通过对比不同材料ΔGH*所对应的j0值,可以得出过渡金属基材料(如Co,Ni,Mo,MoS2等)及非金属碳基材料(如氮掺杂石墨烯、C3N4等)仅次于贵金属Pt基材料,表明以上材料有望成为替代贵金属Pt的潜在高性能HER电催化剂 [7] [8] [9]。

迄今为止,HER电催化剂的构筑元素根据元素理化性质的不同,通常可分为三大类型:1) 贵金属基催化剂;2) 过渡金属基催化剂;3) 非金属基催化剂。

2.1. 贵金属电催化剂

由于铂基贵金属催化剂与生俱来优异的HER活性,近年来受到研究者的广泛关注 [10]。研究表明,Pt金属催化剂的不同晶面所对应的HER电催化活性规律在酸碱介质中均为(111) < (100) < (110) [10]。另外,Pt基催化剂在碱性介质中的活化能通常比其在酸性介质中的高,因此其HER活性在酸性介质中显著

Figure 2. Dependence of j0 on Δ G H for HER on the surface of various materials [7]

图2. 各种材料表面在HER 中的j0 Δ G H 的依赖关系 [7]

优于其在碱性介质中 [11],这主要归因于在碱性介质中存在较强的金属-OHad相互作用以及其具有较高的水电离能势垒 [12]。此外,根据d带中心理论,即d带中心越接近费米能级则其吸附能力越强。因此,将Pt与3d-过渡金属(Fe、Co、Ni等)形成3d-过渡金属/Pt合金可以调节Pt的配位环境和电子性质,从而实现降低Pt用量的同时大幅度提高Pt基催化剂活性的目的 [13] [14]。而且,这一理论已经通过在单晶金属表面沉积单层贵金属Pt或Pd的欠电位沉积方法所证实 [15]。

除Pt基催化剂外,Pd也是一种常见的贵金属HER催化剂,它的储量比Pt丰富,价格只有Pt的五分之一,而且Pd具有更小的原子尺寸,不仅可以吸附气相中的H2,还可以吸附电解质中的H2 [16] [17]。Valenti等人制备了一种MWCNTs@Pd/TiO2复合HER电催化剂,在中性介质中表现出卓越的HER活性,这归因于Pd,多壁CNTs及TiO2的协同作用,CNTs加速了电子向介孔TiO2层的传输,最终共同调控Pd的活性 [18]。

2.2. 过渡金属基电催化剂

目前研究表明,过渡金属化合物,包括,过渡金属硫化物 [19] [20]、磷化物 [21] [22]、氮化物 [23] [24]、碳化物 [25] 等非贵金属电催化剂已成为替代贵金属Pt最具潜力的电催化剂之一。

其中,过渡金属硫属化合物(TMDs),其化学结构为MX2(M代表过渡金属元素,包括:Mo,W等,而X代表硫族元素,例如:S,Se等) [26] [27] [28] [29] [30],由于成本低廉、具有丰富的边缘活性位点及独特的物理化学性质,可作为优异的HER电催化剂 [27]。而MoS2作为一种典型的过渡金属硫化物由于具有诸多优势备受关注。如图3所示,在MoS2八面体晶体结构中,Mo原子为六配位,Mo-S原子间以共价键相连,相邻的两层之间通过弱的范德华力连接形成不同构型 [27] [28] [29],包括:2H-MoS2、3R-MoS2以及IT-MoS2,其中,2H-MoS2相比较稳定,属于半导体相,而3R-MoS2和IT-MoS2构型是亚稳态相,表现为金属性质 [27]。2005年,Norskov等人采用密度泛函埋论(DFT)计算分析了MoS2的氢吸附吉布斯自由能(ΔGH*) [31],结果表明MoS2的基面几乎未表现出催化活性,主要活性位点在边缘结构,ΔGH*为~0.1e V,接近其他高效的电催化剂(Pt,氮化酶等)。

Figure 3. The two polytypes of monolayer G6-TMDs, (a) 1T-MX2 and (b) 1H-MX2 and their corresponding coordination units and energy level diagrams [27]

图3. 单层G6-过渡金属硫化物(TMDs)的两种多面构型及其所对应的配位单元和能级图(a) 1T-MX2;(b) 1H-MX2

通常,通过原子级的表界面调控策略,包括:微观形貌调控,层间距调控,缺陷工程,应力调控,掺杂改性等 [32] [33] [34] [35],可有效改变MoS2基催化剂的理化性能(例如,反应势垒,导电性,电化学活性面积,活性位点等),最终实现HER催化性能的优化 [34] [35]。Chorkendorff等人首次证实了MoS2的HER活性与边缘结构密切相关,如图4所示,通过几何维度调控了TMDs催化剂的表面能,暴露了更多的活性位点 [7]。

Figure 4. (a) STM image of MoS2; (b) Relationship between exchange current density and edge length of MoS2 nanosheets measured from STM images [7]

图4. (a) MoS2的STM图;(b) 从STM图像中得到的交换电流密度 与MoS2 的边缘长度关系 [7]

受到MoS2边缘活性位的启发,Jaramillo等人选择用双螺旋排列的二氧化硅作为模板合成了连续的介孔MoS2薄膜,这种结构具有多孔的连续网络,可促使其优先暴露边缘活性位点,因此大幅度提升了HER性能 [32]。Cui等人制备了一种垂直生长在Mo基底上的MoS2和MoSe2电催化剂,其HER性能与暴露的边缘活性位点密度成正相关 [33]。Yang等人借助微波辅助水热法制备了垂直生长在碳纸上的MoS2催化剂,由于丰富的边缘活性位赋予其优异的HER性能,达到10 mA/cm2电流密度所需过电位仅为104 mV [34]。另外,扩大层间距,减弱层间团聚,降低MoS2的层数也是改善其电化学性能的有力手段。Cao等人采用PVP做结构控制剂,得到了一种负载在还原氧化石墨烯(RGO)上的超薄MoS2 (PVP-MoS2-RGO),研究表明,PVP-MoS2-RGO只有1~2层,且MoS2层间距扩大至~1 nm。这种寡层结构有助于提高硫化钼基催化剂的导电性,暴露丰富的活性位点,而扩大的层间距则会加速传质过程,因此表现出良好的HER性能,10 mA/cm2电流密度下的过电位为66 mV [36]。

此外,深入了解电催化反应机理,有助于合理设计和制备高活性及高稳定性催化剂。今年3月份,Zhang等人采用湿化学法合成了尺寸可控的单层MoS2包覆的多面体Ag核–壳异质结构(Ag@MoS2),其表现出优异的HER催化活性。由于等离子体特性的Ag核可产生强电场,可高效增强拉曼信号,Ag@MoS2核–壳异质结构被用作实时表面增强拉曼光谱(SERS)研究的理想平台(图5)。原位SERS结果显示,在HER过程中MoS2表面上形成了S-H键,表明MoS2中S原子是HER过程中的本征催化活性中心。此项研究为从原子水平上探索其催化反应机理,为异质结构的设计和合成铺平了道路 [37]。

Figure 5. (a) Synthetic schematic diagram of Ag2S@MoS2 (b) Scheme showing of the EC-SERS [37]

图5. (a) Ag2S@MoS2的合成示意图;(b) EC-SERS示意图 [37]

Li等人基于多巴胺的自聚合行为,采用简单的两步法合成了Mo2C/NCF纳米花电催化剂,结果显示,其在酸/碱性介质中均具有优秀的HER活性,极小的Tafel斜率,卓越的循环稳定性 [38]。Zheng等人通过热解ZIF-6和Cu(OH)2纳米线得到了一种Co-Cu纳米合金嵌入到碳骨架中的复合电催化剂(CuCo@NC),结果表明,ZIF-67的多孔结构有效阻止了Cu的团聚,最终形成的CuCo@NC由于具有极高的比表面积(~700 m2/g)而展示出丰富的活性位点及优异的电催化活性 [39]。Li等人制备了一种具有多级界面结构的Ni/WC@NC杂化催化剂,表现出优异的全pH值范围HER活性,在0.5 MH2SO4中达到10 mA/cm2电流密度仅需−53 mV,极小的Tafel斜率(43.5 mV/dec),大的交换电流密度(0.83 mA/cm2)以及出色的长时间稳定性。结合DFT理论计算和原位同步辐射表征揭示了其HER活性的主要原因,即Ni和WC之间大量的界面结构将协同促进电子从WC向Ni的转移,优化了相界面的电子环境,最终加速HER反应进程 [40]。Amal等人通过热解长在镍泡沫骨架上的Mn基MOF(Mn-MOF)得到Mn掺杂的Ni/NiO异质结构催化剂(Mn-NiO-Ni/Ni-F),该催化在中性电解质甚至海水中均表现出接近贵金属Pt的HER催化性能,此项研究有望实现氢能的规模化生产 [41]。

另外,通过引入异质原子或异质组分构建异质结构及异质原子电子调控是改善单组分金属基电催化剂的有效手段。主要有金属基异质结构建,碳基异质结构建,过渡金属硫化物异质结构建及模特肖特基构建等 [8] [42]。Cheng等人制备了一种具有强碱性晶格氧的LixNiO/Ni异质结构电催剂,该结构由强耦合缺Ni的LixNiO纳米团簇和多晶Ni纳米晶体组成,表现出优异的HER活性,在酸性、中性和碱性条件下达到10 mA/cm2电流密度所需过电位分别为20、50和36 mV。由于具有强布朗斯特碱度的晶格氧物种,该异质结构可自发地分裂水分子以加速在中性和碱性HER中的HOH分解,结合紧密的LixNiO和Ni界面会产生局部位点,促进氢化物偶联和氢解吸 [43]。

Song等人基于微纳结构调控策略,通过连续的“原位水热–高温煅烧”合成方法得到层间距扩大的三维(3D) MoS2/碳纳米花复合电催化剂(MoS2/CF)。此种策略从源头上解决了MoS2的固有层间堆积及导电性差等问题,层间距扩大至~9.5 Å,层数降低至1~2层,从而赋予催化剂丰富的活性位点及高效的电荷传输性能。基于以上理化性质的改善,得到的MoS2/CF-750在酸性溶液(0.5 MH2SO4)中表现出了优异的HER电催化性能,极低的起始电位(20 mV),并且具有长时间稳定性(16 h)及高效的循环稳定性 [44]。为了进一步提高MoS2基材料的电催化性能,该课题组通过异质结构建策略合成单轴取向生长在碳气凝胶上的MoS2基纳米阵列结构催化剂,通过调控Mo和S源的化学计量比,构筑了富含S边缘的系列MoxSy@GCA垂直纳米阵列双功能电催化剂。这种结构可有效防止MoxSy层间的固有堆叠而暴露更多的边缘活性位点,而且可借助GCA连通层间的电荷转移路径,极大提高MoS2基材料的纵向导电性。归功于以上优势,最佳的Mo4S16@GCA表现出优异的HER/OER性能,包括低的起始电位HER (24.28 mV)和OER (1.53 V),以及低的10 mA/cm2电流密度下的过电位HER (54.13 mV)和OER (370 mV)接近贵金属Pt/C的性能。另外,结合原位拉曼光谱表征和密度泛函理论(DFT)计算,揭示了MoxSy@GCA的本征活性位点,及在HER/OER过程中活性过渡态物质的结构演化行为,即边缘S作为本征活性位点在HER/OER中的形态变化(-S-H的形成及演化)。本项工作将为通过分级多孔碳气凝胶高效而精准地调控过渡金属电催化剂的微观结构和尺寸提供参考,更重要的是构建了一种研究HER/OER电催化动态过程中活性位的生成机制以及演变规律的有效手段,对于以后电催化过程的实时监控及精确的动态研究具有重要的现实意义 [45]。

此外,通常认为,金属催化剂中只有极少数金属活性组分起到催化作用,导致金属利用效率远远低于理想水平 [46] [47] [48]。而每个金属原子都作为活性位的单原子催化剂理论上可达到100%的原子利用效率(AUEs),不仅大幅度提高了活性表面积而且降低了催化剂成本,利于规模化应用。另外,单原子催化不同于纳米催化和亚纳米催化,因为当粒子分散度达到单原子尺寸时,会引发一些奇特性质,如不饱和的配位环境,大的表面自由能,量子尺寸效应和金属单原子⁃载体的相互作用等。正是这些特性改变了催化剂上活性组分对不同分子的吸附/脱附行为,从而影响反应动力学,最终赋予单原子催化剂优越的催化性能 [49] [50]。

2011年,张涛院士课题组成功制备出了单原子Pt/FeOx催化剂并将其应用在CO氧化和CO选择性氧化反应中,展现出了优异的催化活性和稳定性 [51]。近几年,单原子更是成为能源催化领域的热点材料。Li等人以SiO2为硬模板,壳聚糖作为碳源,钼酸钠作为Mo源,通过高温热解形成Mo单原子负载在N掺杂碳上的单原子电催化剂,借助X射线吸收精细结构光谱(XAFS)及球差校正电镜(AC-STEM)证实了其单原子分散状态,并表现出优于体相Mo2C和MoN的HER活性,结合DFT揭示了其本质活性中心为Mo1N1C2 [52]。

2.3. 非金属基电催化剂

碳基材料作为目前应用最广的非金属HER电催化剂,因其具有独特的电子性质,可调的分子结构(构型及缺陷的调控),及对酸/碱环境的强耐受性等优势而受到密切关注 [53] [54]。常见的碳基催化材料有,零维的碳点,一维的碳纳米线,二维的碳纳米片及三维的碳纳米管等。尤其是二维(2D)的碳纳米片,已显示出强大的HER电催化潜力 [55] [56]。此外,众所周知,由于碳原子与杂原子之间的电负性和原子尺寸的本质差异,杂原子掺杂对于调节电催化性能尤为重要。在这方面,与各种次级杂原子共掺杂(例如N,B,S或P)将改善活性位点的数量并引入“协同效应”,从而促进中间体的化学吸附/解吸过程,显著提高碳的电催化活性 [57] [58] [59]。

Qiao等人将g-C3N4与N掺杂石墨烯通过耦合反应制备所得g-C3N4@NG杂化材料,结果显示,片层之间强的相互作用导致额外的层间成键,归结于其独特的分子结构和电子性质而表现出优异的HER催化活性,进一步通过DFT理论计算发现,g-C3N4可提供大量氢吸附活性位点以及N掺杂石墨烯促进电荷传输行为共同促进了电催化反应动力学过程 [60]。另外,该课题组在理论计算的指导下,通过化学剥离氧化石墨烯的方法制备了系列杂原子(B,N,P,S)掺杂石墨烯HER催化剂,结果显示理论与实验吻合良好,进一步为了使其HER性能与目前多数报道的金属基催化剂相媲美,通过双掺杂策略得到系列N-B-、N-S-及N-P-G双杂原子掺杂的催化剂,理论结合实验证实N-S-G具有更高的HER活性。这种设计思路考虑了石墨烯电子结构的本征属性以及外在物化性质,从而为高效非金属碳基催化剂的设计及在能量转换领域的应用开辟了一条新的道路 [59]。

目前大量研究表明N掺杂碳材料优异的HER性能离不开杂原子N对基底的电子调控作用,通常,N以不同的形式存在于碳基底中,比如,吡啶氮,石墨氮,吡咯氮等,而吡啶氮和石墨氮已被证实为加速HER进程的关键活性位点。然而,目前N原子的掺杂量依然较低(仅有2~5 atom%),另外N在基底碳中的存在不稳固,在长时间电化学过程中会进一步损耗。因此亟需开发一种高N含量的碳基催化剂,而g-C3N4由于具有丰富且稳定的N杂原子,同时可以抵抗强酸碱电解液的腐蚀,成为目前研究的热点 [61] [62] [63]。Smith等人通过DFT理论计算对g-C3N4@MG (M = B,N,O,F,P,和S)的HER活性及稳定性做了系统研究,结果表明,碳载体与活性g-C3N4层之间的界面电荷传输对调节表面的H*吸附自由能(ΔGH*)起着至关重要的作用,从石墨层向g-C3N4的本征电荷转移被认为是基于H*覆盖范围增加而产生的。碳载体的给电子/吸电子性质还应考虑H*的不同覆盖范围,以便了解增强的界面吸附和电催化性能。另外,杂原子掺杂可调控石墨烯基底费米能级和能带结构,进而调节表界面的电荷传输性质 [64]。

3. 总结与展望

本文综述了近年来报道的电催化产氢催化剂的类型及常规的制备方法,包括:贵金属基催化剂,过渡金属基催化剂及非金属基催化剂。对于过渡金属基催化剂,通常可采用微纳结构调控策略,异质结构建策略及单原子催化剂构筑策略来提升催化剂的活性及稳定性。对于非金属基催化剂而言,进行杂原子掺杂调控基底的本征电子结构及化学环境是比较常见的方式。另外,通过缺陷工程,构建更多的活性位点及构型也可优化催化剂的催化活性、电荷传输性能及长时间稳定性。

基金项目

江苏省生物质能源与材料重点实验室开放基金项目(JSBEM-S-201805),国家自然科学基金(52002190)。

参考文献

[1] Duf, P. and Eisenberg, R. (2012) Catalysts Made of Earth-Abundant Elements (Co, Ni, Fe) for Water Splitting: Recent Progress and Future Challenges. Energy & Environmental Science, 5, 6012-6021.
https://doi.org/10.1039/c2ee03250c
[2] Dresselhaus, M.S. and Thomas, I.L. (2001) Alternative Energy Technol-ogies. Nature, 414, 332-337.
https://doi.org/10.1038/35104599
[3] Cook, T.R., Dogutan, D.K., Reece, S.Y., Surendranath, Y., Teets, T.S. and Nocera, D.G. (2010) Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds. Chemical Reviews, 110, 6474-6502.
https://doi.org/10.1021/cr100246c
[4] Gong, A. and Verstraete, D. (2017) Fuel Cell Propulsion in Small Fixed-Wing Unmanned Aerial Vehicles: Current Status and Research Needs. International Journal of Hydrogen Energy, 42, 21311-21333.
https://doi.org/10.1016/j.ijhydene.2017.06.148
[5] Liu, J., Liu, Y., Liu, N., Han, Y., Zhang, X., Huang, H., Lifshitz, Y., et al. (2015) Metal-Free Efficient Photocatalyst for Stable Visible Water Splitting via a Two-Electron Path-way. Science, 347, 970-974.
https://doi.org/10.1126/science.aaa3145
[6] Zou, X. and Zhang, Y. (2015) Noble Metal-Free Hydrogen Evolution Catalysts for Water Splitting. Chemical Society Reviews, 44, 5148-5180.
https://doi.org/10.1039/C4CS00448E
[7] Jaramillo, T.F., Jorgensen, K.P., Bonde, J., Nielsen, J.H., Horch, S. and Chorkendorff, I. (2007) Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science, 317, 100-102.
https://doi.org/10.1126/science.1141483
[8] Hou, J., Wu, Y., Zhang, B., Cao, S., Li, Z. and Sun, L. (2019) Ra-tional Design of Nanoarray Architectures for Electrocatalytic Water Splitting. Advanced Functional Materials, 29, Article ID: 1808367.
https://doi.org/10.1002/adfm.201808367
[9] Paul, R., Zhu, L., Chen, H., Qu, J. and Dai, L. (2019) Recent Ad-vances in Carbon-Based Metal-Free Electrocatalysts. Advanced Materials, 31, Article ID: 1806403.
https://doi.org/10.1002/adma.201806403
[10] Marković, N.M., Grgur, B.N. and Ross, P.N. (1997) Tempera-ture-Dependent Hydrogen Electrochemistry on Platinum Low-Index Single-Crystal Surfaces in Acid Solutions. Journal of Physical Chemistry B, 101, 5405-5413.
https://doi.org/10.1021/jp970930d
[11] Durst, J., Siebel, A., Simon, C., Hasché, F., Herranz, J. and Gasteiger, H.A. (2014) New Insights into the Electrochemical Hydrogen Oxidation and Evolution Reaction Mechanism. Energy & Environmental Science, 7, 2255-2260.
https://doi.org/10.1039/C4EE00440J
[12] Marković, N.M. and Ross, P.N. (2002) Surface Science Studies of Model Fuel Cell Electrocatalysts. Surface Science Reports, 45, 117-229.
https://doi.org/10.1016/S0167-5729(01)00022-X
[13] Chen, C., Kang, Y., Huo, Z., Zhu, Z., Huang, W., Xin, H.L., et al. (2014) Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. Science, 343, 1339-1343.
https://doi.org/10.1126/science.1249061
[14] Du, X.X., He, Y., Wang, X.X. and Wang, J.N. (2016) Fine-Grained and Fully Ordered Intermetallic PtFe Catalysts with Largely Enhanced Catalytic Activity and Durability. Energy & Environmental Science, 9, 2623-2632.
https://doi.org/10.1039/C6EE01204C
[15] Greeley, J., Jaramillo, T.F., Bonde, J. Chorkendorff, I. and Nørskov, J.K. (2006) Computational High-Throughput Screening of Electrocatalytic Materials for Hydrogen Evolution. Nature Materials, 5, 909-913.
https://doi.org/10.1038/nmat1752
[16] Chinchilla, R. and Carmen, N. (2014) Chemicals from Alkynes with Palla-dium Catalysts. Chemical Reviews, 114, 1783-1826.
https://doi.org/10.1021/cr400133p
[17] Zhang, L., Roling, L.T., Wang, X., Vara, M., Chi, M., Liu, J., et al. (2015) Platinum-Based Nanocages with Subnanometer-Thick Walls and Well-Defined, Controllable Facets. Science, 349, 412-416.
https://doi.org/10.1126/science.aab0801
[18] Valenti, G., Boni, A., Melchionna, M., Cargnello, M., Nasi, L., Ber-toni, G., et al. (2016) Co-Axial Heterostructures Integrating Palladium/Titanium Dioxide with Carbon Nanotubes for Ef-ficient Electrocatalytic Hydrogen Evolution. Nature Communications, 7, Article No. 13549.
https://doi.org/10.1038/ncomms13549
[19] Yan, Y., Xia, B.Y., Xu, Z. and Wang, X. (2014) Recent Development of Molybdenum Sulfides as Advanced Electrocatalysts for Hydrogen Evolution Reaction. ACS Catalysis, 4, 1693-1705.
https://doi.org/10.1021/cs500070x
[20] Zhang, X., Yu, X., Zhang, L., Zhou, F., Liang, Y. and Wang, R. (2018) Molybdenum Phosphide/Carbon Nanotube Hybrids as pH-Universal Electrocatalysts for Hydrogen Evolution Reaction. Advanced Functional Materials, 28, Article ID: 1706523.
https://doi.org/10.1002/adfm.201706523
[21] Chen, Y., Li, C., Zhou, J., Zhang, S., Rao, D., He, S., et al. (2015) Metal Phosphides Derived from Hydrotalcite Precursors toward the Selective Hydrogenation of Phenylacetylene. ACS Catalysis, 5, 5756-5765.
https://doi.org/10.1021/acscatal.5b01429
[22] Xiao, P., Sk, M.A., Thia, L., Ge, X. Lim, R.J., Wang, J.-Y., et al. (2014) Molybdenum Phosphide as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Energy & Environ-mental Science, 7, 2624-2629.
https://doi.org/10.1039/C4EE00957F
[23] Cao, B., Veith, G.M., Neuefeind, J.C., Adzic, R.R. and Khalifah, P.G. (2013) Mixed Close-Packed Cobalt Molybdenum Nitrides as Non-Noble Metal Electrocatalysts for the Hydrogen Evolu-tion Reaction. Journal of the American Chemical Society, 135, 19186-19192.
https://doi.org/10.1021/ja4081056
[24] Guo, H.P., Ruan, B.Y., Luo, W.B., Deng, J., Wang, J.-Z., Liu, H.-K., et al. (2018) Ultrathin and Edge-Enriched Holey Nitride Nanosheets as Bifunctional Electrocatalysts for the Oxygen and Hy-drogen Evolution Reactions. ACS Catalysis, 8, 9686-9696.
https://doi.org/10.1021/acscatal.8b01821
[25] Guo, L., Ji, L., Wang, J., Zuo, S. and Chen, Z. (2018) Walnut-Like Transition Metal Carbides with 3D Networks by a Versatile Electropolymerization-Assisted Method for Efficient Hydrogen Evolution. ACS Applied Materials & Interfaces, 10, 36824-36833.
https://doi.org/10.1021/acsami.8b07127
[26] Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N. and Strano, M.S. (2012) Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nature Nanotechnology, 7, 699-712.
https://doi.org/10.1038/nnano.2012.193
[27] Samadi, M., Sarikhani, N., Zirak, M., Zhang, H., Zhang, H.-L. and Moshfegh, A.Z. (2018) Group 6 Transition Metal Dichalcogenide Nanomaterials: Synthesis, Applications and Future Perspectives. Nanoscale Horizons, 3, 90-204.
https://doi.org/10.1039/C7NH00137A
[28] Tan, C. and Zhang, H. (2015) Epitaxial Growth of Het-ero-Nanostructures Based on Ultrathin Two-Dimensional Nanosheets. Journal of the American Chemical Society, 137, 12162-12174.
https://doi.org/10.1021/jacs.5b03590
[29] Ye, Z., Cao, T., O’Brien, K., Zhu, H., Yin, X., Wang, Y., et al. (2015) Excitonic Dark States in Single Atomic Layer of Transition Metal Dichalcogenide. Chemical Society Reviews, 44, 2713-2731.
[30] Keum, D.H., Cho, S., Kim, J.H., Choe, D.-H., Sung, H.-J., Kan, M., et al. (2015) Bandgap Open-ing in Few-Layered Monoclinic MoTe2. Nature Physics, 11, 482-486.
https://doi.org/10.1038/nphys3314
[31] Hinnemann, B., Moses, P.G., Bonde, J., Jørgensen, K.P., Nielsen, J.H., Horch, S., et al. (2005) Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution. Journal of the American Chemical Society, 127, 5308-5309.
https://doi.org/10.1021/ja0504690
[32] Kibsgaard, J., Chen, Z., Reinecke, B.N. and Jaramillo, T.F. (2012) Engineering the Surface Structure of MoS2 to Preferentially Expose Active Edge Sites for Electrocatalysis. Nature Materials, 11, 963-969.
https://doi.org/10.1038/nmat3439
[33] Kong, D., Wang, H., Cha, J.J., Pasta, M., Koski, K.J., Yao, J., et al. (2013) Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers. Nano Letters, 13, 1341-1347.
https://doi.org/10.1021/nl400258t
[34] Hu, J., Huang, B., Zhang, C., Wang, Z., An, Y., Zhou, D., et al. (2017) Engineering Stepped Edge Surface Structures of MoS2 Sheet Stacks to Accelerate the Hydrogen Evolution Reaction. En-ergy & Environmental Science, 10, 593-603.
https://doi.org/10.1039/C6EE03629E
[35] Xie, J., Zhang, H., Li, S., Wang, R., Sun, X., Zhou, M., et al. (2013) Defect-Rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution. Advanced Materials, 25, 5807-5813.
https://doi.org/10.1002/adma.201302685
[36] Gao, X., Qi, J., Wan, S., Zhang, W., Wang, Q. and Cao, R. (2018) Conductive Molybdenum Sulfide for Efficient Electrocatalytic Hydrogen Evolution. Small, 14, Article ID: 1803361.
https://doi.org/10.1002/smll.201803361
[37] Chen, J., Liu, G., Zhu, Y., Su, M., Yin, P., Wu, X.-J., et al. (2020) Ag@MoS2 Core-Shell Heterostructure as SERS Platform to Reveal the Hydrogen Evolution Active Sites of Single-Layer MoS2. Journal of the American Chemical Society, 142, 7161-7167.
https://doi.org/10.1021/jacs.0c01649
[38] Huang, Y., Gong, Q., Song, X., Feng, K., Nie, K., Zhao, F., et al. (2016) Mo2C Nanoparticles Dispersed on Hierarchical Carbon Microflowers for Efficient Electrocatalytic Hydrogen Evolution. ACS Nano, 10, 11337-11343.
https://doi.org/10.1021/acsnano.6b06580
[39] Kuang, M., Wang, Q., Han, P. and Zheng, G. (2017) Cu, Co-Embedded N-Enriched Mesoporous Carbon for Efficient Oxygen Reduction and Hydrogen Evolution Reactions. Advanced Energy Materials, 7, Article ID: 1700193.
https://doi.org/10.1002/aenm.201700193
[40] Ma, Y.Y., Lang, Z.L., Yan, L.K., Wang, Y.-H., Tan, H.-Q., Feng, K., et al. (2018) High Efficient Hydrogen Evolution Triggered by a Multi-Interfacial Ni/WC Hybrid Electrocatalyst. En-ergy & Environmental Science, 11, 2114-2123.
https://doi.org/10.1039/C8EE01129J
[41] Lu, X., Pan, J., Lovell E, Tan, T.H., Ng, Y.H. and Amal, R. (2018) A Sea-Change: Manganese Doped Nickel/Nickel Oxide Electrocatalysts for Hydrogen Generation from Seawater. Energy & Environmental Science, 11, 1898-1910.
https://doi.org/10.1039/C8EE00976G
[42] Song, J., Wei, C., Huang, Z.Z., Liu, C., Zeng, L., Wang, X., et al. (2020) A Review on Fundamentals for Designing Oxygen Evolution Electrocatalysts. Chemical Society Reviews, 49, 2196-2214.
https://doi.org/10.1039/C9CS00607A
[43] Lu, K., Liu, Y., Lin, F., Cordova, I.A., Gao, S., Li, B., et al. (2020) LixNiO/Ni Heterostructure with Strong Basic Lattice Oxygen Enables Electrocatalytic Hydrogen Evolution with Pt-like Activity. Journal of the American Chemical Society, 142, 12613-12619.
https://doi.org/10.1021/jacs.0c00241
[44] Cheng, Y., Pang, K., Wu, X., Zhang, Z., Xu, X., Ren, J., Huang, W. and Song, R. (2018) In Situ Hydrothermal Synthesis MoS2/Guar Gum Carbon Nanoflowers as Advanced Electrocatalysts for Electrocatalytic Hydrogen Evolution. ACS Sustainable Chemistry & Engineering, 6, 8688-8696.
https://doi.org/10.1021/acssuschemeng.8b00994
[45] Cheng, Y., Yuan, P., Xu, X., Guo, S., Pang, K., Guo, H., et al. (2019) S-Edge-Rich MoxSy Arrays Vertically Grown on Carbon Aerogels as Superior Bifunctional HER/OER Elec-trocatalysts. Nanoscale, 11, 20284-20294.
https://doi.org/10.1039/C9NR07277B
[46] Pan, Y., Zhang, C., Liu, Z., Chen, C. and Li, Y. (2020) Structural Reg-ulation with Atomic-Level Precision: From Single-Atomic Site to Diatomic and Atomic Interface Catalysis. Matter, 2, 78-110.
https://doi.org/10.1016/j.matt.2019.11.014
[47] Tavakkoli, M., Flahaut, E., Pelji, P., Sainio, J., Davodi, F., Lobiak, E.V., et al. (2020) Mesoporous Single-Atom-Doped Graphene-Carbon Nanotube Hybrid: Synthesis and Tunable Elec-trocatalytic Activity for Oxygen Evolution and Reduction Reactions. ACS Catalysis, 10, 4647-4658.
https://doi.org/10.1021/acscatal.0c00352
[48] Vajda, S., Pellin, M.J., Greeley, J.P., Marshall, C.L., Curtiss, L.A., Ballentine, G.A., et al. (2009) Subnanometre Platinum Clusters as Highly Active and Selective Catalysts for the Oxida-tive Dehydrogenation of Propane. Nature Materials, 8, 213-216.
https://doi.org/10.1038/nmat2384
[49] Lin, J., Qiao, B., Li, N., Li, L., Sun, X., Liu, J., et al. (2015) Little Do More: A Highly Effective Pt1/FeOx Single-Atom Catalyst for the Reduction of NO by H2. Chemical Communications, 51, 7911-7914.
https://doi.org/10.1039/C5CC00714C
[50] Wang, A., Li, J. and Zhang, T. (2018) Heterogeneous Single-Atom Catalysis. Nature Reviews Chemistry, 2, 65-81.
https://doi.org/10.1038/s41570-018-0010-1
[51] Qiao, B., Wang, A., Yang, X., Allard, L.F., Jiang, Z., Cui, Y., et al. (2011) Single-Atom Catalysis of CO Oxidation Using Pt1/FeOx. Nature Chemistry, 3, 634-641.
https://doi.org/10.1038/nchem.1095
[52] Chen, W., Pei, J., He, C., Wan, J., Ren, H., Zhu, Y., et al. (2017) Ration-al Design of Single Mo Atoms Anchored on N-Doped Carbon for Effective Hydrogen Evolution Reaction. Angewandte Chemie International Edition, 56, 16086-16090.
https://doi.org/10.1002/anie.201710599
[53] Shui, J., Wang, M., Du, F. and Dai, L. (2015) N-Doped Carbon Nanomaterials Are Durable Catalysts for Oxygen Reduction Reaction in Acidic Fuel Cells. Science Advances, 1, Article ID: e1400129.
https://doi.org/10.1126/sciadv.1400129
[54] Liu, Y., Weiss, N. O., Duan, X., Cheng, H.-C., Huang, Y. and Duan, X. (2016) Van der Waals Heterostructures and Devices. Nature Reviews Materials, 1, Article ID: 16042.
https://doi.org/10.1038/natrevmats.2016.42
[55] Sun, Y., Wu, Q. and Shi, G. (2011) Graphene Based New Energy Materials. Energy & Environmental Science, 4, 1113-1132.
https://doi.org/10.1039/c0ee00683a
[56] Jia, Y., Zhang, L., Du, A., Gao, G., Chen, J., Yan, X., et al. (2016) Defect Graphene as a Trifunctional Catalyst for Electrochemical Re-actions. Advanced Materials, 28, 9532-9538.
https://doi.org/10.1002/adma.201602912
[57] Liu, X. and Dai, L. (2016) Carbon-Based Metal-Free Catalysts. Nature Reviews Materials, 1, Article No. 16064.
https://doi.org/10.1038/natrevmats.2016.64
[58] Zhang, Z., Yi, Z., Wang, J., Tian, X., Xu, P., Shi, G., et al. (2017) Nitrogen-Enriched Polydopamine Analogue-Derived Defect-Rich Porous Carbon as Bifunctional Metal-Free Electrocat-alysts for Highly Efficient Overall Water Splitting. Journal of Materials Chemistry A, 5, 17064-17072.
https://doi.org/10.1039/C7TA03999A
[59] Jiao, Y., Zheng, Y., Davey, K. and Qiao, S.-Z. (2016) Activity Origin and Catalyst Design Principles for Electrocatalytic Hydrogen Evolution on Heteroatom-Doped Graphene. Nature Energy, 1, Article No. 16130.
https://doi.org/10.1038/nenergy.2016.130
[60] Zheng, Y., Jiao, Y., Zhu, Y., Li, L.H., Han, Y., Chen, Y., et al. (2014) Hydrogen Evolution by a Metal-Free Electrocatalyst. Nature Communications, 5, Article No. 3783.
https://doi.org/10.1038/ncomms4783
[61] Niu, W. and Yang, Y. (2018) Graphitic Carbon Nitride for Electro-chemical Energy Conversion and Storage. ACS Energy Letters, 3, 2796-2815.
https://doi.org/10.1021/acsenergylett.8b01594
[62] Zhao, Y., Zhao, F., Wang, X.P., Xu, C., Zhang, Z., Shi, G., et al. (2014) Graphitic Carbon Nitride Nanoribbons: Graphene-Assisted Formation and Synergic Function for Highly Effi-cient Hydrogen Evolution. Angewandte Chemie, 126, 14154-14159.
https://doi.org/10.1002/ange.201409080
[63] Duan, J., Chen, S., Jaroniec, M. and Qiao, S.Z. (2015) Porous C3N4 Nanolayers@N-Graphene Films as Catalyst Electrodes for Highly Efficient Hydrogen Evolution. ACS Nano, 9, 931-940.
https://doi.org/10.1021/nn506701x
[64] Tan, X., Tahini, H.A. and Smith, S.C. (2016) p-Doped Gra-phene/Graphitic Carbon Nitride Hybrid Electrocatalysts: Unravelling Charge Transfer Mechanisms For Enhanced HER Performance. ACS Catalysis, 6, 7071-7077.
https://doi.org/10.1021/acscatal.6b01951