Mycielskian图的凸控制和弱凸控制数的研究
Research on Convex and Weakly Convex Domination Numbers of Mycielskian Graphs
DOI: 10.12677/AAM.2021.109330, PDF, HTML, 下载: 247  浏览: 319  国家自然科学基金支持
作者: 谢克莱·热不哈提*, 边 红*, 于海征:新疆师范大学数学科学学院,新疆 乌鲁木齐
关键词: 控制集凸控制数弱凸控制数Mycielskian图完全图完全二部图Dominating Set Convex Domination Number Weakly Convex Domination Number Mycielskian Graph Complete Graph Complete Bipartite Graph
摘要: 令 G = (V, E) 是一个连通图。用 dG(u, v) 表示图 G 中的两个顶点 u 和 u 之间的最短(u, v) 路的长 ,一个长 为 dG(u, v) 的(u, v) 路 一个(u, v) -测地线。图 G 的一个点子集 X ⊆ V 叫做图 G 的一个弱凸集,如果对 X 中的任意两个顶点 a, b ,在图 G 中都存在一个(a, b) -测地线使信(a, b) -测地线上的所有顶点都属千 X. 类似地,图 G 的一个点子集 X ⊆ V 叫做图 G 的一个凸集,如果对 X 中的任意两个顶点 a, b, 图 G 中的每一条(a, b) -测地线上的所有顶点都属千 X。图 G 的一个点子集 D ⊆ V 叫做图 G 的一个控制集,如果 V -D 中的每一个顶点都至少有一个邻点在 D 中. V 的点子集 X     为 G 的弱凸(或凸)控制集,如果 X 既是弱凸(或凸)集又是控制集。图 G 的弱凸(或凸)控制数,是点数最少的弱凸(或凸)控制集所包含的点数,记为 γwcon(G) (或γcon(G)). 本文主要给出了一些特殊图的Mycielskian图的控制数、弱凸控制数和凸控制数的确切值。
Abstract: The distance dG(u, v) between two vertices u and v in a connected graph G = (V, E) is the length of the shortest (u, v) path in G.  A (u, v)-path of length dG(u, v) is called a  (u, v)-geodesic.   A subset X ⊆ V  is called weakly convex  in G if for every two  vertices   a, b ∈ X, there exists an (a, b)-geodesic, whose all vertices belong to X, and a subset X ⊆ V is called convex in G if for every two vertices a, b ∈ X, for every (a, b)-geodesic, whose all vertices belong to X. A subset D ⊆ V is called dominating in G, if for every vertex of V − D has at least one neighbor in D.  A set X ⊆ V  is called weakly convex  (or convex) dominating set in G if it is weakly convex (or convex) and dominating. The weakly convex (or convex) domination number of a graph  G is  the  minimum  cardinality  of a weakly convex (or convex) dominating set of G, denoted by γwcon(G) (or γcon(G)), respectively. In this paper, we present the exactly values of the domination numbers, weakly convex domination numbers and convex domination numbers for Mycielskian graphs of some special graphs.
文章引用:谢克莱·热不哈提, 边红, 于海征. Mycielskian图的凸控制和弱凸控制数的研究[J]. 应用数学进展, 2021, 10(9): 3159-3168. https://doi.org/10.12677/AAM.2021.109330

参考文献

[1] Topp, J. (2002) Personal Communication. Gdan´sk University of Technology, Gdan´sk.
[2] Leman´ska, M. (2004) Weakly Convex and Convex Domination Numbers. Opuscula Mathemat- ica, 24, 181-188.
[3] Raczek, J. (2004) NP-Completeness of Weakly Convex and Convex Dominating Set Decision Problems. Opuscula Mathematica, 24, 189-196.
[4] Raczek, J. and Leman´ska, M. (2010) A Note on the Weakly Convex and Convex Domination Numbers of a Torus. Discrete Applied Mathematics, 158, 1708-1713.
https://doi.org/10.1016/j.dam.2010.06.001
[5] Leman´ska, M. (2010) Nordhaus-Gaddum Results for Weakly Convex Domination Number of a Graph. Discussiones Mathematicae Graph Theory, 30, 257-263.
https://doi.org/10.7151/dmgt.1491
[6] Dettlaff, M., Kosari, S., Leman´ska, M. and Sheikholeslami, S.M. (2016) Weakly Convex Dom- ination Subdivision Number of a Graph. Filomat, 30, 2101-2110.
https://doi.org/10.2298/FIL1608101D
[7] Rosicka, M. (2019) Convex and Weakly Convex Domination in Prism Graphs. Discussiones Mathematicae Graph Theory, 39, 741-755.
https://doi.org/10.7151/dmgt.2207
[8] Dettlaff, M., Leman´ska, M. and Osula, D. (2019) On the Connected and Weakly Convex Domination Numbers. arXiv:1902.07505v1
[9] Mycielski, J. (1995) Sur le coloriage des graphs. Colloquium Mathematicum, 3, 161-162.
https://doi.org/10.4064/cm-3-2-161-162