微生物群肠脑轴与酒精依赖综合征的研究进展
Advances in Microbiota-Gut-Brain Axis and Alcohol Dependence Syndrome
DOI: 10.12677/OJNS.2022.101009, PDF, HTML, XML, 下载: 512  浏览: 1,160  国家自然科学基金支持
作者: 魏 巍*, 杨 朔*, 张 柠, 黎 宽, 连心情, 徐冲冲:昆明医科大学法医学院,云南 昆明;卢晓筱:昆明医科大学法医学院,云南 昆明;北京通达首诚司法鉴定所,北京;张旭兰:昆明医科大学附属精神卫生中心,云南 昆明;云南省精神病医院,云南 昆明;钟树荣#:昆明医科大学法医学院,云南 昆明;昆明医科大学司法鉴定中心,云南 昆明
关键词: 酒精依赖综合征肠道微生物微生物群–肠–脑轴Alcohol Dependence Syndrome Gut Microbiota Microbiota-Gut-Brain Axis
摘要: 酒精依赖综合征是一种较为严重的精神疾病,导致患者躯体受损,心理改变,甚至危害社会等。研究表明,酒精依赖综合征患者由于长期饮酒,导致肠道内微生物的种类和数量发生明显变化,诱发机体免疫炎症等反应,影响情绪和认知,增加患者对酒精的渴求,导致患者躯体和精神的依赖。研究表明,“微生物群–肠–脑轴”在酒精依赖综合征的发生发展过程中发挥着重要作用,有望成为酒依赖治疗的新靶点。本文结合国内外最新的研究进展,首先综述了微生物群–肠–脑的概念及相互作用,其次阐述了微生物群–肠–脑轴与酒精依赖综合征的研究进展,为酒精依赖的预防和治疗提供新思路。
Abstract: Alcohol dependence syndrome is a serious mental disease, which leads to physical damage, psychological change, and even harms the society. Studies have shown that long-term drinking in patients with alcohol dependence syndrome will lead to significant changes in the type and number of gut microbiota, induce immune inflammation and other reactions, affect emotion and cognition, increase patients’ thirst for alcohol, and lead to physical and mental dependence of patients. Studies have shown that the “Microbiota-Gut-Brain Axis” plays an important role in the occurrence and development of alcohol dependence syndrome, and is expected to become a new target for the treatment of alcohol dependence. Based on the latest research progress at home and abroad, this paper firstly reviewed the concept and interaction of Microbiota-Gut-Brain Axis, and then described the research progress of Microbiota-Gut-Brain Axis and alcohol dependence syndrome, providing new ideas for the prevention and treatment of alcohol dependence.
文章引用:魏巍, 杨朔, 卢晓筱, 张柠, 张旭兰, 黎宽, 连心情, 徐冲冲, 钟树荣. 微生物群肠脑轴与酒精依赖综合征的研究进展[J]. 自然科学, 2022, 10(1): 70-78. https://doi.org/10.12677/OJNS.2022.101009

1. 引言

酒精依赖综合征(Alcohol Dependence Syndrome, ADS),也称为酒精依赖、酒精成瘾、酒精中毒等,指反复大量饮酒引起的一系列行为、认知和生理现象,表现为对酒精的渴求和经常需要饮酒的强迫性体验,可连续或间断出现,停止饮酒常出现戒断症状,恢复饮酒则症状消失,是饮酒导致的精神和躯体依赖 [1]。研究表明,ADS是遗传和环境因素共同作用的一种复杂疾病 [2]。肠道作为人体重要的消化吸收器官,与人体的健康息息相关。随着人类微生物组计划(Human Microbiome Project, HMP)第二阶段研究的完成,人们发现肠道中的微生物对人体健康有着重要的影响 [3]。越来越多的研究表明,肠道菌群紊乱与机体多种疾病存在相关性,如肥胖 [4]、糖尿病 [5]、心血管疾病 [6]、帕金森病 [7]、焦虑 [8]、抑郁 [9]、精神分裂症 [10]、阿尔茨海默病 [11]、自闭症 [12] 等。肠道和大脑之间存在着复杂的双向交流,对疾病的产生有重要影响。因此了解微生物群–肠–脑轴的作用机制,有助于我们对ADS的深入了解与研究,对酒依赖的预防和治疗具有重要意义。本文就微生物群–肠–脑轴与酒依赖综合征的研究进展作一综述。

2. 微生物群–肠–脑轴

肠道微生物群(Gut microbiota),又称为肠道菌群,是指肠道内与之共生的微生物群,由影响正常生理和改变宿主对疾病易感性的数以万亿计的微生物组成 [13],包括细菌、古细菌、病毒和噬菌体等 [14]。肠道与肠道共生的微生物群落构成了复杂的微生态系统,不论在数量上还是种类上都维持着相对稳定的状态。肠道微生物群的组成在生命初期建立,受个体遗传、母亲垂直传播、饮食、胃肠道感染、精神压力和包括抗生素在内的药物等多因素影响。肠道微生物通过分解食物中复杂的多糖来影响人体代谢,除此之外,肠道微生物还能调节肠道屏障系统功能、肠道蠕动和脂肪分布,防止病原菌定植以及利用肠道相关淋巴组织影响免疫功能 [15]。

肠道微生物群、肠道以及大脑共同构成了微生物群–肠–脑轴(Microbiota-Gut-Brain Axis, MGB轴) [16]。研究表明,微生物群–肠–脑轴是一个复杂的双向交流系统。肠道微生物群及其代谢物不仅可以通过免疫和内分泌等多种途径影响肠神经系统,也可通过迷走神经、免疫以及下丘脑–垂体–肾上腺轴等对中枢神经系统发挥调控作用 [17] [18]。此外,中枢神经系统及肠神经系统也会发挥调控作用影响肠道微生物的功能和组成。中枢神经系统对肠道微生物的影响作用途径主要包括两条,一条是直接途径,通过信号分子释放直接作用肠道固有层细胞,中枢系统可控制肠神经系统的神经元、免疫细胞、肠嗜铬细胞等分泌的儿茶酚胺、5-羟色胺等物质进入肠腔,进而影响肠道微生物的种类和数量 [19]。另一条是间接途径,通过调节胃肠蠕动和分泌功能调节肠道微生物组成 [20]。

2.1. 微生物对肠神经系统的影响

在哺乳动物中,肠神经系统由镶嵌于肠道内壁数以百万计的神经元和神经胶质细胞组成 [21]。研究表明,无菌小鼠肠神经系统的数量及其形成的网络复杂性严重减少。当给无菌小鼠移植正常的肠道微生物群4周后,可观察到粘膜肠神经系统网络的数量和复杂性显着增加 [22]。De Vadder等 [23] 研究表明,无菌小鼠表现出未成熟的肠道神经系统,但将正常小鼠的粪菌移植到无菌小鼠后,肠道微生物群将通过影响5-HT的释放,作用于肠神经元的5-羟色氨4受体(5-HTR4)促进肠道神经系统的成熟。肠神经系统可以调节肠道蠕动,肠道微生物也可以通过短链脂肪酸等代谢产物刺激肠神经系统,进而影响肠道蠕动 [24]。肠道微生物及其代谢物可通过免疫和内分泌等多种途径影响肠神经系统。

2.2. 微生物对中枢神经系统的影响

肠道微生物群组成在个体之间变化很大,肠道微生物的组成改变可能会影响神经递质γ-氨基丁酸产生以及发酵产物短链脂肪酸产生。以上证据表明,肠道微生物组成改变可能与神经系统正常功能变化有关,这种途径包括迷走神经传入、免疫和HPA轴调控。

2.2.1. 迷走神经通路

迷走神经由大约80%的传入神经构成,控制几个器官的功能,如调节心率和胃肠运动。其主要收集从食道到结肠的感觉信号,传入到中枢神经系统。Lyte等 [25] 研究发现,将枸橼酸杆菌(Citrobacter)移植到小鼠胃肠道一段时间后,小鼠表现出明显焦虑样行为,并且在此阶段机体主要免疫反应尚未发挥作用。此后的研究 [26] 发现,枸橼酸杆菌(Citrobacter)可增加迷走神经通路活性,快速激活孤束核和外侧旁核及杏仁核等内脏感觉和焦虑的大脑区域。实验结果表明,神经系统可以感知肠道急性变化以及识别病原体存在。切断迷走神经能够消除微生物调节的行为改变。Bravo等 [17] 研究发现,切断老鼠的迷走神经,用益生菌进行治疗,未发现受试老鼠行为改变,同时将双歧杆菌(Bifidobacterium)移植到迷走神经切断的大鼠体内,其行为也未发生改变。只有在完整的迷走神经系统存在的前提下,乳酸杆菌(Lactobacillus)才可对小鼠的神经生物学和行为产生影响 [27]。进一步证实了迷走神系统在微生物–肠–脑轴中的重要性。

2.2.2. 免疫系统通路

进入机体的微生物都有免疫原性,会被人体免疫系统识别诱发各种免疫反应。人类经过数千万年进化,肠道微生物达到了平衡状态,可以与机体共生,也可以识别病原体激活免疫反应。神经系统与免疫系统有不断的双向交流,以至于微生物对神经系统的影响不能脱离免疫系统 [28]。微生物在肠道内将膳食纤维分解代谢成短链脂肪酸(SCFA)调节肠道适应性免疫反应 [29],并在调节中枢神经系统功能中发挥关键作用 [30]。MacFabe等 [31] 将SCFAs直接注入啮齿类动物大脑并检测其行为,发现丙酸可增加损害社会的行为,而丁酸可减少抑郁样行为,同时组蛋白乙酰化和脑源性神经营养因子(BDNF)表达也发生变化 [32]。许多实验观察到肠道微生物群多样性越高,免疫水平越稳定;肠道微生物群多样性越低,免疫水平越不稳定,共生细菌可以改变免疫系统反应 [33]。

2.2.3. 下丘脑–垂体–肾上腺轴(HPA轴)调控

众所周知,HPA轴对学习和记忆功能非常重要,当HPA轴紊乱时可导致海马记忆功能损害,因此HPA轴也是微生物影响中枢的重要途径。日本一项研究表明,肠道早期暴露于特定微生物群会减少成年无菌小鼠HPA轴过度反应 [34]。饲喂益生菌可以减弱HPA轴对压力的反应 [35]。Tillisch等 [36] 通过核磁共振检查发现,女性受试者饮用含有益生菌的酸奶后,控制脑记忆和感觉处理脑区域的内在活动发生了改变。同时Messaoudi等 [37] 在实验中也发现,健康成年人服用益生菌后情绪可获得改善,同时尿皮质醇水平减低。Sudo [38] 等人利用无菌小鼠模型证实了肠道微生物群对行为和大脑化学的影响,实验中雄性无菌小鼠表现出HPA轴应激反应升高。HPA轴在应激暴露期间激活下丘脑释放促肾上腺皮质激素释放激素(CRH),HPA轴激活导致糖皮质激素释放,糖皮质激素显著增高又可进一步影响胃肠生理。

2.3. 中枢神经系统对肠道微生物的影响

肠道微生物可以影响肠神经系统和中枢神经系统功能,同时肠神经系统和中枢神经系统也会发挥调控作用影响肠道微生物的功能和组成。中枢神经系统对肠道微生物的影响作用途径主要包括两条,一条是直接途径,通过信号分子释放直接作用肠道固有层细胞,中枢系统可控制肠神经系统的神经元、免疫细胞、肠嗜铬细胞等分泌的儿茶酚胺、5-羟色胺等物质进入肠腔,进而影响肠道微生物的种类和数量。另一条是间接途径,通过调节胃肠蠕动和分泌功能调节肠道微生物组成。

当机体情绪发生变化时,肠道微生物的种类和数量也会发生变化。交感神经和副交感神经、HPA轴及调节疼痛不适的内源性通路组成一个系统,不论是单独或者组合激活该系统组份,都可改变肠道环境,进一步影响肠道微生物群的种类和数量。肠道微生物群主要寄生在肠黏液层,而上述系统对肠黏液层形成至关重要,从而直接或间接改变肠道微生物群的定植。Alverdy [39] 等证实外科手术创伤引起去甲肾上腺素进入肠腔后,铜绿假单胞杆菌(Pseudomonas aeruginosa)繁殖速度迅速增加,导致机体出现脓毒血症。Demaude [40] 等通过研究发现,在压力刺激下,肠道胶质细胞和肥大细胞被激活,产生过量TNF-γ,使紧密连接蛋白含量降低减弱肠上皮细胞的屏障作用,肠道上皮细胞渗透性增加,细菌进入肠道上皮触发肠道黏膜层免疫反应。出生后与母亲分离的子代动物表现出焦虑的同时伴随乳酸杆菌(Lactobacillus)水平下降,机体抵抗力也弱于正常对照组,Bailey等 [41] 推测出现这种现象的原因可能是出生不久的子代动物与母亲分离后产生应激反应,导致肠蠕动加快,乳酸杆菌(Lactobacillus)排除增多导致。

以上研究证明胃肠道与大脑之间存在持续双向信息交流,一旦这个强大的网络出现差错,将导致机体疾病产生。

3. MGB轴和ADS

ADS患者肠道菌群紊乱,有益菌减少,有害菌增多。伴随肠通透性的增加,有害代谢物从肠道进入外周血液循环,甚至进入中枢神经系统,对人体造成进一步的损害。

3.1. ADS肠道微生物群及其代谢物发生改变

Dubinkina等 [42] 对ADS患者肠道微生物进行宏基因组测序分析发现,ADS患者瘤胃球菌(Ruminococcus)显著增加(P < 0.05),粪便杆菌(Faecalibacterium)和阿克曼氏菌(Akkermansia)明显减少(P < 0.05)。Mutlu等 [43] 将健康对照组与有或没有肝病的酒精中毒者进行比较研究发现,酒精中毒者肠道微生物组中拟杆菌属(Bacteroidetes)的丰度显著低于健康对照组(P = 0.035),而变形杆菌属(Proteobacteria)丰度则明显高于健康对照组(P = 0.001)。而动物模型的研究结果则与人的不同,Kosnicki等 [44] 对酒精消耗大鼠和健康对照大鼠肠道微生物进行α多样性和β多样性比较发现,对照组具有比酒精消耗组大鼠更高的物种丰富度和系统发育多样性,食用酒精的大鼠肠道微生物群的生物多样性显著下降(加权UniFrac, P = 0.033),同时,酒精消耗大鼠特定微生物的相对丰度在门水平和属水平均存在显著的差异,在门水平上表现为厚壁菌门(Firmicutes)的相对减少(P < 0.05)和拟杆菌门(Bacteroidetes)的相对增加(P = 5.1E−05),在属水平上,则表现为乳酸杆菌属(Lactobacillus)的明显降低(P = 4.9E−12)。ADS患者除了肠道微生物群组成发生改变外,肠道中的代谢物也会发生显著的改变。Leclercq等人 [45] 的研究表明,酒依赖患者与健康人群的肠道代谢物存在显著的差异(P < 0.05)。在酒依赖患者中醇类、酚类、吲哚类、烷烃类和苯类代谢物显著高于健康人群。一项针对慢性过度酒精消费者的研究提示,慢性过度酒精消费者肠道中的丁酸盐的含量显著低于健康人群,相关性分析表明,粪杆菌属(Faecalibacterium)丰度与丁酸盐水平呈正相关(r = 0.4, P = 0.05),而变形杆菌属(Protebacterium)的丰度与丁酸盐水平呈负相关(r = −0.61, P = 0.002) [46]。

3.2. ADS患者肠通透性改变

在一项针对酒依赖患者与健康对照人群的研究中,Leclercq等人 [45] 采用乙二胺四乙酸的检测方法来判断酒依赖患者的肠道通透性,结果表明酒依赖患者的肠道通透性显著高于健康人群(P < 0.001)。Donnadieu-Rigole等 [47] 的研究结果显示,戒酒前酒精使用障碍患者连蛋白(Zonulin)和脂肪酸结合蛋白 (I-FABP)的血浆水平显著高于健康对照组(P < 0.001);而戒酒6周后,二者的血浆水平显著下降(P < 0.05)。结果提示酒精使用障碍患者肠道通透性增加。Barr等 [48] 研究表明,慢性酒精消耗可通过肠固有层白细胞产生的免疫因子IFN-γ、TNF-α、IL-6和CCL2介导空肠和回肠免疫炎症反应,从而改变肠道通透性和肠道功能。综上所述,ADS患者肠道生态失调、肠道屏障功能被破坏,导致肠道通透性增加 [49] [50]。

3.3. ADS患者免疫炎症反应改变

ADS患者因长期大量饮酒引起肠道微生物组成和肠道通透性发生改变,导致肠道内毒素产生增加,内毒素与肠粘膜上的细胞结合,引起局部炎症,并转移到肠外部位,引起全身性炎症 [51]。肠道炎症是免疫系统对酒精及其代谢产物的炎症反应。ADS患者表现为肠道免疫系统对病原体敏感性增加 [52],同时酒精会触发免疫系统反应并促进炎症反应分子上调,释放炎性免疫细胞。酒精还抑制肠道对细菌的防御,即调节分泌抗菌化合物的Paneth细胞,来影响粘膜免疫力 [53]。ADS患者除了肠道炎症,还有外周的免疫炎症。ADS患者线粒体内产生的活性氧,促进炎症小体NLRP3的过度激活,过度激活的炎症小体NLRP3可促进促炎细胞因子IL-1β和IL-18的合成和分泌 [54],并可引起外周炎症反应,如痛风 [55]、糖尿病 [56] 和慢性胰腺炎 [57]。在ADS患者表现为肠道脂多糖和肽聚糖增加,增加的脂多糖和肽聚糖进入外周,两者都激活外周血单核细胞中各自的Toll样受体,引起外周炎症反应 [58] [59]。在中枢水平上,ADS患者同样也存在中枢神经系统的炎症反应。Leclercq等 [60] 研究表明,将酒依赖患者的粪便微生物移植到经抗生素处理的小鼠,经抗生素处理的小鼠额叶皮层和纹状体中髓鞘形成相关基因(MobpMog)表达的下调,纹状体中促炎细胞因子(TNF-α和IL1β)和趋化因子(Cxcl15和Ccl2)的mRNA表达显着上调。Lowe等 [61] 通过对慢性饮酒急性发作小鼠进行抗生素治疗发现,抗生素极大地减少了酒精喂养小鼠肠道微生物组负荷,并且酒精引起的神经炎症和小肠细胞因子表达增加在用抗生素治疗的小鼠中也得到减轻,从而缓解酒精引起的大脑变化。

3.4. ADS患者焦虑抑郁样行为与肠道微生物群相关

ADS患者经常共病其它精神疾病,尤其以抑郁症、焦虑症多见,约占30% [62] [63]。ADS患者伴随的严重焦虑抑郁样反应与大脑中重要的神经递质5-HT有关,肠道微生物可能通过影响该受体在不同脑区的分布及脑内5-HT水平,从而加重ADS的严重程度,恢复肠道微生物水平能纠正小鼠焦虑、抑郁状态 [64]。在一项临床病例对照研究中,ADS患者表现出肠道菌群的改变和出现焦虑抑郁样行为,并且在酒精戒断3周后部分ADS患者任然表现出与健康人群存在显著差异的焦虑抑郁样行为 [45]。Xiao等人 [65] 的研究中发现,过量饮酒的小鼠酒精戒断后可引起小鼠焦虑样行为,将过量饮酒的小鼠粪菌移植到健康小鼠,健康小鼠也出现了同样的焦虑样行为。此外,在一项慢性酒精暴露的小鼠实验中,将健康小鼠的粪菌移植到慢性酒精暴露的小鼠肠道中,小鼠的肠道微生物群得到改善,同时接受粪菌移植的慢性酒精暴露小鼠的焦虑抑郁样行为与慢性酒精暴露小鼠存在显著差异,而与健康小鼠无显著差异 [66]。

4. 展望

2021年4月10日,上海交通大学携手Science杂志发布了“新125个科学问题”,这其中就包括“我们的微生物组在健康和疾病中扮演什么角色?”“什么是成瘾?”。由此可见,成瘾以及包括肠道微生物在内的微生物组学的研究,现已成为全球关注的热点问题。目前对于“微生物群–肠–脑轴”与ADS的研究主要集中于肠道微生物群及其代谢物与ADS的关联分析上。ADS患者肠道微生物群及其代谢物发生改变与ADS的精神行为存在密切的联系,但ADS患者与健康人群间的差异菌群及其代谢物引起ADS患者脑功能及行为改变的机制仍然是不明确的。未来可以通过建立啮齿类以及非人灵长类等动物ADS模型,移植外源的特异性菌株或者菌群,或者添加外源的差异代谢物等干预手段,进一步验证特异性菌株或者菌群,以及差异代谢物在ADS发生发展中的作用。采用微生物组学、代谢组学、细胞生物学、分子生物学、免疫学以及形态学等多组学联合,研究“微生物群–肠–脑轴”在ADS发生发展中的作用机制,将会为酒精依赖的预防和治疗提供新的思路和依据。

基金项目

国家自然科学基金资助项目(项目编号:81660232,项目编号:81000577);云南省科技厅生物医药邻域重大专项(项目编号:2019ZF003);昆明医科大学百名中青年学术技术骨干项目(项目编号:60117190413)。

NOTES

*共一作者。

#通讯作者。

参考文献

[1] World Health Organization (2003) International Classification of Diseases 10th Revision (ICD-10). http://www.who.int/classifications/icd/en
[2] Reilly, M.T., Noronha, A., Goldman, D., et al. (2017) Genetic Studies of Alcohol Dependence in the Context of the Addiction Cycle. Neuropharmacology, 122, 3-21.
https://doi.org/10.1016/j.neuropharm.2017.01.017
[3] Integrative, H.M.P. (iHMP) Research Network Consortium (2019) The Integrative Human Microbiome Project. Nature, 569, 641-648.
https://doi.org/10.1038/s41586-019-1238-8
[4] Pitocco, D., Di Leo, M., Tartaglione, L., et al. (2020) The Role of Gut Microbiota in Mediating Obesity and Diabetes Mellitus. European Review for Medical and Pharmacological Sciences, 24, 1548-1562.
[5] Scheithauer, T.P.M., Rampanelli, E., Nieuwdorp, M., et al. (2020) Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes. Frontiers in Immunology, 11, 2546.
https://doi.org/10.3389/fimmu.2020.571731
[6] Witkowski, M., Weeks, T.L. and Hazen, S.L. (2020) Gut Microbiota and Cardiovascular Disease. Circulation Research, 127, 553-570.
https://doi.org/10.1161/CIRCRESAHA.120.316242
[7] Vascellari, S., Palmas, V., Melis, M., et al. (2020) Gut Microbiota and Metabolome Alterations Associated with Parkinson’s Disease. Msystems, 5, e00561-20.
https://doi.org/10.1128/mSystems.00561-20
[8] Jiang, H.Y., Zhang, X., Yu, Z.H., et al. (2018) Altered Gut Microbiota Profile in Patients with Generalized Anxiety Disorder. Journal of Psychiatric Research, 104, 130-136.
https://doi.org/10.1016/j.jpsychires.2018.07.007
[9] Liang, S., Wu, X., Hu, X., et al. (2018) Recognizing Depression from the Microbiota-Gut-Brain Axis. International Journal of Molecular Sciences, 19, 1592.
https://doi.org/10.3390/ijms19061592
[10] Zhu, F., Ju, Y., Wang, W., et al. (2020) Metagenome-Wide Association of Gut Microbiome Features for Schizophrenia. Nature Communications, 11, Article No. 1612.
https://doi.org/10.1038/s41467-020-15457-9
[11] Jiang, C., Li, G., Huang, P., et al. (2017) The Gut Microbiota and Alzheimer’s Disease. Journal of Alzheimer’s Disease, 58, 1-15.
https://doi.org/10.3233/JAD-161141
[12] De Angelis, M., Francavilla, R., Piccolc, M., et al. (2015) Autism Spectrum Disorders and Intestinal Microbiota. Gut Microbes, 6, 207-213.
https://doi.org/10.1080/19490976.2015.1035855
[13] Lozupone, C.A., Stombaugh, J.I., Gordon, J.I., et al. (2012) Diversity, Stability and Resilience of the Human Gut Microbiota. Nature, 489, 220-230.
https://doi.org/10.1038/nature11550
[14] Breitbart, M., Hewson, I., Felts, B., et al. (2003) Metagenomic Analyses of an Uncultured Viral Community from Human Feces. Journal of Bacteriology, 185, 6220-6223.
https://doi.org/10.1128/JB.185.20.6220-6223.2003
[15] 朱锡群, 易伟. 微生物群–脑–肠轴和中枢神经系统研究进展[J]. 疑难病杂志, 2018, 17(7): 748-752.
[16] Grenham, S., Clarke, G., Cryan, J.F., et al. (2011) Brain-Gut-Microbe Communication in Health and Disease. Frontiers in Physiology, 2, Article No. 94.
https://doi.org/10.3389/fphys.2011.00094
[17] Bravo, J.A., Forsythe, P., Chew, M., et al. (2011) Ingestion of Lactobacillus Strain Regulates Emotional Behavior and Central GABA Receptor Expression in a Mouse via the Vagus Nerve. Proceedings of the National Academy of Sciences of the United States of America, 108, 16050-16055.
https://doi.org/10.1073/pnas.1102999108
[18] Lvte, M. (2013) Microbial Endocrinology in the Microbiome-Gut-Brain Axis: How Bacterial Production and Utilization of Neurochemicals Influence Behavior. PLOS Pathogens, 9, e1003726.
https://doi.org/10.1371/journal.ppat.1003726
[19] Montiel-Castro, A.J., Gonzalez-Cervantes, R.M., Bravo-Ruiseco, G., et al. (2013) The Microbiota-Gut-Brain Axis: Neurobehavioral Correlates, Health and Sociality. Frontiers in Integrative Neuroscience, 7, Article No. 70.
https://doi.org/10.3389/fnint.2013.00070
[20] Brandscheid, C., Schuck, F., Reinhardt, S., et al. (2017) Altered Gut Microbiome Composition and Tryptic Activity of the 5xFAD Alzheimer’s Mouse Model. Journal of Alzheimer’s Dis-ease, 56, 775-788.
https://doi.org/10.3233/JAD-160926
[21] Holland, A.M., Bon-Frauches, A.C., Keszthelyi, D., et al. (2021) The Enteric Nervous System in Gastrointestinal Disease Etiology. Cellular and Molecular Life Sciences, 78, 4713-4733.
https://doi.org/10.1007/s00018-021-03812-y
[22] Kabouridis, P.S., Lasrado, R., Mccallum, S., et al. (2015) The Gut Microbiota Keeps Enteric Glial Cells on the Move; Prospective Roles of the Gut Epithelium and Immune System. Gut Microbes, 6, 398-403.
https://doi.org/10.1080/19490976.2015.1109767
[23] De Vadder, F., Grasset, E., Manneras, H.L., et al. (2018) Gut Microbiota Regulates Maturation of the Adult Enteric Nervous System via Enteric Serotonin Networks. Proceedings of the National Academy of Sciences of the United States of America, 115, 6458-6463.
https://doi.org/10.1073/pnas.1720017115
[24] Dalile, B., Vanoudenhove, L., Vervliet, B., et al. (2019) The Role of Short-Chain Fatty Acids in Microbiota-Gut-Brain Communication. Nature Reviews Gastroenterology & Hepatology, 16, 461-478.
https://doi.org/10.1038/s41575-019-0157-3
[25] Lyte, M., Li, W., Opitz, N., et al. (2006) Induction of Anxie-ty-Like Behavior in Mice during the Initial Stages of Infection with the Agent of Murine Colonic Hyperplasia Citrobacter rodentium. Physiology & Behavior, 89, 350-357.
https://doi.org/10.1016/j.physbeh.2006.06.019
[26] Goehler, L.E., Park, S.M., Opitz, N., et al. (2008) Campylo-bacter jejuni Infection Increases Anxiety-Like Behavior in the Holeboard: Possible Anatomical Substrates for Vis-cerosensory Modulation of Exploratory Behavior. Brain, Behavior, and Immunity, 22, 354-366.
https://doi.org/10.1016/j.bbi.2007.08.009
[27] Bercik, P., Park, A.J., Sinclair, D., et al. (2011) The Anxiolytic Ef-fect of Bifidobacterium longum NCC3001 Involves Vagal Pathways for Gut-Brain Communication. Neurogastroenter-ology & Motility, 23, 1132-1139.
https://doi.org/10.1111/j.1365-2982.2011.01796.x
[28] Diaz Heijtz, R., Wang, S., Anuar, F., et al. (2011) Normal Gut Microbiota Modulates Brain Development and Behavior. Proceedings of the National Academy of Sciences of the United States of America, 108, 3047-3052.
https://doi.org/10.1073/pnas.1010529108
[29] Smith, P.M., Howitt, M.R., Panikov, N., et al. (2013) The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis. Science (New York, NY), 341, 569-573.
https://doi.org/10.1126/science.1241165
[30] Louis, P. and Flint, H.J. (2009) Diversity, Metabolism and Microbial Ecology of Butyrate-Producing Bacteria from the Human Large Intestine. FEMS Microbiology Letters, 294, 1-8.
https://doi.org/10.1111/j.1574-6968.2009.01514.x
[31] Macfabe, D.F., Cain, N.E., Boon, F., et al. (2011) Effects of the Enteric Bacterial Metabolic Product Propionic Acid on Object-Directed Behavior, Social Behavior, Cognition, and Neuroinflammation in Adolescent Rats: Relevance to Autism Spectrum Disorder. Behavioural Brain Research, 217, 47-54.
https://doi.org/10.1016/j.bbr.2010.10.005
[32] Gorski, J.A., Zeiler, S.R., Tamowski, S., et al. (2003) Brain-Derived Neurotrophic Factor Is Required for the Maintenance of Cortical Dendrites. The Journal of Neuroscience, the Official Journal of the Society for Neuroscience, 23, 6856-6865.
https://doi.org/10.1523/JNEUROSCI.23-17-06856.2003
[33] Kuhn, K.A. and Stappenbeck, T.S. (2013) Peripheral Education of the Immune System by the Colonic Microbiota. Seminars in Immunology, 25, 364-369.
https://doi.org/10.1016/j.smim.2013.10.002
[34] Gareau, M.G., Wine, E., Rodrigues, D.M., et al. (2011) Bacterial Infection Causes Stress-Induced Memory Dysfunction in Mice. Gut, 60, 307-317.
https://doi.org/10.1136/gut.2009.202515
[35] Lewis, S. and Cochrane, S. (2007) Alteration of Sulfate and Hydro-gen Metabolism in the Human Colon by Changing Intestinal Transit Rate. The American Journal of Gastroenterology, 102, 624-633.
https://doi.org/10.1111/j.1572-0241.2006.01020.x
[36] Tillisch, K., Labus, J., Kilpatrick, L., et al. (2013) Con-sumption of Fermented Milk Product with Probiotic Modulates Brain Activity. Gastroenterology, 144, 1394-1401.
https://doi.org/10.1053/j.gastro.2013.02.043
[37] Messaoudi, M., Lalonde, R., Violle, N., et al. (2011) Assessment of Psychotropic-Like Properties of a Probiotic Formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in Rats and Human Subjects. The British Journal of Nutrition, 105, 755-764.
https://doi.org/10.1017/S0007114510004319
[38] Sudo, N., Chida, Y., Aiba, Y., et al. (2004) Postnatal Microbial Colonization Programs the Hypothalamic-Pituitary-Adrenal System for Stress Response in Mice. The Journal of Physi-ology, 558, 263-275.
https://doi.org/10.1113/jphysiol.2004.063388
[39] Alverdy, J., Holbaook, C., Rocha, F., et al. (2000) Gut-Derived Sepsis Occurs When the Right Pathogen with the Right Virulence Genes Meets the Right Host: Evidence for in Vivo Vir-ulence Expression in Pseudomonas aeruginosa. Annals of Surgery, 232, 480-489.
https://doi.org/10.1097/00000658-200010000-00003
[40] Demaude, J., Salvador-Cartier, C., Fioramonti, J., et al. (2006) Phenotypic Changes in Colonocytes Following Acute Stress or Activation of Mast Cells in Mice: Implications for Delayed Epithelial Barrier Dysfunction. Gut, 55, 655-661.
https://doi.org/10.1136/gut.2005.078675
[41] Bailey, M.T. and Coe, C.L. (1999) Maternal Separation Disrupts the Integrity of the Intestinal Microflora in Infant Rhesus Monkeys. Developmental Psychobiology, 35, 146-155.
https://doi.org/10.1002/(SICI)1098-2302(199909)35:2<146::AID-DEV7>3.0.CO;2-G
[42] Dubinkina, V.B., Tyakht, A.V., Ilina, E.N., et al. (2015) Metagenomic Analysis of Taxonomic and Functional Changes in Gut Microbiota of Patients with Alcoholic Dependence Syndrome. Biomeditsinskaia Khimiia, 61, 742-749.
https://doi.org/10.18097/PBMC20156106742
[43] Mutlu, E.A., Gillevet, P.M., Rangwala, H., et al. (2012) Colon-ic Microbiome Is Altered in Alcoholism. American Journal of Physiology Gastrointestinal and Liver Physiology, 302, G966-G978.
https://doi.org/10.1152/ajpgi.00380.2011
[44] Kosnicki, K.L., Penprase, J.C., Cintora, P., et al. (2019) Effects of Moderate, Voluntary Ethanol Consumption on the Rat and Human Gut Microbiome. Addiction Biology, 24, 617-630.
https://doi.org/10.1111/adb.12626
[45] Leclercq, S., Matamoros, S., Cani, P.D., et al. (2014) Intestinal Permeabil-ity, Gut-Bacterial Dysbiosis, and Behavioral Markers of Alcohol-Dependence Severity. Proceedings of the National Academy of Sciences of the United States of America, 111, E4485-4493.
https://doi.org/10.1073/pnas.1415174111
[46] Bjorkhaug, S.T., Aanes, H., Neupane, S.P., et al. (2019) Character-ization of Gut Microbiota Composition and Functions in Patients with Chronic Alcohol Overconsumption. Gut Microbes, 10, 663-675.
https://doi.org/10.1080/19490976.2019.1580097
[47] Donnadieu-Rigole, H., Pansu, N., Mura, T., et al. (2018) Beneficial Effect of Alcohol Withdrawal on Gut Permeability and Microbial Translocation in Patients with Alcohol Use Disorder. Alcoholism, Clinical and Experimental Research, 42, 32-40.
https://doi.org/10.1111/acer.13527
[48] Barr, T., Lewis, S.A., Sureshchandra, S., et al. (2019) Chronic Ethanol Consumption Alters Lamina Propria Leukocyte Response to Stimulation in a Region-Dependent Manner. FASEB Jour-nal, 33, 7767-7777.
https://doi.org/10.1096/fj.201802780R
[49] Hillemacher, T., Bachmann, O., Kahl, K.G., et al. (2018) Alcohol, Mi-crobiome, and Their Effect on Psychiatric Disorders. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 85, 105-115.
https://doi.org/10.1016/j.pnpbp.2018.04.015
[50] Leclercq, S., Cani, P.D., Neyrinck, A.M., et al. (2012) Role of Intestinal Permeability and Inflammation in the Biological and Behavioral Control of Alcohol-Dependent Subjects. Brain, Behavior, and Immunity, 26, 911-918.
https://doi.org/10.1016/j.bbi.2012.04.001
[51] Leclercq, S., De Saeger, C., Delzenme, N., et al. (2014) Role of In-flammatory Pathways, Blood Mononuclear Cells, and Gut-Derived Bacterial Products in Alcohol Dependence. Biological Psychiatry, 76, 725-733.
https://doi.org/10.1016/j.biopsych.2014.02.003
[52] Zhou, C., Zhao, J., Li, J., et al. (2013) Acute Ethanol Admin-istration Inhibits Toll-Like Receptor 4 Signaling Pathway in Rat Intestinal Epithelia. Alcohol (Fayetteville, NY), 47, 231-239.
https://doi.org/10.1016/j.alcohol.2013.01.003
[53] Bishehsari, F., Magno, E., Swanson, G., et al. (2017) Alcohol and Gut-Derived Inflammation. Alcohol Research, 38, 163-171.
[54] Hoyt, L.R., Randall, M.J., Ather, J.L., et al. (2017) Mitochondrial ROS Induced by Chronic Ethanol Exposure Promote Hyper-Activation of the NLRP3 Inflam-masome. Redox Biology, 12, 883-896.
https://doi.org/10.1016/j.redox.2017.04.020
[55] Amaral, F.A., Costa, V.V., Tavares, L.D., et al. (2012) NLRP3 Inflammasome-Mediated Neutrophil Recruitment and Hypernociception Depend on Leukotriene B(4) in a Murine Model of Gout. Arthritis & Rheumatology, 64, 474-484.
https://doi.org/10.1002/art.33355
[56] Wen, H., Gris, D., Lei, Y., et al. (2011) Fatty Acid-Induced NLRP3-ASC Inflammasome Activation Interferes with Insulin Signaling. Nature Immunology, 12, 408-415.
https://doi.org/10.1038/ni.2022
[57] Kanak, M.A., Shahbazov, R., Yoshimatsu, G., et al. (2017) A Small Molecule Inhibitor of NFkappaB Blocks ER Stress and the NLRP3 Inflammasome and Prevents Progression of Pancreatitis. Journal of Gastroenterology, 52, 352-365.
https://doi.org/10.1007/s00535-016-1238-5
[58] Lu, Y.C., Yeh, W.C. and Ohashi, P.S. (2008) LPS/TLR4 Signal Transduction Pathway. Cytokine, 42, 145-151.
https://doi.org/10.1016/j.cyto.2008.01.006
[59] Takada, H. and Uehara, A. (2006) Enhancement of TLR-Mediated Innate Immune Responses by Peptidoglycans through NOD Signaling. Current Pharmaceutical Design, 12, 4163-4172.
https://doi.org/10.2174/138161206778743510
[60] Leclercq, S., Le Roy, T., Furgiuele, S., et al. (2020) Gut Mi-crobiota-Induced Changes in beta-Hydroxybutyrate Metabolism Are Linked to Altered Sociability and Depression in Al-cohol Use Disorder. Cell Reports, 33, Article ID: 108238.
https://doi.org/10.1016/j.celrep.2020.108238
[61] Lowe, P.P., Gyongyosi, B., Satishchandran, A., et al. (2017) Alcohol-Related Changes in the Intestinal Microbiome Influence Neutrophil Infiltration, Inflammation and Steatosis in Early Alcoholic Hepatitis in Mice. PLoS ONE, 12, e0174544.
https://doi.org/10.1371/journal.pone.0174544
[62] Boschloo, L., Vogelzangs, N., Van Den Brink, W., et al. (2013) Depressive and Anxiety Disorders Predicting First Incidence of Alcohol Use Disorders: Results of the Netherlands Study of Depression and Anxiety (NESDA). Journal of Clinical Psychiatry, 74, 1233-1240.
https://doi.org/10.4088/JCP.12m08159
[63] Mellentin, A.I., Nielsen, B., Stenager, E., et al. (2015) The Effect of Co-Morbid Depression and Anxiety on the Course and Outcome of Alcohol Outpatient Treatment: A Naturalistic Prospective Cohort Study. Nordic Journal of Psychiatry, 69, 331-338.
https://doi.org/10.3109/08039488.2014.981857
[64] Clarke, G., Grenham, S., Scully, P., et al. (2013) The Microbiome-Gut-Brain Axis during Early Life Regulates the Hippocampal Serotonergic System in a Sex-Dependent Manner. Molecular Psychiatry, 18, 666-673.
https://doi.org/10.1038/mp.2012.77
[65] Xiao, H.W., Ge, C., Feng, G.X., et al. (2018) Gut Microbiota Modulates Alcohol Withdrawal-Induced Anxiety in Mice. Toxicology Letters, 287, 23-30.
https://doi.org/10.1016/j.toxlet.2018.01.021
[66] Xu, Z., Liu, Z., Dong, X., et al. (2018) Fecal Microbiota Transplantation from Healthy Donors Reduced Alcohol-Induced Anxiety and Depression in an Animal Model of Chronic Alcohol Exposure. The Chinese Journal of Physiology, 61, 360-371.