Toll样受体在幽门螺杆菌感染胃癌中的研究进展
Research Advance of Toll-Like Receptors in Gastric Cancer Infected by Helicobacter pylori
DOI: 10.12677/ACM.2022.123274, PDF, HTML, XML, 下载: 297  浏览: 440  科研立项经费支持
作者: 张 荣, 张 杰, 李志敏, 王 黎*:大理大学临床医学院,云南 大理
关键词: Toll样受体幽门螺杆菌胃癌Toll-Like Receptors Helicobacter pylori Gastric Cancer
摘要: 幽门螺杆菌与胃癌密切相关,Toll样受体作为机体抗幽门螺杆菌感染免疫的第一道防线,能够通过激活PAMP、DAMP来促进炎症的发生发展过程。基于对这些受体信号通路的识别和激活,炎症过程和基因多态性可能参与调节发生胃癌的风险,Toll样受体基因多态性可能在幽门螺杆菌感染易感性中起一定作用,并可能影响其结局。本文就目前Toll样受体与幽门螺杆菌感染的关系以及介导胃癌作用的机制相关研究进行总结,为胃癌的发生发展机制研究以及胃癌治疗靶点的选择提供方向。
Abstract: Helicobacter pylori is closely related to gastric cancer. Toll-like receptor, as the first line of defense against Helicobacter pylori infection, can promote the occurrence and development of inflammation by activating PAMP and DAMP. Based on the recognition and activation of these receptor signaling pathways, inflammatory process and gene polymorphism may be involved in regulating the risk of gastric cancer, and Toll-like receptor gene polymorphism may play a role in the susceptibility to Helicobacter pylori infection and may affect its outcome. This article summarizes the current research on the relationship between Toll-like receptors and Helicobacter pylori infection and the mechanism of mediating gastric cancer, in order to provide a direction for the study of the mechanism of occurrence and development of gastric cancer and the selection of therapeutic targets for gastric cancer.
文章引用:张荣, 张杰, 李志敏, 王黎. Toll样受体在幽门螺杆菌感染胃癌中的研究进展[J]. 临床医学进展, 2022, 12(3): 1903-1909. https://doi.org/10.12677/ACM.2022.123274

1. 引言

胃癌(Gastric Cancer, GC)是一种常见的消化系统肿瘤。据2018年全球癌症数据统计,胃癌的发病率在恶性肿瘤中排第五位,死亡率排在第三位,其中亚洲是胃癌最严重的地区 [1]。在我国,胃癌的发病率和死亡率都居第二位 [2]。幽门螺杆菌(Hp)作为I类致癌物与胃癌的发生发展密切相关 [3],它是一种微需氧革兰阴性菌并通过定植感染胃粘膜上皮引发慢性炎症,也是导致胃癌的主要原因 [4]。Hp感染后,固有免疫是宿主防御的第一道防线。Toll样受体(TLRs)作为固有免疫的重要组成部分,也参与适应性免疫反应的激活。然而,TLRs在胃癌中扮演着不同的角色,它们既能诱导抗肿瘤因子,又能在不同背景下促进癌变。研究发现,TLR2、TLR4和TLR5的表达水平从正常胃粘膜到癌前病变、胃不典型增生,最后到胃腺癌逐渐递增,提示TLR可能在胃癌的发生发展中起着特定作用 [5]。因此,深入研究Hp感染胃癌的免疫及炎症机制将为有助于解释胃癌的发生发展以及寻找胃癌的治疗靶点。本文主要就不同TLR与Hp感染胃癌的研究进展展开综述。

Toll样受体(Toll-like receptors, TLRs)是一类跨膜模式识别受体家族,由10个人类蛋白家族(TLR1-TLR10)组成,结构上包括胞外区、跨膜区和胞内区,在非特异性免疫中发挥重要作用 [6]。这些受体表达在机体免疫第一道防线的抗原呈递细胞上,如巨噬细胞和树突状细胞,并被病原相关分子模式(pathogen associated molecular patterns, PAMP)激活 [7]。在肿瘤中,TLRs能够通过激活损伤相关分子模式(damage associated molecular pattern, DAMP)来促进炎症的发生发展过程。目前研究发现,在Hp感染过程中,胃上皮细胞和免疫细胞上的TLR识别许多PAMPs。如TLR2和TLR4识别脂多糖,TLR5识别鞭毛蛋白,TLR9识别细菌DNA中丰富的未甲基化CpG寡核苷酸等 [8]。基于对这些受体信号通路的识别和激活,炎症过程和基因多态性可能参与调节发生胃癌的风险。

2. TLR2与Hp感染胃癌

TLR2在许多免疫和非免疫细胞的细胞膜上表达,并识别广泛的微生物成分,因为它可与其他TLR形成异二聚体,包括TLR1、TLR6和TLR10。TLR2通过激活NF-κB,诱导上皮细胞、单核巨噬细胞、树突状细胞、中性粒细胞和B细胞表达细胞因子,在调节Hp免疫应答中发挥重要作用 [9]。TLR2参与细菌脂多糖的识别,其激活导致固有免疫反应中核转录因子-κB (NF-κB)激活。NF-κB是一种转录因子,参与固有免疫和获得性免疫,在介导感染引起的炎症反应中起着至关重要的作用;同时Th1型适应性免疫反应也通过与Hp中性粒细胞激活蛋白相结合触发 [10]。TLR2在炎症激活上具有双重作用,在Hp感染时,TLR2通路显著抑制CXCL1和CXCL8的释放,但也促进肿瘤坏死因子α和GM-CSF的产生 [11]。

研究发现,TLR2在胃癌细胞中表达水平升高,且TLR2过度表达与胃癌的组织学分级有关,是影响胃癌患者预后的重要因素。TLR2的激活使得与代谢调节有关的致癌途径的基因集显著富集,包括活性氧(ROS)、p53和Myc [12]。进一步的机制表明,TLR2激活能够促进GC细胞增殖,促进了ROS的生成、Ca2+积累、氧化磷酸化和电子传递链的形成,而阻断TLR2则抑制了线粒体功能和能量代谢 [13]。此外,siRNA介导的抑制超氧化物歧化酶2可改善TLR2诱导的人胃癌细胞的代谢改变,TLR2和SOD2在人胃癌中的表达显著上调,TLR2-SOD2轴与胃癌多个临床参数相关,包括远处转移、微血管侵犯、分期、预后不良等 [14]。

基因多态性上,TLR2 C等位基因rs3804099可增加HP感染风险 [15]。TLR2 rs3804099和TLR2 rs111200466多态性分别与胃癌发生的风险增加和预防有关。TLR2 mRNA在肿瘤组织中表达上调,受Hp感染和变异基因型的影响 [16]。有研究发现,TLR2 rs3804100多态性可能是一个独立于Hp感染相关途径的胃癌预后生物标志物 [17]。也有研究表明TLR2 rs3804099和rs3804100在Hp感染者和对照组之间无统计学差异 [18]。TLR2基因多态性与胃癌的发病机制有关,在不同人群和种族间存在差异,并可调节对Hp感染的持久性免疫应答。在中国南方人群中,del/del基因型与胃癌风险增加相关,然而TLR2基因多态性与Hp感染以及不良预后没有关系 [19]。因此,TLR2基因多态性可以改变免疫应答模式,从而增加胃癌的风险和临床表现。

3. TLR4与Hp感染胃癌

TLR4不仅在免疫细胞中表达,在胃癌中也高表达且与胃癌分期相关,目前证据表明,TLR4的表达和信号级联与肿瘤的生长、进展和侵袭密切相关 [20]。同时,Hp感染可导致肿瘤微环境中成纤维细胞(CAF)中TLR4 mRNAs的强烈上调。此外,HP-LPS通过TLR4相关信号通路上调TLR2的表达。因此,TLR4可能参与了Hp的早期免疫应答,导致细胞因子的分泌 [21]。

研究发现,GC细胞分泌的TLR2/4的内源性配体BGN通过依赖于NF-κB激活HIF-1α来诱导内皮细胞表达血管内皮细胞生长因子。BGN是细胞外基质的重要组成部分,与多种癌症有关,通过与TLR2/4相互作用并激活下游信号通路,促进内皮细胞迁移和增殖,内皮细胞衍生的血管内皮生长因子反过来作用于胃癌细胞并促进其迁移,这解释了BGN在胃癌中诱导血管生成的机制,并提示胃癌中肿瘤实质和间质之间的持续相互作用 [22]。另外,人体CDC2能够通过TLR4识别Hp,研究证明,在Hp感染之前注射TLR4的封闭抗体会导致炎性细胞因子的分泌减少,特别是IL-12和IL-18的水平显著降低,CDC2中的TLR4信号可能通过驱动炎性T细胞对Hp的反应而对细菌的清除起重要作用 [11]。

基因多态性上,TLR4 rs4986790、TLR4 rs4986791、TLR4 rs10116253、TLR4 rs10983755、TLR4rs11536889和TLR4rs1927911是与GC相关的基因 [23]。TLR4 rs4986790和rs4986791与Hp感染密切相关 [18] [24]。研究发现TLR4 rs10759932与Hp易感性相关,而TLR4 rs3804099和rs3804100与Hp易感性无关。TLR4 rs10759932、C/C纯合子基因型增加了胃癌前病变的风险。C/C纯合子可能改变TLR的表达水平或结构,从而改变信号通路 [25]。这可能对宿主Hp易感性具有保护作用,也表明TLR4的功能损伤在Hp相关胃癌中起着至关重要的作用。还有研究发现,TLR4 rs7869402和TLR4 rs7873784基因多态性降低了胃癌的危险性 [26]。TLR4 miR-34a结合位点rs1057317多态性可能预测Hp感染胃癌的危险性 [27]。

4. TLR5与HP感染胃癌

研究表明,预后较好的胃癌患者高表达TLR5,特别是那些患有肠型胃癌、无远处转移的患者,同时发现其它所有TLR的高表达均与肠型胃癌相关 [7]。TLR5 rs5744174 C/C基因型与GC、较低的IgG抗Hp应答、较高的Hp鞭毛蛋白A丰度和活力相关 [28]。TLR5特异性地结合细菌鞭毛蛋白,鞭毛蛋白激活位于细胞膜表面的TLR5导致NF-κB通路的激活,该通路与肿瘤、炎症性疾病和自身免疫性疾病有关 [29]。研究表明,核苷二磷酸激酶3 (NME3),被认为是鞭毛蛋白信号反应的增强子,通过靶向敲除和过表达分析证实了NME3对TLR5介导的NF-κB信号的调节作用,在胃癌中,NME3的表达与TLR5的表达高度相关,NME3的高水平表达降低了胃癌患者的总体生存期 [30]。另外,使用来自人胃癌的85As2细胞建立了癌症恶病质的大鼠模型,TLR5信号通路的激活增加了血浆中白血病抑制因子(LIF)的浓度,而TLR5可被白介素1受体相关激酶-1/4抑制剂所抑制,后者是TLR5信号通路中的重要因素,表明LIF的产生部分激活了85As2细胞的恶病质诱导能力,这有助于恶病质发病或加重机制的探索,也为开发针对腹膜转移癌细胞的治疗方法提供思路 [31]。此外,基因多态性也会影响HP易感性,如TLR5C等位基因rs5744174会增加Hp感染的风险 [15]。

5. TLR7与HP感染胃癌

TLR7是一种内体TLR,主要定位于胞内小泡,如内质网、内小体、溶酶体,其激活通过介导各种类型的癌细胞中的免疫激活和程序性细胞死亡,具有强大的抗肿瘤作用。研究发现,胃癌组织中TLR7的mRNA和蛋白表达水平均显著低于癌旁组织和正常胃上皮组织,TLR7的激活促进了促炎细胞因子的产生,抑制了胃癌细胞的生长 [32]。免疫细胞中TLR7信号的激活主要依赖于髓系分化因子88 (Myd88)及其下游转录因子,如干扰素调节因子家族成员和NF-κB,从而导致刺激分子的释放和免疫系统的刺激。最新研究利用TLR7激动剂(T7)和MG7-AG四表位的协同应用构建了新的胃癌疫苗T7-MB (T7和Mg7-Ag分枝四表位的偶联物)是逆转肿瘤耐受的有效的药物,其和5-氟尿嘧啶(5-FU,一种常用的化疗药物)显示了协同抑制肿瘤的作用 [33]。

6. TLR9与HP感染胃癌

TLR9在人胃上皮细胞中高表达,并与肿瘤的高度分化有关,在胃癌的发生发展中起重要作用,其能够帮助肿瘤细胞逃避免疫监视,导致炎症和肿瘤进展。与TLR9结合的配体激活包括NF-κB的多种信号因子导致炎性介质的产生增加,从而增加患慢性炎症和癌症的风险。TLR9/NF-κB信号通路参与了胃癌的发生和胃癌细胞的迁移,可能成为胃癌治疗的重要靶点。Hp致病相关的CAG致病岛(CAG-PAI)编码一个IV型分泌系统(T4SS),该分泌系统可移位微生物DNA并激活TLR9,大多数被CagA+ Hp定植的人不会患胃癌 [34]。有研究发现CAG-PAI非依赖的致病调节因子,Hp HopQ粘附素等位基因与CAG-T4SS功能和TLR9激活显著相关,其基因缺失显著降低了Hp诱导的TLR9的激活 [35]。

基因多态性上,TLR9 rs352140 TT基因型与HP感染密切相关 [18],TLR9 rs5743836和rs187084与胃癌发生的风险相关,TLR9-1237 TC + CC变异基因型和Hp感染可调节TLR9 mRNA水平 [8]。TLR9 rs5743836T等位基因与血清胃泌素G17相关。位于TLR9基因启动子区域的rs5743836C产生IL-6和NF-κB应答元件,与T变异体相比,TLR9转录活性增强,以应对各种刺激,如诱导的NF-κB介导的炎症因子 [28]。TLR9的激活导致了促炎反应,但在Hp感染的急性期,TLR9表现出相反作用促进抗炎信号从而有利于持续感染的建立 [6]。Hp慢性感染激活TLR9促进炎症级联反应,最终导致胃癌的发生。最近的一项研究显示,TLR9和TCR诱导的共刺激受体(ICOS-L)配体(ICOS-L)在浸润性浆细胞样树突状细胞(PDCs)中的表达显示出很强的免疫抑制功能,这些细胞的比例在Hp感染患者中增加,且在晚期胃癌患者中更明显 [36]。

7. 其它TLR与HP感染胃癌

最近的全基因组关联研究显示,TLR1 rs4833095 SNP与胃癌风险增加相关,其基因多态性与Hp感染易感性或AG风险无关 [37]。另有研究表明,TLR1 rs4833095基因型与Hp感染胃粘膜炎症程度有很好的相关性 [38]。因此,TLR3作为肿瘤侵袭性和胃癌预后指标可能具有临床应用价值。而TLR10可能通过抑制IL-1β和其他炎性细胞因子的释放发挥免疫调节作用 [11]。文献表明,Hp诱导上皮细胞表达TLR10,并通过TLR10传递信号 [39]。TLR1C等位基因rs4833095、TLR10A等位基因rs10004195可增加Hp感染的风险 [15]。TLR10 rs10004195 TT基因型在Hp相关性消化系统疾病中的发病率较低,可能具有保护作用 [18]。

8. 总结与展望

Toll样受体家族作为机体抗Hp感染免疫的第一道防线,与Hp介导的包括胃癌在内的慢性炎症疾病关系十分密切,能够通过激活PAMP、DAMP来促进炎症的发生发展过程。其中,TLR2和TLR4是目前研究最多、与Hp感染及介导胃癌机制最清楚的类型;TLR5、TLR7、TLR9在最近几年的研究中逐渐增多;TLR1、TLR3、TLR10与Hp感染胃癌的研究较少;而TLR6和TLR8在此领域的相关研究几乎没有。本文就目前TLRs与Hp感染的关系以及介导胃癌作用的机制相关研究进行总结,主要从TLR作用的信号通路、免疫过程及基因多态性三个方面阐述,为Hp感染胃癌的发生发展机制研究以及胃癌治疗靶点的选择提供思路。

项目基金

云南省教育厅科研基金研究生项目(2022Y846)。

NOTES

*通讯作者。

参考文献

[1] Ferlay, J., Colombet, M., Soerjomataram, I., Mathers, C., Parkin, D.M., Piñeros, M., et al. (2019) Estimating the Global Cancer Incidence and Mortality in 2018: GLOBOCAN Sources and Methods. International Journal of Cancer, 144, 1941-1953.
https://doi.org/10.1002/ijc.31937
[2] Chen, W., Zheng, R., Baade, P., Zhang, S., Zeng, H., Bray, F., et al. (2016) Cancer Statistics in China, 2015. CA: A Cancer Journal for Clinicians, 66, 115-132.
https://doi.org/10.3322/caac.21338
[3] Song, M., Rabkin, C. and Camargo, M. (2018) Gastric Cancer: An Evolving Disease. Current Treatment Options in Gastroenterology, 16, 561-569.
https://doi.org/10.1007/s11938-018-0203-1
[4] Ito, N., Tsujimoto, H., Ueno, H., Xie, Q. and Shinomiya, N. (2020) Helicobacter pylori-Mediated Immunity and Signaling Transduction in Gastric Cancer. Journal of Clinical Medicine, 9, Article No. 3699.
https://doi.org/10.3390/jcm9113699
[5] Pradere, J., Dapito, D. and Schwabe, R. (2014) The Yin and Yang of Toll-Like Receptors in Cancer. Oncogene, 33, 3485-3495.
https://doi.org/10.1038/onc.2013.302
[6] Varga, M. and Peek, R. (2017) DNA Transfer and Toll-Like Receptor Modulation by Helicobacter pylori. In: Tegtmeyer N. and Backert, S., Eds., Molecular Pathogenesis and Signal Transduction by Helicobacter pylori, Vol. 400, Springer, Cham, 169-193.
https://doi.org/10.1007/978-3-319-50520-6_8
[7] Kasurinen, A., Hagström, J., Laitinen, A., Kokkola, A., Böckelman, C. and Haglund, C. (2019) Evaluation of Toll-Like Receptors as Prognostic Biomarkers in Gastric Cancer: High Tissue TLR5 Predicts a Better Outcome. Scientific Reports, 9, Article No. 12553.
https://doi.org/10.1038/s41598-019-49111-2
[8] Susi, M., Lourenço Caroline, M., Rasmussen, L., Payão, S.L.M., Rossi, A.F.T., Silva, A.E., et al. (2019) Toll-Like Receptor 9 Polymorphisms and Helicobacter pylori Influence Gene Expression and Risk of Gastric Carcinogenesis in the Brazilian Population. World Journal of Gastrointestinal Oncology, 11, 998-1010.
https://doi.org/10.4251/wjgo.v11.i11.0000
[9] Nemati, M., Larussa, T., Khorramdelazad, H., Mahmoodi, M. and Jafarzadeh, A. (2017) Toll-Like Receptor 2: An Important Immunomodulatory Molecule during Helicobacter pylori Infection. Life Sciences, 178, 17-29.
https://doi.org/10.1016/j.lfs.2017.04.006
[10] Meliț, L., Mărginean, C., Mărginean, C. and Mărginean, M.O. (2019) The Relationship between Toll-Like Receptors and Helicobacter pylori-Related Gastropathies: Still a Controversial Topic. Journal of Immunology Research, 2019, Article ID: 8197048.
https://doi.org/10.1155/2019/8197048
[11] Neuper, T., Frauenlob, T., Sarajlic, M., Posselt, G., Wessler, S and Horejs-Hoeck, J. (2020) TLR2, TLR4 and TLR10 Shape the Cytokine and Chemokine Release of H. pylori-Infected Human DCs. International Journal of Molecular Sciences, 21, Article No. 3897.
https://doi.org/10.3390/ijms21113897
[12] Liu, Y., Yu, L., Ying, L., Balic, J., Gao, H., Deng, N.T., et al. (2019) Toll-Like Receptor 2 Regulates Metabolic Reprogramming in Gastric Cancer via Superoxide Dismutase 2. International Journal of Cancer, 144, 3056-3069.
https://doi.org/10.1002/ijc.32060
[13] Cao, D., Wu, Y., Jia, Z., Zhao, D., Zhang, Y., Zhou, T., et al. (2019) 18β-Glycyrrhetinic Acid Inhibited Mitochondrial Energy Metabolism and Gastric Carcinogenesis through Methylation-Regulated TLR2 Signaling Pathway. Carcinogenesis, 40, 234-245.
https://doi.org/10.1093/carcin/bgy150
[14] Kim, Y., Gupta Vallur, P., Phaëton, R., Mythreye, K. and Hempel, N. (2017) Insights into the Dichotomous Regulation of SOD2 in Cancer. Antioxidants, 6, Article No. 86.
https://doi.org/10.3390/antiox6040086
[15] Kalkanli Tas, S., Kirkik, D., Tanoglu, A., Kahraman, R., Ozturk, K., Esen, M.F., et al. (2020) Polymorphisms in Toll-Like Receptors 1, 2, 5, and 10 Are Associated with Predisposition to Helicobacter pylori Infection. European Journal of Gastroenterology & Hepatology, 32, 1141-1146.
https://doi.org/10.1097/MEG.0000000000001797
[16] Lourenço, C., Susi, M., Do Nascimento, M., Serafim Junior, V., Vila, A.P.S., Rodrigues-Flemming, G.H., et al. (2020) Characterization and Strong Risk Association of TLR2 del −196 to −174 Polymorphism and Their Influence on mRNA Expression in Gastric Cancer. World Journal of Gastrointestinal Oncology, 12, 535-548.
https://doi.org/10.4251/wjgo.v12.i5.535
[17] Zhao, D., Wu, Y., Zhao, T., Jia, Z.F., Cao, D.H., Yang, N., et al. (2019) Single-Nucleotide Polymorphisms in Toll-Like Receptor Genes Are Associated with the Prognosis of Gastric Cancer and Are Not Associated with Helicobacter pylori Infection. Infection, Genetics and Evolution, 73, 384-389.
https://doi.org/10.1016/j.meegid.2019.06.005
[18] Eed, E., Hawash, Y., Khalifa, A., Alsharif, K.F., Alghamdi, S.A., Almalki, A.A., et al. (2020) Association of Toll-Like Receptors 2, 4, 9 and 10 Genes Polymorphisms and Helicobacter pylori-Related Gastric Diseases in Saudi Patients. Indian Journal of Medical Microbiology, 38, 94-100.
https://doi.org/10.4103/ijmm.IJMM_20_164
[19] Huang, J., Hang, J., Qin, X., Huang, J. and Wang, X.Y. (2019) Interaction of H. pylori with Toll-Like Receptor 2-196 to -74 Ins/Del Polymorphism Is Associated with Gastric Cancer Susceptibility in Southern China. International Journal of Clinical Oncology, 24, 494-500.
https://doi.org/10.1007/s10147-018-1379-z
[20] Kim, T., Lee, S., Oh, B., Lee, H., Uhm, T.G., Min, J.K., et al. (2016) Epigenetic Modification of TLR4 Promotes Activation of NF-κB by Regulating Methyl-CpG-Binding Domain Protein 2 and Sp1 in Gastric Cancer. Oncotarget, 7, 4195-4209.
https://doi.org/10.18632/oncotarget.6549
[21] Krzysiek-Maczka, G., Targosz, A., Szczyrk, U., Strzalka, M., Brzozowski, T. and Ptak-Belowska, A. (2019) Involvement of Epithelial-Mesenchymal Transition-Inducing Transcription Factors in the Mechanism of Helicobacter pylori-Induced Fibroblasts Activation. Journal of Physiology and Pharmacology, 70, 727-736.
[22] Hu, L., Zang, M., Wang, H., Li, J.F., Su, L.P., Yan, M., et al. (2016) Biglycan Stimulates VEGF Expression in Endothelial Cells by Activating the TLR Signaling Pathway. Molecular Oncology, 10, 1473-1484.
https://doi.org/10.1016/j.molonc.2016.08.002
[23] Rudnicka, K., Backert, S. and Chmiela, M. (2019) Genetic Polymorphisms in Inflammatory and Other Regulators in Gastric Cancer: Risks and Clinical Consequences. In: Backert, S., Eds., Molecular Mechanisms of Inflammation: Induction, Resolution and Escape by Helicobacter pylori, Vol. 421, Springer, Cham, 53-76.
https://doi.org/10.1007/978-3-030-15138-6_3
[24] Loganathan, R., Nazeer, M., Goda, V., Devaraju, P., Ali, M., Karunakaran, P., et al. (2017) Genetic Variants of TLR4 and TLR9 Are Risk Factors for Chronic Helicobacter pylori Infection in South Indian Tamils. Human Immunology, 78, 216-220.
https://doi.org/10.1016/j.humimm.2016.12.002
[25] Tongtawee, T., Simawaranon, T., Wattanawongdon, W., Dechsukhum, C. and Leeanansaksiri, W. (2019) Toll-Like Receptor 2 and 4 Polymorphisms Associated with Helicobacter pylori Susceptibility and Gastric Cancer. The Turkish Journal of Gastroenterology, 30, 15-20.
[26] Li, Z., Gao, H., Liu, Y., Wu, H., Li, W., Xing, Y., et al. (2021) Genetic Variants in the Regulation Region of TLR4 Reduce the Gastric Cancer Susceptibility. Gene, 767, Article ID: 145181.
https://doi.org/10.1016/j.gene.2020.145181
[27] Wang, Y., Zhang, C. and He, X. (2018) Minor Allele of rs1057317 Polymorphism in TLR4 Is Associated with Increased Risk of Helicobacter pylori-Induced Gastric Cancer. Journal of Cellular Biochemistry, 120, 1969-1978.
https://doi.org/10.1002/jcb.27493
[28] De Re, V., Repetto, O., De Zorzi, M., Casarotto, M., Tedeschi, M., Giuffrida, P., et al. (2019) Polymorphism in Toll-Like Receptors and Helicobacter Pylori Motility in Autoimmune Atrophic Gastritis and Gastric Cancer. Cancers, 11, Article No. 648.
https://doi.org/10.3390/cancers11050648
[29] Xu, T., Fu, D., Ren, Y., Dai, Y., Lin, J., Tang, L., et al. (2017) Genetic Variations of TLR5 Gene Interacted with Helicobacter pylori Infection among Carcinogenesis of Gastric Cancer. Oncotarget, 8, 31016-31022.
https://doi.org/10.18632/oncotarget.16050
[30] Flentie, K., Gonzalez, C., Kocher, B., Wang, Y., Zhu, H., Marasa, J., et al. (2018) Nucleoside Diphosphate Kinase-3 (NME3) Enhances TLR5-Induced NFB Activation. Molecular Cancer Research, 16, 986-999.
https://doi.org/10.1158/1541-7786.MCR-17-0603
[31] Terawaki, K., Kashiwase, Y., Uzu, M., Nonaka, M., Sawada, Y., Miyano, K., et al. (2018) Leukemia Inhibitory Factor via the Toll-Like Receptor 5 Signaling Pathway Involves Aggravation of Cachexia Induced by Human Gastric Cancer-Derived 85As2 Cells in Rats. Oncotarget, 9, 34748-34764.
https://doi.org/10.18632/oncotarget.26190
[32] Jiang, J., Dong, L., Qin, B., Shi, H., Guo, X. and Wang, Y. (2016) Decreased Expression of TLR7 in Gastric Cancer Tissues and the Effects of TLR7 Activation on Gastric Cancer Cells. Oncology Letters, 12, 631-636.
https://doi.org/10.3892/ol.2016.4617
[33] Wang, X., Liu, Y., Diao, Y., Gao, N., Wan, Y., Zhong, J., et al. (2018) Gastric Cancer Vaccines Synthesized Using a TLR7 agonist and Their Synergistic Antitumor Effects with 5-Fluorouracil. Journal of Translational Medicine, 16, Article No. 120.
https://doi.org/10.1186/s12967-018-1501-z
[34] Varga, M., Shaffer, C., Sierra, J., Suarez, G., Piazuelo, M.B., Whitaker, M.E., et al. (2016) Pathogenic Helicobacter pylori Strains Translocate DNA and Activate TLR9 via the Cancer-Associated Cag Type IV Secretion System. Oncogene, 35, 6262-6269.
https://doi.org/10.1038/onc.2016.158
[35] Dooyema, S., Krishna, U., Loh, J., Suarez, G., Cover, T.L. and Peek, RM. (2021) Helicobacter pylori-Induced TLR9 Activation and Injury Are Associated with the Virulence-Associated Adhesin HopQ. The Journal of Infectious Diseases, 224, 360-365.
https://doi.org/10.1093/infdis/jiaa730
[36] Nagase, H., Takeoka, T., Urakawa, S., Morimoto-Okazawa, A., Kawashima, A., Iwahori, K., et al. (2017) ICOS+ Foxp3+ TILs in Gastric Cancer Are Prognostic Markers and Effector Regulatory T Cells Associated with Helicobacter pylori. International Journal of Cancer, 140, 686-695.
https://doi.org/10.1002/ijc.30475
[37] Dargiene, G., Streleckiene, G., Skieceviciene, J., Leja, M., Link, A., Wex, T., et al. (2018) TLR1 and PRKAA1 Gene Polymorphisms in the Development of Atrophic Gastritis and Gastric Cancer. Journal of Gastrointestinal and Liver Diseases, 27, 363-369.
https://doi.org/10.15403/jgld.2014.1121.274.tlr
[38] Tongtawee, T., Bartpho, T., Kaewpitoon, S., Kaewpitoon, N., Dechsukhum, C., Leeanansaksiri, W., et al. (2016) TLR1 Polymorphism Associations with Gastric Mucosa Morphologic Patterns on Magnifying NBI Endoscopy: A Prospective CrossSectional Study. Asian Pacific Journal of Cancer Prevention, 17, 3391-3394.
https://doi.org/10.7314/APJCP.2016.17.3.1057
[39] Pachathundikandi, S. and Backert, S. (2016) Differential Expression of Interleukin 1β During Helicobacter pylori Infection of Toll-Like Receptor 2 (TLR2)- and TLR10-Expressing HEK293 Cell Lines. The Journal of Infectious Diseases, 214, 166-167.
https://doi.org/10.1093/infdis/jiw154