进展期胃癌转移现状及相关分子机制研究进展
Current Status of Multiple Metastases in Advanced Gastric Cancer and Research Progress of Related Molecular Mechanisms
DOI: 10.12677/ACM.2022.123319, PDF, HTML, XML, 下载: 202  浏览: 456  科研立项经费支持
作者: 刘 韬, 王 成*:青海大学附属医院胃肠外科,青海 西宁
关键词: 胃癌脏器转移血管转移预后Gastric Carcinoma Organ Metastasis Vascular Metastasis Prognosis
摘要: 胃癌是常见的消化道恶性肿瘤之一,同时也是因肿瘤致死亡的主要原因之一,死亡率位居第二。因胃癌早期患者症状多为隐匿,无明显临床表现,大多数患者对该疾病的认识不清,故临床上诊断胃癌时多为进展期,且多伴有其他重要脏器(肝、骨、脑等)及血管的转移,从而导致胃癌的手术难度明显加大,术后效果欠佳,预后差、病死率高、生存率低。然而目前,胃癌多脏器转移的相关文献较少,且涉及的相关机制尚不明确,故本文通过搜集相关文献对进展期胃癌发生多脏器(肝、骨、脑)及血管转移及涉及相关机制进行归纳,旨在为临床上诊治进展期胃癌提供参考。
Abstract: Gastric cancer is one of the common malignant tumors of the digestive tract, and it is also one of the main causes of death due to tumors. The death rate of gastric cancer ranks second. Because the symptoms of early gastric cancer patients are insidious mostly, and there is no obvious clinical appearance, most patients have unclear understanding of the disease. Therefore, the clinical diagnosis of gastric cancer is advanced mostly, and it is often accompanied by other important organs (liver, bone, brain, etc.), resulting in significantly increased difficulty in gastric cancer surgery, poor postoperative results, poor prognosis, high mortality, and low survival rate. However, at present, there are few related literatures on multi-organ metastasis of gastric cancer, and the related mechanisms are not clear. Therefore, this article collects related literatures on the occurrence of multi-organ (liver, bone, brain) metastasis and related mechanisms in advanced gastric cancer. In summary, it aims to provide a reference for the clinical diagnosis and treatment of advanced gastric cancer.
文章引用:刘韬, 王成. 进展期胃癌转移现状及相关分子机制研究进展[J]. 临床医学进展, 2022, 12(3): 2218-2225. https://doi.org/10.12677/ACM.2022.123319

1. 引言

胃癌是常见的实体癌之一,据GLOBOCAN通过统计数据表明,2018年胃癌发病率居于全球恶性肿瘤第5位,且因胃癌多起病隐匿,诊断时多为进展期,手术治疗效果差,导致其预后较差,死亡率较其他癌症高,其病死率居于第2位 [1]。相关文献表明,胃癌的5年生存率为30%,而进展期胃癌的5年生存率仅为10%,进展期胃癌发生多脏器转移导致其较差的预后 [2] [3]。此外,部分学者指出胃癌预后与淋巴结转移有关,早期胃癌发生淋巴结转移几率较进展期低,且进展期胃癌多发生远处转移,从而导致进展期胃癌预后明显较早期胃癌差,这也是导致进展期胃癌死亡率高的主要原因 [4] [5]。然而目前,关于进展期胃癌多脏器转移危险因素及涉及相关机制研究较少,本文通过归纳近几年相关文献就进展期胃癌多脏器(肝、骨、脑)及血管转移及涉及相关机制,旨在为进展期胃癌的诊治提供思路。

2. 胃癌肝转移机制

肝脏是胃癌最常见的转移部位,据统计约6%~13%的胃癌患者发生肝转移,且经积极治疗后仍存在13.5%~30%的患者发生肝转移 [4] [6]。Xiao等 [7] 指出胃癌行根治性手术的患者术后发生肝转移的时间约为14个月。陈万青 [2] 也表明胃癌肝转移患者生存率较低,仅为20%~30%。王兴国 [8] 等通过分析378例胃癌根治术后肝转移的患者临床资料发现,术后化疗是胃癌肝转移患者预后的独立危险因素。侯松林 [4] 通过临床研究也进一步表明,患者化疗、肿瘤TNM分期、肿瘤位置、病灶数目等是影响胃癌肝转移的独立危险因素。尽管如此,胃癌肝转移涉及的相关机制目前尚不明确,因此,探索胃癌肝转移涉及的相关机制至关重要。

胃癌肝转移临床上多考虑通过血道途径发生转移,因肝血窦缺乏基底膜和肝内血管壁通透性较大,同时肝脏由肝动脉和门静脉双重血管供应营养物质,为肿瘤细胞生长提供有力的条件;另外,胃癌细胞在侵袭脉管种植到肝脏过程中涉及多种分子机制的变化和细胞间的相互作用 [9]。① Lee和MimoriK [10] [11] 等人认为钙网蛋白(CRT)和血管内皮生长因子(VEGF-A)在胃癌血管生成中扮演着重要角色,CRT与VEGF-A在胃癌中都处于高表达的水平,考虑涉及CRT-VEGF-A调控轴的可能,且二者的高表达与胃癌患者较差的预后成显著相关;其中CRT的高表达通过激活一氧化氮信号通路促进血管生成,增加肿瘤细胞通过血道转移机会,而VEGF通过调控血管的生成促进转移机制。相关研究表明通过抑制VEGF的表达可诱导肿瘤细胞发生凋亡,在一定程度上可减少肿瘤的大小,进一步证明VEGF的表达水平与患者预后呈负相关 [12] [13] [14]。② Yuan等 [15] 人发现胃癌组织中miR-551b-3p的表达水平与胃癌患者的预后存在相关性,胃癌组织中miR-551b-3p的表达水平较临近癌旁组织低,且miR-551b-3p高表达在一定程度上可抑制胃癌细胞的增殖、迁移和侵袭。而LncRNA SMARCC2可通过与胃癌细胞中miR-551b-3p的基因反应元件结合来从而抑制MiR-551 b-3p的高表达,从而来促进胃癌细胞的增殖和转移 [16]。③ Chen等 [17] 人通过免疫组化发现胃癌组织中αB-晶体蛋白(Alpha B-crystallin, CRYAB)的表达水平与胃癌pTNM分期、T分期以及淋巴结转移有关(P < 0.05),提示CRYAB高表达与胃癌患者不良预后密切相关,考虑高表达的CRYAB可增加胃癌细胞的侵袭性;其中涉及的机制为CRYAB的表达降低在一定程度上可显著降低肿瘤细胞中p-NF-κB p65的表达,从而导致抑制NF-κB信号通路,而CRYAB的表达上调可激活NF-κB信号通路,从而诱导肿瘤细胞的转移和侵袭 [18]。④ 肿瘤细胞分泌的外泌体中携带的蛋白质、长链非编码RNA (lncRNA)在细胞间信号传递发挥重要的作用,在调控细胞的同时,外泌体通过上皮-间质细胞转化(epithelial to mesenchy-mal transition, EMT),使上皮细胞失去原有的极性特征从而获得浸润性及游走迁徙能力的间质特征,促进癌细胞的转移 [19]。⑤ Chen [20] 等研究发现,胃癌组织中microRNA-10b表达水平明显高于癌旁正常组织,且与TNM分期呈正相关,进一步研究发现,microRNA-10b的表达水平与晚期胃癌转移有关,考虑microRNA-10b通过调控上皮–间质细胞转化(EMT)途径来促进胃癌细胞的迁移和侵袭,从而导致胃癌细胞向远处脏器转移。

3. 胃癌骨转移机制

进展期胃癌发生骨转移几率较肝转移低,仅为0.9%~2.1%,患者多表现为骨痛、病理性骨折等症状 [21]。尽管胃癌骨转移患者患病率低,一旦患者发生骨转移意味着肿瘤恶性程度更高,患者常出现多器官功能衰竭(multiple organs failure MOF),增加治疗难度,极大的降低治疗疗效,使患者的预后较差 [22]。龙敏 [23] 等人通过分析胃癌骨转移相关危险因素发现,肿瘤分化程度与胃癌骨转移显著相关,骨转移多发生于进展期胃癌,而进展期胃癌TNM分期多处于较高值且分化程度较早期低,这些均是导致胃癌骨转移的主要原因。Lee [24] 通过临床研究表明,胃癌骨转移患者平均生存时间为4.0个月,考虑进展期胃癌手术难度大且胃癌骨转移可引发弥散性血管内凝血(DIC)导致患者出现凝血功能障碍等可能原因。因此,了解胃癌骨转移并制定针对性个体化治疗方案对进展期胃癌骨转移具有极大的临床意义。

目前进展期胃癌发生骨转移主要考虑以下原因:① 目前多考虑淋巴及血道转移,且以血道转移为主,考虑癌细胞经血流入肝随之进入右心从而参与体循环,而淋巴道转移多考虑通过胸导管进入体循环从而诱导其发生远处转移 [25];Chen等 [26] 人发现LNMAT1可以通过将hnRNPL招募到CCL2的启动子区域来激活CCL2,并通过巨噬细胞刺激VEGF-C的分泌来促进淋巴转移,考虑胃癌可通过该途径发生淋巴转移。② 胃癌细胞中转录因子Snail通过抑制miR-128的表达,激活PI3K/AKP通路诱导Bim-1高表达,从而促进肿瘤EMT过程,协助肿瘤细胞发生转移 [27]。③ lncRNA SPRY4-IT1启动子片段中存在的CpG岛通过抑制DNA甲基转移酶1 (DNMT1)的活性来诱导SPRY4-IT1的表达,从而促进肿瘤的转移,考虑胃癌可能通过此途径发生骨转移 [28]。④ 肥大细胞蛋白酶抗体(MCPT)可刺激肿瘤血管的生成,从而为胃癌发生骨转移提供营养支持 [29]。Lee等 [24] 人研究通过研究影响胃癌患者预后相关危险因素中发现,胃癌骨转移是影响胃癌患者预后的独立危险因素。此外,Saito和Zhao先后也证实了肿瘤分化程度、肿瘤TNM分期与胃癌患者预后相关,可作为胃癌患者预后的独立预测因素 [30] [31]。肿瘤大小与胃癌预后相关性目前仍存在争议,Kooby [32] 通过研究发现肿瘤大小与胃癌患者预后相关,是影响胃癌患者预后的独立危险因素,而Huang和Liu [33] [34] 等人认为肿瘤受到诸多因素影响,如术者的操作技能、肿瘤侵袭深度和淋巴结转移情况等,不能作为预测胃癌患者预后的因素。

4. 胃癌脑转移机制

进展期胃癌易发生多脏器转移,其中包括脑转移,进展期胃癌发生脑转移的几率较低,仅占0.62%~0.7% [35] [36]。SY等 [37] 人报道胃癌脑转移多为软脑膜癌,且因取脑转移癌病理组织困难,进一步明确诊断较为困难,这也可能是研究报道发病率低的原因之一。Kasakura [38] 等人报道胃癌脑转移一般发生在胃癌根治术后9-9.6个月发生。Luo H [39] 指出无论是术前行辅助化疗及术后进展期完全缓解的胃癌脑转移患者生存率都不超过3个月。Minn等 [40] 认为目前胃癌脑转移的发病率较低,但随着治疗的不断改善和肿瘤生存期的延长,其胃癌发生脑转移的几率可能会增加。充分了解进展期胃癌脑转移的原理在进展期胃癌的诊疗中发挥重要的作用。

因胃癌脑转移临床研究相对较少,且病例数相对较低,多为临床病例报道文章,缺乏足够的样本量。目前胃癌脑转移的机制尚不明确,主要考虑以下几点:① Sakurai [41] 等人认为胃癌脑转移血行性转移的可能性大,原发病灶癌细胞侵入血管,经门脉系统回流至右心,与此同时患者血脑屏障受损有利于肿瘤细胞的转移。② Minn [40] 等人通过研究8例原发性胃腺癌和脑转移性胃癌的microRNA发现,hsa-miR-141-3p和hsa-miR-200b-3p属于miR-200家族,且hsa-miR141-3p和hsa-miR-200b-3p的首选靶基因为ZEB2,miRNA-200家族成员和ZEB2在胃腺癌的脑转移有关,考虑hsa-miR-141-3p和hsa-miR-200b-3p的上调通过上皮-间质细胞转化从而导致胃癌脑转移。③ Gregory等 [42] 人通过研究表明,miR-200家族中ZEB2与E-cadherin启动子结合并抑制该细胞-细胞粘附分子的表达,从而促进了癌症进展过程中的迁移和侵袭。随后Cong进一步证实了上述结果 [43] [44]。④ Jun等 [45] 人在22例进展期胃癌研究中发现胃癌的脑转移与血管内皮生长因子(VEGF)表达有关,在脑转移的血管生成与血管通透性中血管内皮生长因子充当着重要介质。⑤ Cavanna [46] 指出约16%的胃癌过度表达HER-2,且研究认为HER-2阳性表达率与胃癌患者性别、肿瘤部位、TNM分期、远处转移、淋巴结转移、Laurens分级、分化程度有关。因此可以认为HER-2是胃癌预后相关的因素之一。Yang等 [47] 人在个案中描述了一例HER-2阳性的胃癌根治术患者,该患者术后8个月出现孤立性脑转移;Cinar [48] 在3例HER-2阳性的胃食管交接处癌中发现,大约67%的概率出现脑转移。而Choy认为HER-2和原肌球蛋白相关激酶B (TrkB)受体的异源二聚化使HER-2乳腺癌细胞在脑内具有生存优势 [49]。因此笔者高度怀疑胃癌HER-2阳性可能与乳腺癌HER-2阳性脑转移机制一致是胃癌脑转移的潜在因素。尽管没有直接证据证明胃癌HER-2阳性一定与脑转移有关,但是也为研究胃癌脑转移的机制提供了新方向。

5. 胃癌血管转移机制

转化生长因子(Transforming growth factor, TGF)由de Larco和Todaro等人 [50] 发现。转化生长因子β (Transforming growth factor β, TGF-β)作为TGF家族中的一员与ETVI类似起着双重效应。良性肿瘤中,TGF-β信号通路抑制肿瘤的生长;而在恶性肿瘤中,TGF-β信号通路失去原有特征,通过免疫调节机制,肿瘤细胞获得免疫逃逸机制,诱导肿瘤血管及诱导细胞外基质生成,促进肿瘤侵袭及转移。Smads作为TGF-β细胞通路中最重要的下游蛋白发生变异或失活,使TGF-β-Smad信号通路运行异常,诱导细胞凋亡机制丧失,导致肿瘤发生 [51]。Han [52] 等人研究发现,当Smad3缺乏时,使TGF-β-Smad信号通路的抑制肿瘤生长功能失效;恢复Smad3后,其通路转录调节作用恢复,意味着我们能够通过检测Smad3蛋白表达来判断诊断胃癌患者的预后,同时以Smad蛋白作为靶点,减少或逆转Smad3蛋白的变异或失活来抑制细胞繁殖。其次,TGF-β-Smad信号通路诱导肿瘤细胞的上皮细胞间质转化(epithelial mesenchymal transition, EMT)来促进肿瘤细胞的迁移,TGF-β-Smad通路通过上调肿瘤细胞中snail蛋白的表达,引起 E-钙连蛋白(E-Cadherin, E-cad)下降,使上皮细胞失去了细胞极性,失去与基底膜的连接等上皮表型,从而获得间充质细胞表型的转化过程,获得较高的迁移与侵袭、及抗凋亡等能力,增加恶性程度 [53]。最后,转移的肿瘤细胞通过间叶上皮转化(mesenchymal-epithelial transition, MET)发生肿瘤的器官定植。

6. 结论与展望

综上所述,肝、骨、脑等器官及血管转移多发生于胃癌中晚期,大多数患者经治疗后效果不佳,这也是导致进展期胃癌患者高死亡率的主要原因 [54]。早诊断、早治疗、不断更新的外科技术以及极大拓展的进展期胃癌多脏器转移的手术适应症等在一定程度上可以为临床上根治进展期胃癌带来新的曙光。笔者主要通过从多个角度阐述进展期胃癌发生肝、骨、脑等器官转移及涉及的相关机制,其中主要包括上皮–间质细胞转化(MET)、PI3K/AKP通路的激活、NF-κB信号通路的活化等相关机制,通过充分了解其相关机制,在一定程度上可为临床上治疗进展期胃癌提供思路。今后也需要进行更多的前瞻性临床研究以提供更多的循证医学依据,以进一步明确其涉及的相关分子机制,并针对自身情况制定个体化综合治疗方案,可提高进展期胃癌多脏器转移的总体生存率,减缓肿瘤的进展和提高患者的生存质量 [55]。

基金项目

医学科学研究基金资助项目(YWJKJJHKYJJ-YWKYQ2003)。

NOTES

*通讯作者Email: wangch-8@163.com

参考文献

[1] Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424.
https://doi.org/10.3322/caac.21492
[2] 陈万青, 郑荣寿, 张思维, 曾红梅, 左婷婷, 贾漫漫, 夏昌发, 邹小农, 赫捷. 2012年中国恶性肿瘤发病和死亡分析[J]. 中国肿瘤, 2016, 25(1): 1-8.
[3] 孙晓卫, 李威, 刘学超, 詹友庆, 周志伟. 胃癌同时性肝转移预后的多因素分析[J]. 中华肿瘤防治杂志, 2016, 23(21): 1446-1449.
[4] 侯松林, 谢兴江, 彭强, 周国俊, 李利发, 周何, 张广军, 周彤. 基于SEER数据库的胃癌肝转移预后因素分析与预后模型构建[J]. 中国普通外科杂志, 2020, 29(10): 1212-1223.
[5] 侯培锋, 张祥福, 黄昌明, 卢辉山, 王川, 吴心愿, 官国先, 郑知文. 影响早期胃癌预后及淋巴结转移因素分析[J]. 中国肿瘤, 2011, 20(4): 306-308.
[6] 卫勃, 刘国晓. 胃癌肝转移的机制[J]. 中华胃肠外科杂志, 2014, 17(7): 728-729.
[7] Xiao, Y., Zhang, B. and Wu, Y. (2019) Prognostic Analysis and Liver Metastases Relevant Factors after Gastric and Hepatic Surgical Treatment in Gastric Cancer Patients with Metachronous Liver Metastases: A Population-Based Study. Irish Journal of Medical Science, 188, 415-424.
https://doi.org/10.1007/s11845-018-1864-4
[8] 王兴国, 张亮刚, 杨中民. 胃癌异时性肝转移影响因素及不同治疗方式的效果和预后分析[J]. 中国现代普通外科进展, 2021, 24(2): 99-103.
[9] 饶显平, 郭东阳, 周天华, 卓巍. 胃癌肝转移的分子机制[J]. 中国细胞生物学学报, 2018, 40(1): 7-16.
[10] Lee, P.C., Chiang, J.C., Chen, C.Y., Chien, Y.C., Chen, W.M., Huang, C.W., Weng, W.C., Chen, C.I., Lee, P.H., Chen, C.N. and Lee H. (2019) Calreticulin Regulates Vascular Endothelial Growth Factor—A MRNA Stability in Gastric Cancer Cells. PLoS ONE, 14, Article ID: e0225107.
https://doi.org/10.1371/journal.pone.0225107
[11] Mimori, K., Fukagawa, T., Kosaka, Y., Kita, Y., Ishikawa, K., Etoh, T., et al. (2008) Hematogenous Metastasis in Gastric Cancer Requires Isolated Tumor Cells and Exprssion of Vascular Endothelial Growth Factor Receptor-1. Clinical Cancer Research, 14, 2609-2616.
https://doi.org/10.1158/1078-0432.CCR-07-4354
[12] Lwin, Z.M., Guo, C., Salim, A., Yip, G.W., Chew, F.T., Nan, J., et al. (2010) Clinicopathological Significance of Calreticuli in Breast Invasive Ductal Carcinoma. Modern Pathology, 23, 1559-1566.
https://doi.org/10.1038/modpathol.2010.173
[13] Lee, J., Lee, J., Yu, H., Choi, K. and Choi, C. (2011) Differential Dependency of Human Cancer Cells on Vascular Endothelial Growth Factor-Mediated Autocrine Growth and Survival. Cancer Letters, 309, 145-150.
https://doi.org/10.1016/j.canlet.2011.05.026
[14] Lee, J., Ku, T., Yu, H., Chong, K., Ryu, S.W., Choi, K., et al. (2012) Blockade of VEGF-A Suppressestumor Growth Via Inhibition of Autocrine Signaling through FAK and AKT. Cancer Letters, 318, 221-225.
https://doi.org/10.1016/j.canlet.2011.12.014
[15] Yuan, H., Chen, Z., Bai, S., Wei, H., Wang, Y., Ji, R., Guo, Q., Li, Q., Ye, Y., Wu, J., Zhou, Y. and Qiao L. (2018) Molecular Mechanisms of LncRNA SMARCC2/miR-551b-3p/TMPRSS4 Axis in Gastric Cancer. Cancer Letters, 418, 84-96.
https://doi.org/10.1016/j.canlet.2018.01.032
[16] Liu, H.-T., Ma, R.-R., Lv, B.-B., Zhang, H., Shi, D.-B., Guo, X.-Y., Zhang, G.-H. and Gao, P. (2020) LncRNA-HNF1A-AS1 Functions as a Competing Endogenous RNA to Activate PI3K/AKT Signalling Pathway by Sponging MiR-30b-3p in Gastric Cance. British Journal of Cancer, 122, 1825-1836.
https://doi.org/10.1038/s41416-020-0836-4
[17] Chen, D., Cao, G., Qiao, C., Liu, G., Zhou, H. and Liu, Q. (2018) Alpha B-Crystallin Promotes the Invasion and Metastasis of Gastric Cancer Via NF-κB-Induced Epithelial-Mesenchymal Transition. Journal of Cellular and Molecular Medicine, 22, 3215-3222.
https://doi.org/10.1111/jcmm.13602
[18] Sánchez-Tilló, E., Liu, Y., De Barrios, O., Siles, L., Fanlo, L., Cuatrecasas, M., Darling, D.S., Dean, D.C., Castells, A. and Postigo, A. (2012) EMT-Activating Transcription Factors in Cancer: Beyond EMT and Tumor Invasiveness. Cellular and Molecular Life Sciences, 69, 3429-3456.
https://doi.org/10.1007/s00018-012-1122-2
[19] Lamouille, S., Xu, J. and Derynck, R. (2014) Molecular Mechanisms of Epithelial-mesenchymal Transition. Nature Reviews Molecular Cell Biology, 15, 178-196.
https://doi.org/10.1038/nrm3758
[20] Chen, X.L., Hong, L.L., Wang, K.L., Liu, X., Wang, J.L., Lei, L., Xu, Z.Y., Cheng, X.D. and Ling, Z.Q. (2019) Deregulation of CSMD1 Targeted by MicroRNA-10b Drives Gastric Cancer Progression through the NF-κB Pathway. International Journal of Biological Sciences, 15, 2075-2086.
https://doi.org/10.7150/ijbs.23802
[21] Nishidoi, H. and Koga, S. (1987) Clinicopathological Study of Gastric Cancer with Bone Metastasis. Gan to Kagaku Ryoho. Cancer & Chemotherapy, 14, 1717-1722.
[22] Turkoz, F.P., Solak, M., Kilickap, S., Ulas, A., Esbah, O., Oksuzoglu, B., et al. (2014) Bone Metastasis from Gastric Cancer: The Incidence, Clinicopathological Features, and Influence on Survival. Journal of Gastric Cancer, 14, 164-172.
https://doi.org/10.5230/jgc.2014.14.3.164
[23] 龙敏. 胃癌骨转移临床病理特征及其预后因素分析[D]: [硕士学位论文]. 南昌: 南昌大学, 2019.
[24] Lee, J., Lim, T., Uhm, J.E., Park, K.W., Park, S.H., Lee, S.C., et al. (2007) Prognostic Model to Predict Survival Following First-Line Chemotherapy in Patients with Metastatic Gastric Adenocarcinoma. Annals of Oncology, 18, 886-891.
https://doi.org/10.1093/annonc/mdl501
[25] 张高嘉, 王俊锋, 李万荣, 张云鹏, 沈志祥. 胃癌骨转移的临床特点[J]. 中国肿瘤临床, 2015, 42(9): 457-459.
[26] Chen, C., He, W., Huang, J., Wang, B., Li, H., Cai, Q., Su, F., Bi, J., Liu, H., Zhang, B., Jiang, N., Zhong, G., Zhao, Y., Dong, W. and Lin, T. (2018) LNMAT1 Promotes Lymphatic Metastasis of Bladder Cancer Via CCL2 Dependent Macrophage Recruitment. Nature Communications, 9, Article No. 3826.
https://doi.org/10.1038/s41467-018-06152-x
[27] Yu, T., Wang, L.N., Li, W., Zuo, Q.F., Li, M.M., Zou, Q.M. and Xiao, B. (2018) Downregulation of MiR-491-5p Promotes Gastric Cancer Metastasis by Regulating SNAIL and FGFR4. Cancer Science, 109, 1393-1403.
https://doi.org/10.1111/cas.13583
[28] Xie, M., Nie, F.Q., Sun, M., Xia, R., Liu, Y.W., Zhou, P., De, W. and Liu, X.H. (2015) Decreased Long Noncoding RNA SPRY4-IT1 Contributing to Gastric Cancer Cell Metastasis Partly via Affecting Epithelial-Mesenchymal Transition. Journal of Translational Medicine, 13, Article No. 250.
https://doi.org/10.1186/s12967-015-0595-9
[29] Leporini, C., Ammendola, M., Marech, I., Sammarco, G., Sacco, R., Gadaleta, C.D., Oakley, C., Russo, E., De Sarro, G. and Ranieri, G. (2015) Targeting Mast Cells in Gastric Cancer with Special Reference to Bone Metastases. World Journal of Gastroenterology, 21, 10493-10501.
https://doi.org/10.3748/wjg.v21.i37.10493
[30] Saito, H., Fukumoto, Y., Osaki, T., et al. (2006) Distinct Recurrence Pattern and Outcome of Adenocarcinoma of the Gastric Cardia in Comparison with Carcinoma of Other Regions of the Stomach. World Journal of Surgery, 30, 1864-1869.
https://doi.org/10.1007/s00268-005-0582-z
[31] Zhao, B., Zhang, J., Zhang, J., Luo, R., Wang, Z., Xu, H. and Huang, B. (2018) Assessment of the 8th Edition of TNM Staging System for Gastric Cancer: The Results from the SEER and a Single-Institution Database. Future Oncology, 14, 3023-3035.
https://doi.org/10.2217/fon-2018-0299
[32] Kooby, D.A., Suriawinata, A., Klimstra, D.S., Brennan, M.F. and Karpeh, M.S. (2003) Biologic Predictors of Survival in Node-Negative Gastric Cancer. Annals of Surgery, 237, 828-835.
https://doi.org/10.1097/01.SLA.0000072260.77776.39
[33] Huang, K.H., Chen, J.H., Wu, C.W., et al. (2009) Factors Affecting Recurrence in Node-Negative Advanced Gastric Cancer. Journal of Gastroenterology and Hepatology, 24, 1522-1526.
https://doi.org/10.1111/j.1440-1746.2009.05844.x
[34] Liu, Y., Chen, X.H., Meng, X.H., et al. (2012) Multivariate Prognostic Study on Node-Positive Gastric Cancer: Is Tumor Size a Prognostic Indicator? Hepatogastroenterology, 59, 623-626.
https://doi.org/10.5754/hge11455
[35] York, J.E., et al. (1999) Gastric Cancer and Metastasis to the Brai. Annals of Surgical Oncology, 6, 771-776.
https://doi.org/10.1007/s10434-999-0771-3
[36] Go Pauline, H., et al. (2011) Gastrointestinal Cancer and Brain Metastasis: A Rare and Ominous Sign. Cancer, 117, 3630-3640.
https://doi.org/10.1002/cncr.25940
[37] Oh, S.Y., Lee, S.J., Lee, J., et al. (2009) Gastric Leptomeningeal Carcinomatosis: Multi-Center Retrospective Analysis of 54 Cases. World Journal of Gastroenterology, 15, 5086-5090.
https://doi.org/10.3748/wjg.15.5086
[38] Kasakura, Y., Fujii, M., Mochizuki, F., Suzuki, T. and Takahashi, T. (2000) Clinicopathological Study of Brain Metastasis in Gastric Cancer Patients. Surgery Today, 30, 485-490.
https://doi.org/10.1007/s005950070112
[39] Luo, H., Peng, L., Wang, N., Zhang, J., Zheng, X., Sun, Y., Fan, C. and Ge, H. (2018) Early Brain Metastasis of Advanced Gastric Cancer with a Pathological Complete Response to Neoadjuvant Chemotherapy Followed by Surgery: A Case Report and Literature Review. Cancer Biology & Therapy, 19, 875-878.
https://doi.org/10.1080/15384047.2018.1456600
[40] Minn, Y.K., Lee, D.H., Hyung, W.J., Kim, J.E., Choi, J., Yang, S.H., Song, H., Lim, B.J. and Kim, S.H. (2014) MicroRNA-200 Family Members and ZEB2 Are Associated with Brain Metastasis in Gastric Adenocarcinoma. International Journal of Oncology, 45, 2403-2410.
https://doi.org/10.3892/ijo.2014.2680
[41] Sakurai, K., Muguruma, K., Murata, A., Toyokawa, T., Amano, R., Kubo, N., Tanaka, H., Yashiro, M., Maeda, K., Ohira, M. and Hirakawa, K. (2014) Early Gastric Cancer with Suspected Brain Metastasis Arising Eight Years after Curative Resection: A Case Report. BMC Research Notes, 19, Article No. 818818.
https://doi.org/10.1186/1756-0500-7-818
[42] Gregory, P.A., Bert, A.G., Paterson, E.L., et al. (2008) The MiR-200 Family and MiR-205 Regulate Epithelial to Mesenchymal Transition by Targeting ZEB1 and SIP1. Nature Cell Biology, 10, 593-601.
https://doi.org/10.1038/ncb1722
[43] Cong, N., Du, P., Zhang, A., et al. (2013) Downregulated MicroRNA-200a Promotes EMT and Tumor Growth through the Wnt/β-Catenin Pathway by Targeting the E-Cadherin Repressors ZEB1/ZEB2 in Gastric Adenocarcinoma. Oncology Reports, 29, 1579-1587.
https://doi.org/10.3892/or.2013.2267
[44] Dai, Y.H., Tang, Y.P., Zhu, H.Y., et al. (2012) ZEB2 Promotes the Metastasis of Gastric Cancer and Modulates Epithelial Mesenchymal Transition of Gastric Cancer Cells. Digestive Diseases and Sciences, 57, 1253-1260.
https://doi.org/10.1007/s10620-012-2042-6
[45] Jun, K.H., Lee, J.E., Kim, S.H., Jung, J.H., Choi, H.J., Kim, Y.I., Chin, H.M. and Yang, S.H. (2015) Clinicopathological Significance of N-Cadherin and VEGF in Advanced Gastric Cancer Brain Metastasis and the Effects of Metformin in Preclinical Models. Oncology Reports, 34, 2047-2053.
https://doi.org/10.3892/or.2015.4191
[46] Cavanna, L., Seghini, P., Di Nunzio, C., Orlandi, E., Michieletti, E., Stroppa, E.M., Mordenti, P., Citterio, C., Vecchia, S. and Zangrandi, A. (2018) Gastric Cancer with Brain Metastasis and the Role of Human Epidermal Growth Factor 2 Status. Oncology Letters, 15, 5787-5791.
https://doi.org/10.3892/ol.2018.8054
[47] Yang, G.L., Luo, T.H., Zhang, H.Q., Ling, C.Q. and Li, B. (2016) A Case Report of Gastric Cancer with Brain Metastasis: Rare Peripheral Nervous System Symptoms. Oncology Letters, 11, 2893-2895.
https://doi.org/10.3892/ol.2016.4288
[48] Cinar, P., Calkins, S.M., Venook, A.P. and Kelley, R.K. (2014) Case Series of Patients with HER-2-Overexpressed Primary Metastatic Gastro-esophageal Adenocarcinoma. Anticancer Research, 34, 7357-7360.
[49] Choy, C., Ansari, K.I., Neman, J., Hsu, S., Duenas, M.J., Li, H., Vaidehi, N. and Jandial, R. (2017) Cooperation of Neurotrophin Receptor TrkB and HER-2 in Breast Cancer Cells Facilitates Brain Metastases. Breast Cancer Research, 19, Article No. 51.
https://doi.org/10.1186/s13058-017-0844-3
[50] de Larco, J.E. and Todaro, G.J. (1978) Growth Factors from Murine Sarcoma Virus-Transformed Cells. Proceedings of the National Academy of Sciences of the United States of America, 75, 4001-4005.
https://doi.org/10.1073/pnas.75.8.4001
[51] Logullo, A.F., Nonogaki, S., Miguel, R.E., Kowalski, L.P., Nishimoto, I.N., Pasini, F.S., Federico, M.H., Brentani, R.R. and Brentani, M.M. (2003) Transforming Growth Factor Beta1 (TGFbeta1) Expression in Head and Neck Squamous Cell Carcinoma Patients as Related to Prognosis. Journal of Oral Pathology & Medicine, 32, 139-145.
https://doi.org/10.1034/j.1600-0714.2003.00012.x
[52] Han, S.U., Kim, H.T., Seong, D.H., Kim, Y.S., Park, Y.S., Bang, Y.J., Yang, H.K. and Kim, S.J. (2004) Loss of the Smad3 Expression Increases Susceptibility to Tumorigenicity in Human Gastric Cancer. Oncogene, 23, 1333-1341.
https://doi.org/10.1038/sj.onc.1207259
[53] 郑涛, 杨甲梅. 转化生长因子β信号通路在肝癌患者中的作用机制[J]. 中华肝胆外科杂志, 2016, 22(6): 425-428.
https://doi.org/10.3760/cma.j.issn.1007-8118.2016.06.019
[54] 王肖泽, 王继见. 胃癌转移机制研究新进展[J]. 重庆医学, 2010, 39(4): 479-481.
[55] 陈德兴, 张洪伟. 胃癌肝转移治疗现状[J]. 中国实用外科杂志, 2019, 39(4): 382-384+390.