γδ T细胞及其在溃疡性结肠炎中的参与和作用
γδ T Cells and Their Roles in Ulcerative Colitis
DOI: 10.12677/PI.2022.113019, PDF, HTML, XML, 下载: 337  浏览: 1,343 
作者: 樊俊晨, 戴 岳*:中国药科大学,江苏 南京
关键词: γδ T细胞溃疡性结肠炎肠道稳态γδ T Cells Ulcerative Colitis Intestinal Homeostasis
摘要: γδ T细胞是一种独特的T淋巴细胞群,在宿主防御、免疫监视和免疫应答中发挥重要的作用。越来越多的实验和临床研究显示,γδ T细胞与多种免疫性疾病的发生发展相关,本文总结γδ T细胞在溃疡性结肠炎中的参与和作用,为相关药物研发和靶向治疗提供参考。
Abstract: γδ T cells are a unique group of T lymphocytes, which play an indispensable role in host defense, immune surveillance and immune response. More and more experimental and clinical data indicate that γδ T cells are related to the occurrence and development of a variety of immune diseases. This article reviews the participation and role of γδ T cells in ulcerative colitis to provide reference for drug development and targeted therapy.
文章引用:樊俊晨, 戴岳. γδ T细胞及其在溃疡性结肠炎中的参与和作用[J]. 药物资讯, 2022, 11(3): 155-160. https://doi.org/10.12677/PI.2022.113019

1. 引言

γδ T细胞是一种独特的T淋巴细胞群,于1987年被发现,仅占循环淋巴细胞的一小部分(约5%),其TCR链由γ链和δ链组成。虽然γδ T细胞的总数比αβ T细胞少,但在肠道上皮内淋巴细胞(intraepithelial lymphocyte, IEL)中丰度最高。γδ T细胞连接先天性和适应性免疫系统,参与多种生理和病理过程。由于缺乏主要组织相容性复合物限制及独特的可塑性和免疫调节能力,γδ T细胞被认为是伤口愈合、抵御感染和免疫应答第一道防线的关键细胞 [1] [2] [3]。

溃疡性结肠炎(ulcerative colitis, UC)是一种慢性炎症性疾病,与克罗恩病一同属于炎症性肠病。UC的特征是肠道内慢性复发性炎症,结肠黏膜层受累,并伴有急性发作和缓解的阶段性交替。常见的症状是恶心、呕吐、腹痛、带有黏液和/或血液的腹泻。UC的肠外症状也很常见,可能累及关节、皮肤、眼睛和肾脏等。越来越多的研究表明,γδ T细胞与多种炎症和自身免疫性疾病密切相关,例如结肠炎、银屑病、关节炎和脑脊髓炎等 [4] [5] [6] [7]。本文总结γδ T细胞的特性及其在UC中的作用。

2. γδ T细胞的分类和作用

2.1. γδ T细胞的分类

人类γδ T细胞根据δ链表达进行区分,包括Vδ1、Vδ2和Vδ3亚型 [8]。Vδ1细胞主要存在于肠上皮、皮肤、脾脏和肝脏中,参与维持上皮组织的完整性;Vδ2细胞(也称为Vγ9+Vδ2+)是外周血循环中的主要亚型,具有自然杀伤和抗体依赖性的细胞毒性作用(ADCC);Vδ3细胞是最先在肠黏膜中发现的第三种亚型的γδ T细胞,仅占外周血循环T细胞的0.2%左右,它们在肝脏、某些慢性病毒感染和白血病患者中更为常见。

鼠γδ T细胞亚群根据γ链可变区(Vγ)区分,常应用Heilig & Tonegawa或Garman分类两种命名方法进行分类,本文采用Heilig & Tonegawa命名法。小鼠Vγ5、Vγ6和Vγ7细胞是组织驻留型,而Vγ1和Vγ4细胞从组织迁移到淋巴结。根据γδ T细胞所在的位置可分为DETC和γδ IEL。据其功能,γδ T细胞可分为两个主要亚群,即效应γδ T细胞和辅助性γδ T细胞。当γδ T细胞被刺激激活时,通过ADCC以及其他过程发挥作用,称为效应γδ T细胞 [9]。辅助性γδ T细胞根据其生物学功能和分泌的细胞因子可分为γδ T1细胞(同时产生IFN-γ和TNF-α等)、γδ T2细胞(产生IL-4等)、γδ T17细胞(产生IL-17等)、γδ T1/17细胞(同时产生IFN-γ和IL-17等)、γδ Treg细胞(产生IL-10等)和γδ Tfh (产生IL-21、IL-4和IL-10等)等。

2.2. γδ T细胞的发育

目前认为αβ和γδ T细胞起源于相同的胸腺祖细胞,即双阴性(double-negative,DN)胸腺细胞 [10]。DN胸腺细胞是一组表达CD44、CD117和CD25的异质细胞,包括DN1、DN2、DN3和DN4四个细胞阶段。TCRβ、TCRγ和TCRδ的基因重排发生于DN2细胞,并在DN3细胞中完成。DN3细胞是决定γδ或αβ细胞谱系命运的关键选择阶段,在此阶段表达pre-TCR和TCRγδ的细胞将免于凋亡而向γδ或αβ谱系分化,随后表达TCRγδ的DNT细胞不必经过双阳性阶段即可功能成熟 [11]。

对于αβ或γδ细胞谱系的选择,目前存在信号强度模型和与随机选择性模型两种模型 [12] [13]。随机选择性模型认为γδ T细胞的谱系选择发生在TCR重排之前。有文献报道表达较高IL-7Rα和SOX13的DN胸腺细胞更倾向于发育为γδ T细胞,但这种现象仅在Vγ4+γδ T细胞中存在。信号强度模型相比于随机选择性模型认可度较高,它认为DN胸腺细胞接收到强TCR信号发育为γδ T细胞,而弱TCR信号发育为αβ T细胞。但目前仍不清楚DN胸腺细胞是怎样区分TCR信号强度。

γδ T细胞的发育高度复杂且受严格监控,独特之处在于γδ T细胞在一系列“波动的信号”中发育,这些“波动的信号”由Vγ定义 [14]。胸腺在胚胎E14发育完成,γδ T细胞从E12-E14开始在胸腺中按Vγ链发育。第一波信号,Vγ5+γδ T细胞(DETC)在E13-E17出现,归巢到皮肤表皮并终生存在。第二波信号,E14出现Vγ6+γδ T细胞,E16出现Vγ4+和Vγ1+γδ T细胞。Vγ1和Vγ4细胞遍布全身,是外周次淋巴器官的主要亚群。Vγ1和Vγ4细胞终生在胸腺中发育,这些细胞以幼稚状态出现。而Vγ6细胞和结肠中一些产生IL-17的Vγ4细胞不需要胸腺来发育,它们主要作为自我生成的组织驻留细胞存在。第三波信号产生与αβ NKT相似的γδ NKT细胞。目前已知γδ IEL可以在无胸腺小鼠中发生胸腺外发育,但小鼠肝脏和肠道γδ T细胞的起源仍不清楚。

3. γδ T细胞在溃疡性结肠炎中的作用

3.1. γδ T细胞在肠道的分布

肠道中γδ T细胞主要分布在肠上皮和黏膜固有层(lamina propria, LP),他们被基底膜隔开。在上皮内,γδ T细胞占IEL的60%,大约60%的γδ T细胞表达Vγ7 TCR,30%表达Vγ1 TCR [15]。IEL中大部分γδ T细胞处于免疫静止状态,只有小部分维持在激活状态。它们拥有对肠道感染迅速反应的能力,起到连接先天免疫和适应性免疫的作用。

LP中,γδ T细胞大约占淋巴细胞的10%,LP γδ T细胞群更加异质,包含Vγ1+、Vγ4+和Vγ6+细胞,这些细胞可以从外周循环进入肠道。在稳态条件下,LP中的γδ T细胞比肠上皮中要少得多,它的组成受共生菌信号的调节 [16]。但结肠炎期间促炎γδ T细胞从外周募集到LP,引发对肠道感染的强烈反应促进黏膜炎症 [17]。

3.2. γδ T17细胞

γδ T17细胞是一类主要产生IL-17的γδ T细胞,包括Vγ4+和Vγ6+γδ T细胞 [18]。γδ T17细胞表达特异性转录因子RORγt,活化时产生IL-17A、IL-17F和IL-22等细胞因子 [19]。它与同样产生IL-17的CD4+αβT细胞(Th17)不同,小鼠γδ T17细胞在早期胸腺中获得了表达RORγt和产生IL-17的能力,是一种“预编程”细胞 [20]。巨噬细胞和树突状细胞产生的炎性细胞因子(最显著的是IL-1β和IL-23)足以激活γδ T17细胞 [21]。γδ T17细胞是感染和组织损伤的早期反应者,在肠道中提供保护性的宿主免疫反应。

结肠中的γδ T17细胞在出生前发育并持续存在于结肠黏膜固有层中,并且周转率较低。UC患者与健康人相比,肠道黏膜中浸润大量γδ T17细胞,并产生相当可观的IL-17 [22] [23]。γδ T17在肠道炎症和保护方面似乎是一把双刃剑。γδ T17可以促进致病性TH17细胞的分化,加剧肠道炎症 [24]。肠道菌群产生的丙酸盐可以通过抑制γδ T17细胞产生IL-17缓解肠道炎症 [25]。γδ T17细胞通过募集Gr-1+CD11b+髓源抑制细胞,在DSS诱导的结肠炎中发挥保护作用 [26]。在疾病早期,IL-23非依赖性的常驻γδ T17细胞通过act-1介导保护上皮屏障免受损伤和通透性升高 [27];内源性PGE2缺失通过损害肠道γδ T17细胞的反应增加小鼠结肠炎的疾病严重程度 [28]。γδ T17细胞似乎以依赖IL-17的方式发挥宿主防御和促炎作用。

3.3. γδ IEL

γδ IEL是一种在外周循环系统中很少见的主要表达Vγ7的γδ T细胞。分布在上皮紧密连接的基底外侧,每5-10个上皮细胞就有一个IEL嵌入肠上皮细胞之间 [29]。

γδ IEL参与调节肠道稳态。TCR δ−/−小鼠的小肠和结肠中上皮细胞增殖减少,肠道紧密连接复合物减少,导致肠道通透性增加 [30] [31]。γδ IEL还可以通过调节黏蛋白表达和促进小肠杯状细胞功能维持黏膜稳态 [32]。γδ IEL具有高度运动性,通过occludin介导的细胞/细胞与上皮细胞的接触迁移到整个肠上皮和固有层,对肠上皮进行广泛监测 [33]。TNF-α在IBD小鼠模型中的高浓度存在似乎限制了γδ IEL的这种迁移模式,但增加了γδ IEL的运动性,将γδ IEL聚集到损伤或感染部位,这可能代表一种急性炎症反应 [34]。

γδ IEL在维持损伤后黏膜稳态方面发挥着多方面的作用。在UC患者发炎黏膜中γδ IEL的百分比降低,并且γδ IEL的百分比与UC疾病严重程度呈负相关 [21] [22]。γδ IEL通过抑制Th1型反应发挥保护作用;通过在炎症期间分泌角质形成细胞生长因子(KGF)和抗菌肽(AMP)促进损伤的上皮进行修复 [35] [36]。对TCRδ−/−小鼠的分析表明,γδ T细胞控制DSS诱导肠黏膜损伤后共生细菌在受损黏膜表面的渗透,这表明γδ IEL的一个关键作用是在急性黏膜损伤后维持宿主-微生物的稳态 [35]。

3.4. 其他γδ T细胞

γδ T1细胞是一类主要产生IFN-γ,表达Vγ1和Vγ4的γδ T细胞。活化的γδ T1细胞可以通过产生IFN-γ抑制Foxp3+iTreg的胸腺外发育 [37]。最近的研究表明,来自肠系膜淋巴结的一部分CD103+α4β7highγδ T1细胞是结肠炎发病的主要贡献者,它们的出现先于结肠炎的发展 [18]。从肠系膜淋巴结中分离的CD103+α4β7highγδ T1细胞亚群的过继转移显着增强了产生IFNγ或IL-17的效应T细胞在肠道中的积累,并加剧了结肠炎症。此外,循环CD103+α4β7highγδ T1细胞的水平与靶结肠组织中Th1/Th17 CD4+T细胞积累的水平直接相关。

γδ Treg细胞是一类负责调节免疫系统和维持免疫耐受的γδ T细胞,该亚群也被称为γδ抑制性T细胞 [38]。这些细胞表达转录因子FoxP3,产生IL-10。在体外特定抗原和细胞因子(TGF-β和IL-15)的刺激下被诱导 [39]。目前在维持肠道稳态和肠道炎症的机制还有待研究。

γδ Trm细胞是一类主要表达Vγ4+TCR的记忆性γδ T细胞,在活化状态下产生IL-17和IFN-γ [40]。在小鼠单核细胞增生李斯特菌模型(Listeria monocytogenes, Lm),Lm诱导肠系膜淋巴结中γδ Trm细胞的快速扩增,并介导髓系细胞在肠系膜淋巴结内的迁移和重新分布 [41],提示γδ T细胞在肠黏膜中具有适应性免疫的特征。

4. 结语

UC的发病机制复杂多样,而γδ T细胞在肠道保护和炎症也具有双重作用。在疾病发展过程中,γδ T细胞可分泌KGF和AMP促进损伤上皮修复;另一方面γδ T细胞还可以分泌促炎细胞因子,如IL-17和IFN-γ,诱导和加重肠道炎症。此外,γδ T细胞还具有适应性免疫的特征,能够快速响应发挥作用,这可能与UC的反复发作相关。随着对肠道γδ T细胞的深入研究,其在UC发病机制中的重要性也越来越明晰,肠道γδ T细胞及其相关分子或将成为药物治疗的靶点,值得深入研究与探索。

NOTES

*通讯作者。

参考文献

[1] 贺伟峰. 皮肤T细胞各亚群在创面再上皮化过程中的调控作用及相关机制[J]. 中华烧伤杂志, 2022, 38(2): 114-118.
[2] Kumar, A., Singh, B., Tiwari, R., et al. (2022) Emerging Role of γδ T Cells in Protozoan Infection and Their Potential Clinical Application. Infection, Genetics and Evolution, 98, Article ID: 105210.
https://doi.org/10.1016/j.meegid.2022.105210
[3] Zheng, J., Liu, Y., Lau, Y.L., et al. (2013) γδ-T Cells: An Un-polished Sword in Human Anti-Infection Immunity. Cellular & Molecular Immunology, 10, 50-57.
https://doi.org/10.1038/cmi.2012.43
[4] Castro, T., Dennison, T., Ferdinand, J., et al. (2019) Anti-Commensal IgG Drives Intestinal Inflammation and Type 17 Immunity in Ulcerative Colitis. Immunity, 50, 1099-1114.
https://doi.org/10.1016/j.immuni.2019.02.006
[5] Ramírez-Valle, F., Gray, E.E. and Cyster, J.G. (2015) Inflam-mation Induces Dermal Vγ4+ γδ T17 Memory-Like Cells That Travel to Distant Skin and Accelerate Secondary IL-17-Driven Responses. Proceedings of the National Academy of Sciences of the United States of America, 112, 8046-8051.
https://doi.org/10.1073/pnas.1508990112
[6] Nagai, K., Ishii, T., Ohno, T., et al. (2022) Overload of the Temporomandibular Joints Accumulates γδ T Cells in a Mouse Model of Rheumatoid Arthritis: A Morphological and Histological Evaluation. Frontiers in Immunology, 12, Article ID: 753754.
https://doi.org/10.3389/fimmu.2021.753754
[7] Malik, S., Want, M.Y. and Awasthi, A. (2016) The Emerging Roles of Gamma-Delta T Cells in Tissue Inflammation in Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 7, Article No. 14.
https://doi.org/10.3389/fimmu.2016.00014
[8] Fichtner, A.S., Ravens, S. and Prinz, I. (2020) Human γδ TCR Repertoires in Health and Disease. Cells, 9, 800.
https://doi.org/10.3390/cells9040800
[9] Paul, S. and Lal, G. (2016) Regulatory and Effector Functions of Gam-ma-Delta (γδ) T Cells and Their Therapeutic Potential in Adoptive Cellular Therapy for Cancer. International Journal of Cancer, 139, 976-985.
https://doi.org/10.1002/ijc.30109
[10] Kreslavsky, T., Gleimer, M. and von Boehmer, H. (2010) αβ versus γδ Lin-eage Choice at the First TCR-Controlled Checkpoint. Current Opinion in Immunology, 22, 185-192.
https://doi.org/10.1016/j.coi.2009.12.006
[11] Fahl, S.P., Coffey, F. and Wiest, D.L. (2014) Origins of γδ T Cell Effector Subsets: A Riddle Wrapped in an Enigma. The Journal of Immunology, 193, 4289-4294.
https://doi.org/10.4049/jimmunol.1401813
[12] Taghon, T., Yui, M.A., Pant, R., et al. (2006) Developmental and Molecular Characterization of Emerging β- and γδ-Selected Pre-T Cells in the Adult Mouse Thymus. Immunity, 24, 53-64.
https://doi.org/10.1016/j.immuni.2005.11.012
[13] Muro, R., Takayanagi, H. and Nitta, T. (2019) T Cell Receptor Signaling for γδ T Cell Development. Inflammation and Regeneration, 39, 6.
https://doi.org/10.1186/s41232-019-0095-z
[14] Sumaria, N., Martin, S. and Pennington, D.J. (2019) Develop-mental Origins of Murine γδ T-Cell Subsets. Immunology, 156, 299-304.
https://doi.org/10.1111/imm.13032
[15] Boll, G., Rudolphi, A., Spiess, S., et al. (1995) Regional Specialization of Intraepithelial T Cells in the Murine Small and Large Intestine. Scandinavian Journal of Immunology, 41, 103-113.
https://doi.org/10.1111/j.1365-3083.1995.tb03541.x
[16] Duan, J., Chung, H., Troy, E., et al. (2010) Microbial Colonization Drives Expansion of IL-1 Receptor 1-Expressing and IL-17-Producing Gamma/Delta T Cells. Cell Host & Microbe, 7, 140-150.
https://doi.org/10.1016/j.chom.2010.01.005
[17] Do, J.S., Kim, S., Keslar, K., et al. (2017) γδ T Cells Coexpress-ing Gut Homing α4β7 and αE Integrins Define a Novel Subset Promoting Intestinal Inflammation. The Journal of Im-munology, 198, 908-915.
https://doi.org/10.4049/jimmunol.1601060
[18] McKenzie, D.R., Comerford, I., Silva-Santos, B., et al. (2018) The Emerging Complexity of γδ T17 Cells. Frontiers in Immunology, 9, Article No. 796.
https://doi.org/10.3389/fimmu.2018.00796
[19] Papotto, P.H., Ribot, J.C. and Silva-Santos, B. (2017) IL-17+ γδ T Cells as Kick-Starters of Inflammation. Nature Immunology, 18, 604-611.
https://doi.org/10.1038/ni.3726
[20] Ribot, J.C., deBarros, A., Pang, D.J., et al. (2009) CD27 Is a Thymic Deter-minant of the Balance between Interferon-γ- and Interleukin 17-Producing γδ T Cell Subsets. Nature Immunology, 10, 427-436.
https://doi.org/10.1038/ni.1717
[21] Lo Presti, E., Mocciaro, F., Mitri, R.D., et al. (2020) Analysis of Co-lon-Infiltrating γδ T Cells in Chronic Inflammatory Bowel Disease and in Colitis-Associated Cancer. Journal of Leuko-cyte Biology, 108, 749-760.
https://doi.org/10.1002/JLB.5MA0320-201RR
[22] Lo Presti, E., Di Mitri, R., Mocciaro, F., et al. (2019) Charac-terization of γδ T Cells in Intestinal Mucosa from Patients with Early-Onset or Long-Standing Inflammatory Bowel Dis-ease and Their Correlation with Clinical Status. Journal of Crohn’s and Colitis, 13, 873-883.
https://doi.org/10.1093/ecco-jcc/jjz015
[23] Do, J.S., Visperas, A., Dong, C., et al. (2011) Cutting Edge: Genera-tion of Colitogenic Th17 CD4 T Cells Is Enhanced by IL-17+ γδ T Cells. The Journal of Immunology, 186, 4546-4550.
https://doi.org/10.4049/jimmunol.1004021
[24] Dupraz, L., Magniez, A., Rolhion, N., et al. (2021) Gut Microbio-ta-Derived Short-Chain Fatty Acids Regulate IL-17 Production by Mouse and Human Intestinal γδ T Cells. Cell Reports, 36, Article ID: 109332.
https://doi.org/10.1016/j.celrep.2021.109332
[25] Sun, X., Cai, Y., Fleming, C., et al. (2017) Innate γδ T17 Cells Play a Protective Role in DSS-Induced Colitis via Recruitment of Gr-1+CD11b+ Myeloid Suppressor Cells. Oncoim-munology, 6, e1313369.
https://doi.org/10.1080/2162402X.2017.1313369
[26] Lee, J.S., Tato, C.M., Joyce-Shaikh, B., et al. (2015) Inter-leukin-23-Independent IL-17 Production Regulates Intestinal Epithelial Permeability. Immunity, 43, 727-738.
https://doi.org/10.1016/j.immuni.2015.09.003
[27] Polese, B., Thurairajah, B., Zhang, H., et al. (2021) Prostaglan-din E2 Amplifies IL-17 Production by γδ T Cells during Barrier Inflammation. Cell Reports, 36, Article ID: 109456.
https://doi.org/10.1016/j.celrep.2021.109456
[28] Olivares-Villagómez, D. and Van Kaer, L. (2018) Intestinal In-traepithelial Lymphocytes: Sentinels of the Mucosal Barrier. Trends in Immunology, 39, 264-275.
https://doi.org/10.1016/j.it.2017.11.003
[29] Komano, H., Fujiura, Y., Kawaguchi, M., et al. (1995) Homeostatic Regulation of Intestinal Epithelia by Intraepithelial Gamma Delta T Cells. Proceedings of the National Academy of Sci-ences of the United States of America, 92, 6147-6151.
https://doi.org/10.1073/pnas.92.13.6147
[30] Dalton, J.E., Cruickshank, S.M., Egan, C.E., et al. (2006) Intraepithelial γδ+ Lymphocytes Maintain the Integrity of Intestinal Epithelial Tight Junctions in Response to Infection. Gastroenterology, 131, 818-829.
https://doi.org/10.1053/j.gastro.2006.06.003
[31] Kober, O.I., Ahl, D., Pin, C., et al. (2014) γδ T-Cell-Deficient Mice Show Alterations in Mucin Expression, Glycosylation, and Goblet Cells but Maintain an Intact Mucus Layer. The American Journal of Physiology-Gastrointestinal and Liver Physiology, 306, G582-G593.
https://doi.org/10.1152/ajpgi.00218.2013
[32] Edelblum, K.L., Shen, L., Weber, C.R., et al. (2012) Dynamic Mi-gration of γδ Intraepithelial Lymphocytes Requires Occludin. Proceedings of the National Academy of Sciences of the United States of America, 109, 7097-7102.
https://doi.org/10.1073/pnas.1112519109
[33] Inagaki-Ohara, K., Chinen, T., Matsuzaki, G., et al. (2004) Mucosal T Cells Bearing TCRγδ Play a Protective Role in Intestinal Inflammation. The Journal of Immunology, 173, 1390-1398.
https://doi.org/10.4049/jimmunol.173.2.1390
[34] Chen, Y., Chou, K., Fuchs, E., et al. (2002) Protection of the In-testinal Mucosa by Intraepithelial Gamma Delta T Cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 14338-14343.
https://doi.org/10.1073/pnas.212290499
[35] Ismail, A.S., Severson, K.M., Vaishnava, S., et al. (2011) γδ Intraep-ithelial Lymphocytes Are Essential Mediators of Host-Microbial Homeostasis at the intestinal Mucosal Surface. Pro-ceedings of the National Academy of Sciences of the United States of America, 108, 8743-8748.
https://doi.org/10.1073/pnas.1019574108
[36] Ismail, A.S., Behrendt, C.L. and Hooper, L.V. (2009) Reciprocal Interactions between Commensal Bacteria and Gamma Delta Intraepithelial Lymphocytes during Mucosal Injury. The Journal of Immunology, 182, 3047-3054.
https://doi.org/10.4049/jimmunol.0802705
[37] Visperas, A., Shen, B. and Min, B. (2014) γδ T Cells Restrain Ex-trathymic Development of Foxp3+ Inducible Regulatory T Cells via IFN-γ. European Journal of Immunology, 44, 2448-2456.
https://doi.org/10.1002/eji.201344331
[38] Gu, Y., Hu, Y., Hu, K., et al. (2014) Rapamycin Together with TGF-β1, IL-2 and IL-15 Induces the Generation of Functional Regulatory γδ T Cells From Human Peripheral Blood Mononuclear Cells. Journal of Immunological Methods, 402, 82-87.
https://doi.org/10.1016/j.jim.2013.11.009
[39] Casetti, R., Agrati, C., Wallace, M., et al. (2009) Cutting Edge: TGF-β1 and IL-15 Induce FOXP3+ γδ Regulatory T Cells in the Presence of Antigen Stimulation. The Journal of Im-munology, 183, 3574-3577.
https://doi.org/10.4049/jimmunol.0901334
[40] Khairallah, C., Bettke, J.A., Gorbatsevych, O., et al. (2022) A Blend of Broadly-Reactive and Pathogen-Selected Vγ4 Vδ1 T Cell Receptors Confer Broad Bacterial Reactivity of Resi-dent Memory γδ T Cells. Mucosal Immunology, 15, 176-187.
https://doi.org/10.1038/s41385-021-00447-x
[41] Romagnoli, P.A., Sheridan, B.S., Pham, Q.M., et al. (2016) IL-17A-Producing Resident Memory γδ T Cells Orchestrate the Innate Immune Response to Secondary Oral Listeria monocytogenes Infection. Proceedings of the National Academy of Sciences of the United States of America, 113, 8502-8507.
https://doi.org/10.1073/pnas.1600713113