NLR、MLR、FAR与AIS患者静脉溶栓治疗预后关系的研究进展
Research Progress on the Relationship between NLR, MLR, FAR and Prognosis of AIS Patients Treated with Intravenous Thrombolytic Therapy
摘要: NLR (中性粒细胞与淋巴细胞比值)、MLR (单核细胞与淋巴细胞比值)以及FAR (纤维蛋白原与白蛋白比值)作为新兴的炎症指标,与多种心脑血管疾病的发生、发展及其预后有关,已越来越多地应用于脑卒中患者发病及预后研究。但目前国内鲜有关于上述指标与AIS (急性缺血性脑卒中)患者静脉溶栓治疗预后关系相关研究,本文对NLR、MLR、FAR与AIS患者溶栓治疗预后相关性研究进行总结,以期为溶栓治疗患者不良预后早期干预提供参考。
Abstract: NLR (the ratio of neutrophils and lymphocytes), MLR (monocyte and lymphocyte ratio) and FAR (fi-brinogen and albumin ratio) as indicators of inflammation of the emerging, are associated with many kinds of occurrence, development and prognosis of disease of heart head blood-vessel, and have been increasingly used in the study of pathogenesis and prognosis of patients with cerebral apoplexy. However, there are few domestic studies on the correlation between the above indicators and the prognosis of intravenous thrombolytic therapy in patients with AIS (acute ischemic stroke). In this paper, the studies on the correlation between the prognosis of thrombolytic therapy in pa-tients with NLR, MLR, FAR and AIS were summarized, so as to provide reference for the early inter-vention of poor prognosis in patients with thrombolytic therapy.
文章引用:詹清艳, 霍燕, 薛艺东. NLR、MLR、FAR与AIS患者静脉溶栓治疗预后关系的研究进展[J]. 临床医学进展, 2022, 12(5): 3871-3879. https://doi.org/10.12677/ACM.2022.125560

1. 引言

急性缺血性脑卒中是世界上第三大致死和致残原因 [1],在我国,脑卒中是导致死亡和残疾的主要原因 [2],越来越多的证据表明炎症反应是一把双刃剑,它不仅加重了卒中急性期继发性脑损伤,而且有利于卒中后的脑恢复 [3]。NLR (中性粒细胞与淋巴细胞比值)、MLR (单核细胞与淋巴细胞比值)以及FAR (纤维蛋白原与白蛋白比值)均为近年来提出的复合炎性指标,具有快捷、简便、经济的优点,与脑血管事件严重程度及预后相关 [4] [5]。急性缺血性卒中使用重组组织纤溶酶原激活剂溶栓旨在恢复受损的血流并防止进一步的神经元损伤 [6]。研究表明,AIS患者溶栓治疗后仍可出现出血转化(HT) [7]、早期神经功能恶化等多种不良结局。为探究新型预测指标,现就NLR、MLR、FAR与AIS患者静脉溶栓治疗预后关系的相关性研究进行综述。

2. NLR与AIS

2.1. NLR与AIS机制

炎症在AIS等缺血性脑损伤的发病机制中起着重要作用。在各种类型的白细胞中,中性粒细胞是最先浸润缺血脑(局灶性脑缺血30分钟至数小时),最先达到峰值(1~3天),然后随着时间消失或迅速减少的白细胞之一 [3]。在亚急性期(数小时至数天),浸润性白细胞释放细胞因子和趋化因子,特别是ROS (活性氧)的过度产生和MMP (基质金属蛋白酶) (主要是MMP-9)的诱导/激活,通过引起更广泛的激活停留细胞和白细胞浸润,进一步放大脑炎症反应。最终导致血脑屏障的破坏、脑水肿、神经元死亡和出血性转化 [8] [9]。淋巴细胞于卒中随着细胞亚型的不同而显示出不同的作用。越来越多的证据表明,B细胞也可能在调节大脑功能方面发挥重要作用 [10]。调节性B细胞已被证明在卒中发挥保护作用 [11],而在其他模型中发现了调节性B细胞的早期保护作用和B细胞的延迟有害作用 [12]。在缺血大脑中大约40%的浸润T细胞是CD4+辅助性T细胞,而大约30%是CD8+阳性细胞毒性T细胞,通过耗竭抗体去除这些T细胞组分,可减少脑梗死体积 [13],有利于卒中结果。相比之下,部分亚型的T淋巴细胞在急性脑梗死造成的脑损伤中具有消极作用 [14],例如Th17细胞,在急性脑梗死发生后,Th17淋巴细胞的比例和数量显著增加,加剧了脑梗死后炎性反应程度。NLR作为两者比值,可准确直观地反应出AIS炎症反应程度与继发脑损伤情况。

2.2. NLR与AIS及溶栓治疗预后

动脉粥样硬化是AIS的重要病理基础,其中颈动脉粥样硬化疾病占30% [15],无症状颈动脉狭窄患者每年发生脑卒中的风险小于5%。症状性颈动脉狭窄导致卒中复发的风险更高,估计每年高达15% [16]。斑块破裂、溃疡、血小板活化、血栓形成引起的动脉栓塞被认为颈动脉易损是AIS的发病机制,甚至在AIS中易损斑块破裂的风险比狭窄的严重程度更为重要 [17]。NLR是一种新的、有意义的生物标志物,与中国AIS患者颈动脉超声检测的颈动脉斑块易感性和存在易损斑块独立相关 [18],是颈动脉粥样硬化斑块存在和数量的强预测因子,它的使用可能有助于识别携带颈动脉斑块的风险 [19],高NLR是一般健康成年人缺血性卒中发病率的独立危险因素 [20]。上述结果表明NLR可能是颈动脉斑块的独立危险因素,高NLR与AIS发生风险密切相关。大量证据显示NLR与AIS严重程度和不良预后相关:Huang LY等 [21] 研究表明NLR与颅内动脉狭窄(ICAS)和缺血性卒中显著相关;Sun G等 [22] 证实了作为炎症标志物,NLR水平升高与颅内动脉夹层所致AIS 3个月预后不良相关;Nam KW等 [23] 研究表明较高的NLR可预测急性缺血性卒中患者的卒中相关性肺炎;Zhang R等 [24] 研究发现高NLR可以预测AIS患者的出血性转化和3个月死亡率。一项纳入了3641名患者的研究显示 [25],在接受IVT的AIS患者中,较高的NLR与出血性转化(HT)的风险增加(OR = 1.33, 95%CI = 1.14~1.56, P < 0.001)和较差的3个月功能结果(OR = 1.64, 95%CI = 1.38~1.94, P < 0.001),这表明高NLR可成为接受IVT的AIS患者的HT发生风险和3个月功能预后不良的预测因素。

3. MLR与AIS

3.1. MLR与AIS机制

颅内外大动脉粥样硬化是导致急性脑梗死的最常见原因,单核细胞是动脉粥样硬化过程的始动细胞与整个动脉粥样硬化过程密切相关。急性缺血性卒中(AIS)后,外周血单核细胞在24 h内浸润病灶部位,3~7天达到高峰,并分化为巨噬细胞。传统上,单核细胞/巨噬细胞(MMs)被认为在AIS中扮演有害的角色,急性期减少MMs可减轻缺血引起的脑损伤。然而,多项研究表明MMs具有抗炎作用,参与血管生成,吞噬坏死神经元,促进神经血管修复 [26]。单核细胞趋化蛋白(MCP-1, CCL2)及其受体CCR2也参与了脑缺血损伤后的炎症反应 [27] [28],且CCL2/CCR2轴在单核细胞募集到缺血脑中起关键作用 [29] [30] [31],中枢神经系统损伤环境中CCR2依赖的炎症单核细胞早期募集并随后分化为非炎症吞噬细胞是脑缺血后炎症与修复的关键机制 [32]。脑卒中后,MMs对脑缺血灶的浸润减少,脑卒中体积减少,神经元凋亡减少 [33] [34] [35],血脑屏障损伤和脑水肿减少 [29],这些研究表明MMs对缺血性脑卒中有一定的危害作用。然而,其他研究得出了相反的结论。有研究采用CCR2敲除小鼠或CCR2拮抗剂抑制Ly6ChighCCR2+单核细胞进入缺血灶,导致梗死体积增大,神经功能障碍加重 [10] [16] [36] [37] [38] [39] [40],梗死后出血 [32]。CXCR4消融减少了瞬时MCAO(短暂大脑中动脉阻断)后单核细胞浸润,这与第3天 [41] 时更高的神经功能缺损和病变体积增加有关。这表明MMs在缺血性脑梗死中具有有益作用。MMs在缺血早期和恢复期的不同时间点也有不同的作用。CCR2依赖的MMs被发现在急性期加重脑损伤,而在MCAO后的后期促进神经功能 [36]。卒中后5天,PPARγ驱动的巨噬细胞开始过度表达相关基因参与神经血管重建(包括血管生成和轴突再生),促进轴突再生和脑修复 [42],这表明巨噬细胞可能在脑卒中后启动脑修复中起重要作用。因此,巨噬细胞在缺血性脑卒中后死亡神经元的吞噬和清除中发挥重要作用,促进脑炎症的解决、脑修复和神经功能的恢复。然而,MMs也会在缺血性卒中后损伤神经元 [26]。有报道称MMs可在缺血后损伤髓鞘。去除MMs可减少同侧纹状体髓鞘损伤,提示MMs可增加缺血后髓鞘损伤 [34],通过产生促炎细胞因子、趋化因子、活性氧和谷氨酸,浸润MMs会加重髓鞘损伤 [43]。同时,外周MMs可促进缺血后血管生成,保护缺血区域新生微血管,减少血管破裂引起的脑出血转化。因此,MMs在缺血脑组织中可能具有双重作用,其保护作用或有害作用可能取决于损伤程度、损伤后时间和微环境。

3.2. MLR与AIS及溶栓治疗预后

颈动脉狭窄主要是由颈动脉粥样硬化引起的,是缺血性脑卒中的主要发病机制,MLR值对急性脑梗死发生风险及颈动脉狭窄程度的评估具有重要价值。一项回顾性分395名缺血性卒中参与者的研究 [44] 发现,MLR是颈动脉狭窄的独立危险因素(OR: 9.74, 95%CI: 1.16~81.54),在ROC曲线分析中,MLR的截断值0.20预测了颈动脉狭窄的严重程度,其敏感性为80.40%,特异性为26.40% (ROC曲线下面积:0.598, 95% CI: 0.53~0.67, p = 0.004)。这表明MLR在缺血性脑卒中患者颈动脉狭窄中起重要作用,是颈动脉狭窄严重程度的独立危险因素。Liu H等 [45] 对253例急性脑梗死患者和211例健康体检者进行回顾性分析,发现缺血性脑卒中患者的MLR值明显高于对照组,且MLR值 > 0.1958是AIS发生的独立预测因子。在AIS预后方面,Ren H等 [46] 证实AIS患者入院时较低的LMR与AIS患者严重中风和3个月不良预后独立相关;Song Q等 [47] 发现在AIS患者中,低LMR与高HT风险独立相关,入院LMR可作为HT的预测因素之一。另外,有证据表明,AIS患者高MLR与SAP(卒中相关性肺炎)显著相关 [48],且高MLR是SAP患者发生重症肺炎的独立危险因素 [49],对SAP患者发生重症肺炎具有预测价值。此外,高MLR与卒中后抑郁(PSD)和PSD严重程度增加独立相关 [50]。既往研究表明,溶栓后早期神经功能预后,包括溶栓后早期神经功能恶化(END)和溶栓后早期神经功能改善(ENI)与静脉溶栓患者的预后相关 [51] [52],溶栓前MLR与溶栓后END相关 [53]。一项顾性纳入108例接受溶栓治疗患者的研究 [54] 发现LMR值与神经功能损害程度呈负相关(r = −0.372, P < 0.001)。这说明低的MLR值是不良预后的独立保护因素,高MLR值是AIS溶栓治疗不良预后的独立预测指标。所以,高MLR可能是AIS患者颈动脉狭窄的独立危险因素,也可能成为AIS患者及其溶栓治疗不良预后的独立预测因子。

4. FAR与AIS

4.1. FAR与AIS机制

纤维蛋白原是凝血级联反应的关键组成部分,其循环水平的变化可能导致血栓性疾病,例如静脉血栓栓塞(VTE)和缺血性卒中(AIS) [55]。纤维蛋白原是脑中已知的促炎因子 [56],高纤维蛋白原是AIS的危险因素 [57],也是脑卒中后预后不良的因素 [58] [59] [60]。这可能与AIS时血脑屏障通透性的增加 [61] [62],不同类型的血浆蛋白外渗到脑实质,纤维蛋白原硝基酪氨酸反应增强 [63] 引起凝块不稳定性增加,增加了微栓子的潜在风险 [64] 有关。总之,纤维蛋白原,特别是硝基纤维蛋白原,在脑卒中缺血半暗区脑组织损伤的进展中发挥了相关作用,并且决定了最终损伤的程度 [63]。另一方面,大量证据表明,氧化应激介导缺氧缺血动物模型中的神经元死亡 [65],白蛋白(HSA)氧化在AIS患者中增加。氧化白蛋白水平与神经指标如NIHSS评分呈正相关 [65],AIS患者相对较高的HSA水平可以降低不良预后的风险 [66],这表明脑脊液中HSA的氧化不仅可以作为提供氧化应激状态信息的生物标志物,而且还可能与AIS患者神经功能缺损严重程度以及预后相关。因此,FAR值可间接反映AIS患者严重程度及预后情况。

4.2. FAR与AIS及溶栓治疗预后

在缺血性卒中的发病机制中,血管内皮的变化和血小板的活化起着重要作用。这一过程导致动脉粥样硬化血栓并发症,从而导致脑梗死 [67]。高血浆纤维蛋白原与总卒中风险增加相关 [57] [68]。高纤维蛋白原血症已被确认为静脉和动脉血栓形成的独立危险因素,可能有助于动脉粥样硬化斑块的形成和进展 [69]。急性缺血性脑卒中后纤维蛋白原水平的升高也与脑卒中后更差的神经预后 [70] 和溶栓疗效降低相关 [58] [59] [60]。研究表明,高纤维蛋白原水平与脑卒中后出血转化(HT) [71]、情绪障碍 [72]、抑郁和认知障碍 [72]、青年患者(<50岁)较差的长期认知 [73] 等不良预后相关。Shi J等 [74] 的研究结果表明,溶栓治疗后纤维蛋白原水平的动态增加预示着治疗后3个月内死亡或严重残疾的风险增加,表明血浆纤维蛋白原水平作为接受溶栓治疗的急性缺血性卒中患者短期不良预后的预测标志物具有潜在作用。低HSA浓度与全脑卒中、缺血性卒中、缺血性卒中亚型和脑出血的风险增加有关 [75]。低HSA水平可能是AIS患者肺炎的独立预测因素 [76],是AIS患者静脉溶栓后HT的独立影响因素 [77] 及预测因素 [78],可预测AIS或TIA患者的功能预后和死亡率 [79],增加急性缺血性脑卒中患者的复发风险 [80]。提示HSA水平可作为AIS患者溶栓治疗的预后及HT、SAP等预测因子。因此,FAR作为两者比值,有理由认为FAR与AIS发生与复发风险、不良预后及溶栓治疗预后包括HT、PSD、SAP等有关。

5. 小结与展望

急性脑卒中是单病种致残率最高的疾病,其高发病率、高死亡率和高致残率给社会、家庭和患者带来沉重的负担和巨大的痛苦,早期采取有针对性的治疗对改善卒中患者预后具有重要意义。外周血NLR、MLR、FAR作为简单、可靠、易获取的炎性标志物,可能与AIS患者溶栓治疗的预后及HT、PSD、SAP等发生有关,但相关机制尚未明确。相信随着相关研究的深入,NLR、MLR、FAR将用于预测卒中溶栓治疗患者预后及其并发症的发生,为指导急性缺血性脑卒中的预防、溶栓治疗不良预后高危人群的筛选及干预等临床工作做出贡献。

参考文献

[1] Jayaraj, R.L., Azimullah, S., Beiram, R., et al. (2019) Neuroinflammation: Friend and Foe for Ischemic Stroke. Journal of Neuroinflammation, 16, 142.
https://doi.org/10.1186/s12974-019-1516-2
[2] Wang, Y., Jing, J., Meng, X., et al. (2019) The Third China National Stroke Registry (CNSR-III) for Patients with Acute Ischaemic Stroke or Transient Ischaemic Attack: Design, Rationale and Baseline Patient Characteristics. Stroke and Vascular Neurology, 4, 158-164.
https://doi.org/10.1136/svn-2019-000242
[3] Jin, R., Liu, L., Zhang, S., et al. (2013) Role of Inflammation and Its Mediators in Acute Ischemic Stroke. Journal of Cardiovascular Translational Research, 6, 834-851.
https://doi.org/10.1007/s12265-013-9508-6
[4] 马翠红, 靳佳敏, 张俊莲, 等. 血常规中炎症指标在脑梗死预后中的预测价值[J]. 中风与神经疾病杂志, 2020, 37(8): 720-724.
[5] 徐恩君, 陈秋莉, 周龙荣, 等. 纤维蛋白原/白蛋白比值与脑梗死严重程度相关性分析[J]. 临床军医杂志, 2020, 48(12): 1444-1445, 1447.
[6] Schlemm, E., Ingwersen, T., Königsberg, A., et al. (2021) Preserved Structural Connectivity Mediates the Clinical Effect of Thrombo-lysis in Patients with Anterior-Circulation Stroke. Nature Communications, 12, 2590.
https://doi.org/10.1038/s41467-021-22786-w
[7] Ma, G., Pan, Z., Kong, L., et al. (2021) Neuroinflammation in Hemorrhagic Transformation after Tissue Plasminogen Activator Thrombolysis: Potential Mechanisms, Targets, Thera-peutic Drugs and Biomarkers. International Immunopharmacology, 90, Article ID: 107216.
https://doi.org/10.1016/j.intimp.2020.107216
[8] Amantea, D., Nappi, G., Bernardi, G., et al. (2009) Post-Ischemic Brain Damage: Pathophysiology and Role of Inflammatory Mediators. FEBS Journal, 276, 13-26.
https://doi.org/10.1111/j.1742-4658.2008.06766.x
[9] Kriz, J. (2006) Inflammation in Ischemic Brain Injury: Timing Is Important. Critical Reviews™ in Neurobiology, 18, 145-157.
https://doi.org/10.1615/CritRevNeurobiol.v18.i1-2.150
[10] Engler-Chiurazzi, E.B., Monaghan, K.L., Wan, E., et al. (2020) Role of B Cells and the Aging Brain in Stroke Recovery and Treatment. Geroscience, 42, 1199-1216.
https://doi.org/10.1007/s11357-020-00242-9
[11] Seifert, H.A., Vandenbark, A.A. and Offner, H. (2018) Regula-tory B Cells in Experimental Stroke. Immunology, 154, 169-177.
https://doi.org/10.1111/imm.12887
[12] Javidi, E. and Magnus, T. (2019) Autoimmunity after Ischemic Stroke and Brain Injury. Frontiers in Immunology, 10, Article No. 686.
https://doi.org/10.3389/fimmu.2019.00686
[13] Yilmaz, G., Arumugam, T.V., Stokes, K.Y., et al. (2006) Role of T Lymphocytes and Interferon-Gamma in Ischemic Stroke. Circulation, 113, 2105-2112.
https://doi.org/10.1161/CIRCULATIONAHA.105.593046
[14] Liesz, A., Hu, X., Kleinschnitz, C., et al. (2015) Functional Role of Regulatory Lymphocytes in Stroke: Facts and Controversies. Stroke, 46, 1422-1430.
https://doi.org/10.1161/STROKEAHA.114.008608
[15] Magge, R., Lau, B.C., Soares, B.P., et al. (2013) Clinical Risk Factors and CT Imaging Features of Carotid Atherosclerotic Plaques as Predictors of New Incident Carotid Ischem-ic Stroke: A Retrospective Cohort Study. AJNR American Journal of Neuroradiology, 34, 402-409.
https://doi.org/10.3174/ajnr.A3228
[16] Gokaldas, R., Singh, M., Lal, S., et al. (2015) Carotid Stenosis: From Di-agnosis to Management, Where Do We Stand? Current Atherosclerosis Reports, 17, 480.
https://doi.org/10.1007/s11883-014-0480-7
[17] Freilinger, T., Dimitriadis, K., Nikolaou, K., et al. (2011) Stroke While Squeezing a Pimple: Traumatic Rupture of a Vulnerable Carotid Artery Plaque. Neurology, 76, 305-306.
https://doi.org/10.1212/WNL.0b013e3182074be8
[18] Li, X., Li, J., Wu, G. (2021) Relationship of Neutro-phil-to-Lymphocyte Ratio with Carotid Plaque Vulnerability and Occurrence of Vulnerable Carotid Plaque in Patients with Acute Ischemic Stroke. BioMed Research International, 2021, Article ID: 6894623.
https://doi.org/10.1155/2021/6894623
[19] Corriere, T., Di Marca, S., Cataudella, E., et al. (2018) Neutro-phil-to-Lymphocyte Ratio Is a Strong Predictor of Atherosclerotic Carotid Plaques in Older Adults. Nutrition, Metabo-lism & Cardiovascular Diseases, 28, 23-27.
https://doi.org/10.1016/j.numecd.2017.10.022
[20] Suh, B., Shin, D.W., Kwon, H.M., et al. (2017) Elevated Neu-trophil to Lymphocyte Ratio and Ischemic Stroke Risk in Generally Healthy Adults. PLoS ONE, 12, e0183706.
https://doi.org/10.1371/journal.pone.0183706
[21] Huang, L.Y., Sun, F.R., Yin, J.J., et al. (2021) Associations of the Neutrophil to Lymphocyte Ratio with Intracranial Artery Stenosis and Ischemic Stroke. BMC Neurology, 21, 56.
https://doi.org/10.1186/s12883-021-02073-3
[22] Sun, G., Yang, Y., Chen, Z., et al. (2020) Neutrophil to Lym-phocyte Ratio Predicts Outcome of Stroke by Cervicocranial Arterial Dissection. Frontiers in Medicine (Lausanne), 7, Article ID: 598055.
https://doi.org/10.3389/fmed.2020.598055
[23] Nam, K.W., Kim, T.J, Lee, J.S., et al. (2018) High Neutro-phil-to-Lymphocyte Ratio Predicts Stroke-Associated Pneumonia. Stroke, 49, 1886-1892.
https://doi.org/10.1161/STROKEAHA.118.021228
[24] Zhang, R., Wu, X., Hu, W., et al. (2019) Neutro-phil-to-Lymphocyte Ratio Predicts Hemorrhagic Transformation in Ischemic Stroke: A Meta-Analysis. Brain and Be-havior, 9, e01382.
https://doi.org/10.1002/brb3.1382
[25] Wang, C., Zhang, Q., Ji, M., et al. (2021) Prognostic Value of the Neutrophil-to-Lymphocyte Ratio in Acute Ischemic Stroke Patients Treated with Intravenous Thrombolysis: A Systematic Review and Meta-Analysis. BMC Neurology, 21, Article No. 191.
https://doi.org/10.1186/s12883-021-02222-8
[26] Han, D., Liu, H. and Gao, Y. (2020) The Role of Peripheral Monocytes and Macrophages in Ischemic Stroke. Neurological Sciences, 41, 3589-3607.
https://doi.org/10.1007/s10072-020-04777-9
[27] Che, X., Ye, W., Pang, L., et al. (2001) Monocyte Chemoat-tractant Protein-1 Expressed in Neurons and Astrocytes during Focal Ischemia in Mice. Brain Research, 902, 171-177.
https://doi.org/10.1016/S0006-8993(01)02328-9
[28] Chu, H.X., Arumugam, T.V., Gelderblom, M., et al. (2014) Role of CCR2 in Inflammatory Conditions of the Central Nervous System. Journal of Cerebral Blood Flow & Metabo-lism, 34, 1425-1429.
https://doi.org/10.1038/jcbfm.2014.120
[29] Dimitrijevic, O.B., Stamatovic, S.M., Keep, R.F., et al. (2007) Ab-sence of the Chemokine Receptor CCR2 Protects against Cerebral Ischemia/Reperfusion Injury in Mice. Stroke, 38, 1345-1353.
https://doi.org/10.1161/01.STR.0000259709.16654.8f
[30] Schilling, M., Strecker, J.K., Ringelstein, E.B., et al. (2009) The Role of CC Chemokine Receptor 2 on Microglia Activation and Blood-Borne Cell Recruitment after Transient Focal Cerebral Ischemia in Mice. Brain Research, 1289, 79-84.
https://doi.org/10.1016/j.brainres.2009.06.054
[31] Schuette-Nuetgen, K., Strecker, J.K., Minnerup, J., et al. (2012) MCP-1/CCR-2-Double-Deficiency Severely Impairs the Migration of Hematogenous Inflammatory Cells Following Transient Cerebral Ischemia in Mice. Experimental Neurology, 233, 849-858.
https://doi.org/10.1016/j.expneurol.2011.12.011
[32] Gliem, M., Mausberg, A.K., Lee, J.I., et al. (2012) Macro-phages Prevent Hemorrhagic Infarct Transformation in Murine Stroke Models. Annals of Neurology, 71, 743-752.
https://doi.org/10.1002/ana.23529
[33] Ajmo, C.T., Vernon, D.O., Collier, L., et al. (2008) The Spleen Contributes to Stroke-Induced Neurodegeneration. Journal of Neuroscience Research, 86, 2227-2234.
https://doi.org/10.1002/jnr.21661
[34] Ma, Y., Li, Y., Jiang, L., et al. (2016) Macrophage Depletion Reduced Brain Injury Following Middle Cerebral Artery Occlusion in Mice. Journal of Neuroinflammation, 13, 38.
https://doi.org/10.1186/s12974-016-0504-z
[35] Ostrowski, R.P., Schulte, R.W., Nie, Y., et al. (2012) Acute Splenic Irradiation Reduces Brain Injury in the Rat Focal Ischemic Stroke Model. Translational Stroke Research, 3, 473-481.
https://doi.org/10.1007/s12975-012-0206-5
[36] Fang, W., Zhai, X., Han, D., et al. (2018) CCR2-Dependent Monocytes/Macrophages Exacerbate Acute Brain Injury but Promote Functional Recovery after Is-chemic Stroke in Mice. Theranostics, 8, 3530-3543.
https://doi.org/10.7150/thno.24475
[37] Pedragosa, J., Miró-Mur, F., Otxoa-de-Amezaga, A., et al. (2020) CCR2 Deficiency in Monocytes Impairs Angiogenesis and Functional Recovery after Ischemic Stroke in Mice. Journal of Cer-ebral Blood Flow & Metabolism, 40, S98-S116.
https://doi.org/10.1177/0271678X20909055
[38] Chu, H.X., Broughton, B.R., Kim, H.A., et al. (2015) Evidence That Ly6C(hi) Monocytes Are Protective in Acute Ischemic Stroke by Promoting M2 Macrophage Polarization. Stroke, 46, 1929-1937.
https://doi.org/10.1161/STROKEAHA.115.009426
[39] Wattananit, S., Tornero, D., Graubardt, N., et al. (2016) Monocyte-Derived Macrophages Contribute to Spontaneous Long-Term Functional Recovery after Stroke in Mice. Journal of Neuroscience, 36, 4182-4195.
https://doi.org/10.1523/JNEUROSCI.4317-15.2016
[40] Perego, C., Fumagalli, S., Zanier, E.R., et al. (2016) Macrophages Are Essential for Maintaining a M2 Protective Response Early after Ischemic Brain Injury. Neurobiology of Disease, 96, 284-293.
https://doi.org/10.1016/j.nbd.2016.09.017
[41] Werner, Y., Mass, E., Ashok Kumar, P., et al. (2020) Cxcr4 Dis-tinguishes HSC-Derived Monocytes from Microglia and Reveals Monocyte Immune Responses to Experimental Stroke. Nature Neuroscience, 23, 351-362.
https://doi.org/10.1038/s41593-020-0585-y
[42] Wang, R., Liu, Y., Ye, Q., et al. (2020) RNA Sequencing Reveals Novel Macrophage Transcriptome Favoring Neurovascular Plasticity after Ischemic Stroke. Journal of Cerebral Blood Flow & Metabolism, 40, 720-738.
https://doi.org/10.1177/0271678X19888630
[43] Cao, L. and He, C. (2013) Polarization of Macrophages and Mi-croglia in Inflammatory Demyelination. Neuroscience Bulletin, 29, 189-198.
https://doi.org/10.1007/s12264-013-1324-0
[44] Zuo, B., Zhu, S., Meng, X., et al. (2019) Monocyte/Lymphocyte Ratio Is Associated with Carotid Stenosis in Ischemic Stroke: A Retrospective Analysis. Brain and Behavior, 9, e01429.
https://doi.org/10.1002/brb3.1429
[45] Liu, H., Zhan, F. and Wang, Y. (2020) Evaluation of Mono-cyte-to-High-Density Lipoprotein Cholesterol Ratio and Monocyte-to-Lymphocyte Ratio in Ischemic Stroke. Journal of International Medical Research, 48, 1-12.
https://doi.org/10.1177/0300060520933806
[46] Ren, H., Liu, X., Wang, L., et al. (2017) Lympho-cyte-to-Monocyte Ratio: A Novel Predictor of the Prognosis of Acute Ischemic Stroke. Journal of Stroke and Cerebro-vascular Diseases, 26, 2595-2602.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.06.019
[47] Song, Q., Pan, R., Jin, Y., et al. (2020) Lympho-cyte-to-Monocyte Ratio and Risk of Hemorrhagic Transformation in Patients with Acute Ischemic Stroke. Neurological Sciences, 41, 2511-2520.
https://doi.org/10.1007/s10072-020-04355-z
[48] Cheng, H.R., Song, J.Y., Zhang, Y.N., et al. (2020) High Mon-ocyte-to-Lymphocyte Ratio Is Associated with Stroke-Associated Pneumonia. Frontiers in Neurology, 11, Article ID: 575809.
https://doi.org/10.3389/fneur.2020.575809
[49] Cao, F., Wan, Y., Lei, C., et al. (2021) Monocyte-to-Lymphocyte Ratio as a Predictor of Stroke-Associated Pneumonia: A Retrospective Study-Based Investigation. Brain and Behavior, 11, e02141.
https://doi.org/10.1002/brb3.2141
[50] Chong, L., Han, L., Liu, R., et al. (2021) Association of Lym-phocyte-to-Monocyte Ratio with Poststroke Depression in Patients with Acute Ischemic Stroke. Medical Science Moni-tor, 27, e930076.
https://doi.org/10.12659/MSM.930076
[51] Yeo, L.L., Paliwal, P., Teoh, H.L., et al. (2013) Early and Continuous Neurologic Improvements after Intravenous Thrombolysis Are Strong Predictors of Favorable Long-Term Outcomes in Acute Ischemic Stroke. Journal of Stroke and Cerebrovascular Diseases, 22, e590-596.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.07.024
[52] Mori, M., Naganuma, M., Okada, Y., et al. (2012) Early Neurological Deterioration within 24 Hours after Intravenous rt-PA Therapy for Stroke Patients: The Stroke Acute Management with Urgent Risk Factor Assessment and Improvement rt-PA Registry. Cerebrovascular Diseases, 34, 140-146.
https://doi.org/10.1159/000339759
[53] Gong, P., Liu, Y., Gong, Y., et al. (2021) The Association of Neutrophil to Lymphocyte Ratio, Platelet to Lymphocyte Ratio, and Lymphocyte to Monocyte Ratio with Post-Thrombolysis Early Neurological Outcomes in Patients with Acute Ischemic Stroke. Journal of Neuroinflammation, 18, 51.
https://doi.org/10.1186/s12974-021-02090-6
[54] Ren, H., Han, L., Liu, H., et al. (2017) Decreased Lym-phocyte-to-Monocyte Ratio Predicts Poor Prognosis of Acute Ischemic Stroke Treated with Thrombolysis. Medical Sci-ence Monitor, 23, 5826-5833.
https://doi.org/10.12659/MSM.907919
[55] Maners, J., Gill, D., Pankratz, N., et al. (2020) A Mendelian Random-ization of γ’ and Total Fibrinogen Levels in Relation to Venous Thromboembolism and Ischemic Stroke. Blood, 136, 3062-3069.
https://doi.org/10.1182/blood.2019004781
[56] Akassoglou, K. and Strickland, S. (2002) Nervous System Pathol-ogy: The Fibrin Perspective. Biological Chemistry, 383, 37-45.
https://doi.org/10.1515/BC.2002.004
[57] Rudnicka, A.R., Mt-Isa, S. and Meade, T.W. (2006) Associations of Plasma Fibrinogen and Factor VII Clotting Activity with Coronary Heart Disease and Stroke: Prospective Cohort Study from the Screening Phase of the Thrombosis Prevention Trial. Journal of Thrombosis and Haemostasis, 4, 2405-2410.
https://doi.org/10.1111/j.1538-7836.2006.02221.x
[58] Del Zoppo, G.J., Levy, D.E., Wasiewski, W.W., et al. (2009) Hyperfibrinogenemia and Functional Outcome from Acute Ischemic Stroke. Stroke, 40, 1687-1691.
https://doi.org/10.1161/STROKEAHA.108.527804
[59] Di Napoli, M. and Singh, P. (2009) Is Plasma Fibrinogen Useful in Evaluating Ischemic Stroke Patients? Why, How, and When. Stroke, 40, 1549-1552.
https://doi.org/10.1161/STROKEAHA.108.537084
[60] Wardlaw, J.M., Murray, V., Berge, E., et al. (2009) Thrombolysis for Acute Ischaemic Stroke. The Cochrane Database of Systematic Reviews, No. 4, CD000213.
https://doi.org/10.1002/14651858.CD000213.pub2
[61] Han, H.S., Qiao, Y., Karabiyikoglu, M., et al. (2002) In-fluence of Mild Hypothermia on Inducible Nitric Oxide Synthase Expression and Reactive Nitrogen Production in Ex-perimental Stroke and Inflammation. Journal of Neuroscience, 22, 3921-3928.
https://doi.org/10.1523/JNEUROSCI.22-10-03921.2002
[62] Iadecola, C., Zhang, F., Casey, R., et al. (1997) De-layed Reduction of Ischemic Brain Injury and Neurological Deficits in Mice Lacking the Inducible Nitric Oxide Synthase Gene. Journal of Neuroscience, 17, 9157-9164.
https://doi.org/10.1523/JNEUROSCI.17-23-09157.1997
[63] Ill-Raga, G., Palomer, E., Ramos-Fernández, E., et al. (2015) Fibrinogen Nitrotyrosination after Ischemic Stroke Impairs Thrombolysis and Promotes Neuronal Death. Bio-chimica et Biophysica Acta, 1852, 421-428.
https://doi.org/10.1016/j.bbadis.2014.12.007
[64] Peluffo, G. and Radi, R. (2007) Biochemistry of Protein Tyro-sine Nitration in Cardiovascular Pathology. Cardiovascular Research, 75, 291-302.
https://doi.org/10.1016/j.cardiores.2007.04.024
[65] Moon, G.J., Shin, D.H., Im, D.S., et al. (2011) Identification of Oxidized Serum Albumin in the Cerebrospinal Fluid of Ischaemic Stroke Patients. European Journal of Neurology, 18, 1151-1158.
[66] Dziedzic, T., Slowik, A. and Szczudlik, A. (2004) Serum Albumin Level as a Predictor of Ischemic Stroke Outcome. Stroke, 35, e156-158.
https://doi.org/10.1161/01.STR.0000126609.18735.be
[67] Pawelczyk, M., Kaczorowska, B. and Baj, Z. (2020) Fibrinogen Concentrations in Ischaemic Stroke Patients with Metabolic Disorders. Neurologia i Neurochirurgia Polska, 54, 259-264.
https://doi.org/10.5603/PJNNS.a2020.0035
[68] Kofoed, S.C., Wittrup, H.H., Sillesen, H., et al. (2003) Fibrinogen Predicts Ischaemic Stroke and Advanced Atherosclerosis But Not Echolucent, Rupture-Prone Carotid Plaques: The Copenhagen City Heart Study. European Heart Journal, 24, 567-576.
https://doi.org/10.1016/S0195-668X(02)00467-0
[69] Koenig, W. (2003) Fibrin(ogen) in Cardiovascular Disease: An Update. Thrombosis and Haemostasis, 89, 601-609.
https://doi.org/10.1055/s-0037-1613566
[70] Di Napoli, M., Papa, F. and Bocola, V. (2001) Prognostic Influence of Increased C-Reactive Protein and Fibrinogen Levels in Ischemic Stroke. Stroke, 32, 133-138.
https://doi.org/10.1161/01.STR.32.1.133
[71] Liang, O.V., Kochetov, A.G., Shamalov, N.A., et al. (2012) Fibrin-ogen Concentration in the Evaluation of Safety and Efficiency of Thrombolytic Therapy in Patients with Ischemic Stroke. Terapevticheskii Arkhiv, 84, 42-47.
[72] Luan, X., Cheng, H., Chen, Y., et al. (2020) High Levels of Plasma Fibrinogen and Prothrombin Time Are Related to Post-Stroke Emotional Impairment. Brain Research, 1748, Article ID: 147017.
https://doi.org/10.1016/j.brainres.2020.147017
[73] Pedersen, A., Stanne, T.M., Redfors, P., et al. (2018) Fibrino-gen Concentrations Predict Long-Term Cognitive Outcome in Young Ischemic Stroke Patients. Research and Practice in Thrombosis and Haemostasis, 2, 339-346.
https://doi.org/10.1002/rth2.12078
[74] Shi, J., Shi, R., Qin, W., et al. (2020) Dynamic Changes in Fibrinogen and Prognosis of Acute Ischemic Stroke Patients Treated with Intravenous Thrombolysis. Neurotoxicity Research, 38, 775-784.
https://doi.org/10.1007/s12640-020-00241-w
[75] Li, J., Imano, H., Yamagishi, K., et al. (2021) Serum Albumin and Risks of Stroke and Its Subtypes—The Circulatory Risk in Communities Study (CIRCS). Circulation Journal, 85, 385-392.
https://doi.org/10.1253/circj.CJ-20-0384
[76] Yang, X., Wang, L., Zheng, L., et al. (2020) Serum Albu-min as a Potential Predictor of Pneumonia after an Acute Ischemic Stroke. Current Neurovascular Research, 17, 385-393.
https://doi.org/10.2174/1567202617666200514120641
[77] Yang, C., Zhang, J., Liu, C., et al. (2020) Comparison of the Risk Factors of Hemorrhagic Transformation between Large Artery Atherosclerosis Stroke and Cardioembolism after Intravenous Thrombolysis. Clinical Neurology and Neurosurgery, 196, Article ID: 106032.
https://doi.org/10.1016/j.clineuro.2020.106032
[78] Che, R., Huang, X., Zhao, W., et al. (2017) Low Serum Al-bumin Level as a Predictor of Hemorrhage Transformation after Intravenous Thrombolysis in Ischemic Stroke Patients. Scientific Reports, 7, Article No. 7776.
https://doi.org/10.1038/s41598-017-06802-y
[79] Zhou, H., Wang, A., Meng, X., et al. (2021) Low Serum Albu-min Levels Predict Poor Outcome in Patients with Acute Ischaemic Stroke or Transient Ischaemic Attack. Stroke and Vascular Neurology, 6, 458-466.
https://doi.org/10.1136/svn-2020-000676
[80] Zhang, Q., Lei, Y.X., Wang, Q., et al. (2016) Serum Albumin Level Is Associated with the Recurrence of Acute Ischemic Stroke. American Journal of Emergency Medicine, 34, 1812-1816.
https://doi.org/10.1016/j.ajem.2016.06.049