哌啶并[2,3-b]哌嗪类衍生物3g的体内抗血栓活性研究
Study of the In Vivo Antithrombotic Activity of Piperidine[2,3-b]Piperazine Derivatives 3g
DOI: 10.12677/HJMCe.2022.103022, PDF, HTML, XML, 下载: 71  浏览: 131  科研立项经费支持
作者: 易 芸, 何杰英:贵州医科大学药学院,贵州 贵阳
关键词: 哌啶并哌嗪类衍生物抗血小板聚集抗血栓Piperidineo Piperazine Derivatives Antiplatelet Aggregation Antithrombotic
摘要: 目的:探究哌啶并[2,3-b]哌嗪类衍生物3g体内抗血小板聚集和抗血栓作用。方法:选用SD大鼠,采用比浊法考察3g进入大鼠体内离体抗血小板聚集活性;选用昆明小鼠,腹腔注射角叉菜胶建尾部血栓模型,根据小鼠黑尾情况及黑尾长度,求算尾部血栓抑制率来考察3g对小鼠尾部血栓形成的抑制作用;选用昆明小鼠,测定3g进入体内后的出血时间,考察其对凝血功能的初步影响;最后,根据以上实验结果探究哌啶并[2,3-b]哌嗪类衍生物3g体内抗血栓活性。结果:体内抗血小板聚集活性良好,与空白组的5分钟内最大血小板聚集率(43.16 ± 3.16)%相比,高剂量组(14.25 ± 4.54)%、中剂量组(17.09 ± 4.76)%和低剂量组(21.31 ± 3.18)%的聚集率均显著下降,且抑制作用呈剂量依赖性;对角叉菜角诱导小鼠尾部血栓形成具有较强的抑制作用,与模型组相比,3个剂量下均显著缩短血栓长度,血栓抑制率分别为高剂量39.81%、中剂量30.89%、低剂量19.82%;小鼠尾部出血时间实验结果显示:跟空白组相比,化合物在3个治疗剂量下,出血时间无显著差异(P < 0.05)。结论:哌啶并[2,3-b]哌嗪类衍生物3g进入体内后经过生物转化具有跟体外一致的抗血小板聚集活性,并且对角叉菜胶诱导的小鼠尾部血栓具有较强的抑制作用。
Abstract: Objective: To explore the antiplatelet aggregation and antithrombotic effect of 3g of the combined [2,3-b]piperazine derivatives. SD rats were selected, and the anti-platelet aggregation activity of 3g into the rat in vitro was investigated by turbidimetric method; Kunming mice were injected with carrageenan to build tail thrombosis model. According to the black tail and the length of black tail, the inhibition rate was calculated to investigate the inhibitory effect of 3g on tail thrombosis; Kun-ming mice were selected to determine the bleeding time of 3g into the body to determine its initial effect on coagulation function; Finally, we explore the antithrombotic activity of 3g of the combined [2,3-b]piperazine derivatives from the above experimental results. Results: The anti-platelet ag-gregation activity in vivo was good, compared with the maximum platelet aggregation rate within 5 minutes of the blank group (43.16 ± 3.16)%, the high-dose group (14.25 ± 4.54)%, the middle-dose group (17.09 ± 4.76)% and the low-dose group (21.31 ± 3.18)% of the aggregation rates were sig-nificantly decreased, and the inhibition was dose-dependent; Compounds 3g has inhibitory effect in tail thrombosis in mice. Compared to the model group, the thrombus length was significantly shortened at all three doses. The thrombus inhibition rate was 39.81% high dose, 30.89% medium dose and 19.82% low dose. The results of the tail bleeding time in mice showed that: compared with the blank group, the bleeding time of compounds at 3 therapeutic doses was not significantly dif-ferent (P < 0.05). Conclusion: Piperidine[2,3-b]piperazine derivatives 3g has anti-platelet aggrega-tion activity consistent with in vitro, and has a strong inhibitory effect on tail thrombosis in mice.
文章引用:易芸, 何杰英. 哌啶并[2,3-b]哌嗪类衍生物3g的体内抗血栓活性研究[J]. 药物化学, 2022, 10(3): 225-230. https://doi.org/10.12677/HJMCe.2022.103022

1. 引言

血小板活化和聚集在各种心脑血管疾病中起关键作用,包括心肌梗死、中风和不稳定型心绞痛,同时血小板也是导致血栓病急性临床表现的关键 [1] [2] 。保护性止血和病理性血栓形成的关键步骤都是血小板活化,而血小板活化可通过多种途径发生 [3] [4] 。因此,抗血小板药物是预防和治疗血栓性疾病的重要手段之一。

川芎嗪为中药川芎中主要的生物碱类化合物(即四甲基吡嗪tetramethylpyrazine, TMP) (图1),研究表明,川芎嗪具有多种药理作用,如抑制血小板聚集、抗氧化、抗自由基、对心肌细胞缺血缺氧的损伤保护、钙离子阻滞作用等 [5] [6] [7] 。但川芎嗪代谢快、半衰期短,临床上为保持有效的药物治疗浓度必须频繁给药,因此易致积蓄中毒,使其应用受到一定限制。为了寻找新型的抗血小板聚集药物,前期研究根据生物电子等排原理将噻吩并吡啶类抗血小板聚集药物结构中的噻吩环替换成川芎嗪环,设计、合成了一系列哌啶并[2,3-b]哌嗪类衍生物,并得到具有良好体外抗血小板聚集活性化合物3g (图1) [8] 。本研究将进一步探讨化合物3g给药进入体内后是否仍保留跟体外一致的抗血小板聚集活性以及探讨其体内抗血栓活性。

Figure 1. Chemical structure of piperidine[2,3-b]piperazine derivatives 3g

图1. 哌啶并[2,3-b]哌嗪类衍生物3g的化学结构

2. 材料与方法

2.1. 材料

实验动物:SD大鼠(7周),SPF级,雄性,体重280~330 g,购于长沙天勤生物技术有限公司,许可证号:SCXK(湘)2019-0014;昆明小鼠,SPF级,雄性,体重18~22 g,由贵州医科大学动物中心提供。

实验仪器:半自动血小板分析仪(北京中勤世帝生物科技有限责任公司);X1型高速冷冻离心机(香港基因有限公司);小鼠固定器、玻璃毛细管(购于沃尔森生物技术有限公司);FA805N型十万分之一电子天平(上海菁海仪器有限公司)。

实验试剂:ADP(二磷酸腺苷,购于南京建成生物制剂公司);枸橼酸钠;角叉菜胶;肝素钠(购于索莱宝生物制剂有限公司);阳性药阿司匹林(ASP)、丁苯酞(NBP纯度99.6%,批号518160103,石药集团恩必普药业有限公司)、川芎嗪(TMP)、3g (实验室自制,纯度98%以上);其余试剂均为分析级试剂。

2.2. 实验方法

2.2.1. 分组及给药

将实验动物SD大鼠/昆明小鼠分为空白组;阳性对照川芎嗪组、丁苯酞组、阿司匹林组;以及待测化合物3g低(5 mg/kg)、中(10 mg/kg)、高(20 mg/kg)剂量组,每组8只,均采用腹腔注射。

2.2.2. 体内离体抗血小板聚集活性

通过比浊法 [9] ,评价化合物3g体内离体抗血小板聚集作用。按上述分组腹腔给药,3 h后,用10%水合氯醛麻醉。采取股动脉取血,3.8%枸橼酸钠溶液抗凝,抗凝剂与全血体积比为1:9,放于冷冻离心机中在1300 rpm/min,4℃离心17 min,取上清液即为富血小板血浆(PRP);取出PRP后,剩余部分于3000 rpm/min离心10 min,取上清液即得穷血小板血浆(PPP)。将PRP和PPP于37℃孵育5 min。提前打开血小板聚集仪,预温至37℃。准备就绪后,取250 μL的PPP放于测试杯中调零,设置基线。另取240 μL的PRP放于预温通道预温3 min,预温结束将其移入测试通道,加入磁珠和10 μL ADP诱导剂(终浓度10 μmol/L),开始测试记录5 min内最大聚集率。按照下列公式(1.1)计算出待测化合物对血小板聚集聚集的抑制率(aggregation inhibition rate, AIR)

A I R = × 100 % (1.1)

2.2.3. 体内抗小鼠尾部血栓活性

采用小鼠角叉菜胶尾动脉血栓模型评价体内抗血栓活性 [10] ,昆明雄性小鼠(18~22 g),腹腔给药1 h后按剂量40 mg/kg腹腔注射角叉菜胶诱导形成尾部血栓,给药后将其放置于16℃ ± 2℃,允许自由进食,观察并记录24 h内小鼠黑尾情况及黑尾长度。按照下列公式(1.2)计算出待测化合物对小鼠尾部血栓抑制率。

= × 100 % (1.2)

2.2.4. 出血时间测定

雄性昆明小鼠给药4 h后,置于小鼠固定器中,用手术刀片距鼠尾尖5 mm处迅速横断,在有血液流出时开始秒表计时,每隔30 s用滤纸轻轻于尾部拭血1次,直至拭后不再出血为止,从开始出血至停止出血的时间为小鼠出血时间 [11] 。若出血时间超过60 min,按60 min记录。

2.2.5. 统计学方法

数据分析采用GraphpadPrism 8统计软件进行分析,其计量数据以( x ¯ ± s )表示,使用方差分析,P < 0.05 表示差异有统计学意义。

3. 结果

3.1. 体内离体抗血小板聚集活性

表1所示:溶媒对照组的最大聚集率为(43.16 ± 3.16)%,跟溶媒对照组相比,化合物3g腹腔注射进入大鼠体内后仍具有显著的抗血小板聚集活性,3个剂量下都显著降低血小板聚集率(P < 0.01)并且保持跟体外一致的剂量依赖性;特别是化合物在高治疗剂量下,对血小板抑制率达66.98%,优于母体化合物川芎嗪(P < 0.05),跟阳性对照药丁苯酞相当。

Table 1. In vivo anti-ADP-induced platelet aggregation activity of compound 3g ( x ¯ ± s , n = 8)

表1. 化合物3g体内离体抗ADP诱导的血小板聚集活性( x ¯ ± s , n = 8)

注:****表示与溶媒组相比,P < 0.0001。

3.2. 体内抗小鼠尾部血栓活性

结果如下表(表2)所示跟正常组相比,模型组血栓形成率达到84.82 ± 4.40% (P < 0.05),有统计学差异。经化合物3g预防给药,可明显降低角叉菜胶诱导小鼠尾部血栓形成,并且在3个治疗剂量下,抑制效果都优于母体化合物川芎嗪跟阳性对照药丁苯酞,并且在高剂量下(20 mg/kg),对血栓形成的抑制作用达39.81%,跟临床上二级预防一线药物阿司匹林(34.32%)相当。

Table 2. Compound 3g in vivo anti-tail thrombosis in mice ( x ¯ ± s , n = 8)

表2. 化合物3g体内抗小鼠尾部血栓作用( x ¯ ± s , n = 8)

注:*表示与模型组相比,P < 0.05,***模型组相比,P < 0.001,****表示与模型组相比,P < 0.0001。

3.3. 出血时间测定

测定小鼠出血时间来评价化合物3g的出血风险。结果如下表3:3g在3个治疗剂量下的出血时间相对余空白组(714.50 ± 42.48)无显著差异(P < 0.05),其各自的出血时间为高剂量(782.50 ± 42.48)、中剂量(741.33 ± 40.22)和低剂量(732.50 ± 42.48)显著低于阳性对照药丁苯酞;因此,可初步判定3g在3个治疗剂量下对凝血酶无显著性影响,出血风险较小。

Table 3. Effect of compound 3g on bleeding time (BT) in mice ( x ¯ ± s , n = 8)

表3. 化合物3g对小鼠出血时间(BT)的影响( x ¯ ± s , n = 8)

注:**表示与溶媒组相比,P < 0.01,***表示与溶媒组相比,P < 0.001,****表示与溶媒组相比,P < 0.0001。

4. 讨论

综上所述,本实验对具有良好体外抗血小板聚集活性的哌啶并[2,3-b]哌嗪类衍生物3g做进一步体内活性评价,结果表明3g经腹腔给药进入大鼠体内后仍保留跟体外一致的抗血小板聚集活性,并且在高剂量下,抑制作用显著优于母体化合物川芎嗪,跟丁苯酞相当;对角叉菜胶诱导的小鼠尾部血栓形成具有较强的抑制作用,并且在高剂量下(20 mg/kg),对血栓形成的抑制作用达39.81%,跟临床上二级预防一线药物阿司匹林(34.32%)相当;除此之外,更难能可贵的是该化合物在治疗剂量下对凝血功能无显著影响,出血时间跟空白对照组无显著差异。该化合物进入体内后通过抑制ADP诱导的血小板聚集而对血栓具有一定的抑制作用,但该化合物的具体作用机制有待进一步探究。

致谢

感谢贵州省卫生健康委科学技术基金项目(gzwkj2022-469)支持。

参考文献

[1] Lui, M., Gardiner, E.E., Arthur, J.F., et al. (2019) Novel Stenotic Microchannels to Study Thrombus Formation in Shear Gradients: Influence of Shear Forces and Human Platelet-Related Factors. International Journal of Molecular Sciences, 20, 2967.
https://doi.org/10.3390/ijms20122967
[2] Dumas, M., Nadal-Wollbold, F., Gaussem, P., et al. (2012) Antiplatelet and Antithrombotic Effect of F 16618, A New Thrombin Proteinase-Activated Receptor-1 (PAR1) Antago-nist. British Journal of Pharmacology, 165, 1827-1835.
https://doi.org/10.1111/j.1476-5381.2011.01668.x
[3] Mattheij, N.J., Swieringa, F., Mastenbroek, T.G., et al. (2016) Coated Platelets Function in Platelet-Dependent Fibrin Formation via Integrin αIIbβ3 and Transglutaminase Factor XIII. Haematologica, 101, 427-436.
https://doi.org/10.3324/haematol.2015.131441
[4] Hua, V.M., Abeynaike, L., Glaros, E., et al. (2015) Necrotic Platelets Provide a Procoagulant Surface during Thrombosis. Blood, 126, 2852-2862.
https://doi.org/10.1182/blood-2015-08-663005
[5] Xu, B., Xu, X., Zhang, C., et al. (2017) Synthesis and Protec-tive Effect of New Ligustrazine-Vanillic Acid Derivatives against CoCl2-Induced Neurotoxicity in Differentiated PC12 Cells. Chemistry Central Journal, 11, 20.
https://doi.org/10.1186/s13065-017-0250-z
[6] Wu, X., Wang, Z., Wu, G., et al. (2020) Tetramethylpyrazine In-duces Apoptosis and Inhibits Proliferation of Hypertrophic Scar-Derived Fibroblasts via Inhibiting the Phosphorylation of AKT. Frontiers in Pharmacology, 11, 602.
https://doi.org/10.3389/fphar.2020.00602
[7] Xie, J., Chen, S. and Ding, S. (2020) Efficacy and Safety of the In-jection of the Traditional Chinese Medicine Salviaemiltiorrhizae and Ligustrazine Hydrochloride for the Treatment of Perioperative Period of Fracture: A Meta-Analysis of Randomized Controlled Trials. Medicine (Baltimore), 99, e19777.
https://doi.org/10.1097/MD.0000000000019777
[8] 李毅, 罗碧兰, 赵菊琴, 等. 哌啶并[2,3-b]哌嗪类衍生物的设计、合成及其抗血小板聚集活性研究[J]. 化学通报, 2021, 84(2): 162-166.
[9] Olğaç, S., Olğaç, A., Yenicesu, İ., et al. (2022) Identification of Novel Antiplatelet Agents by Targeting Glycoprotein VI: A combined Virtual Screening Study. Bioorganic Chemistry, 121, Article ID: 105661.
https://doi.org/10.1016/j.bioorg.2022.105661
[10] Li, Q., Chen, Y., Zhao, D., et al. (2019) LongShengZhi Capsule Reduces Carrageenan-Induced Thrombosis by Reducing Activation of Platelets and Endothelial Cells. Pharmacological Research, 144, 167-180.
https://doi.org/10.1016/j.phrs.2019.04.013
[11] 晓坚, 袁兆伟, 潘彩燕, 等. 红景天苷对小鼠抗血小板活性和抗血栓作用[J]. 贵州医科大学学报, 2019, 44(9): 1039-1043+1048.