一类具有比率依赖型功能反应和Allee效应的Leslie-Gower捕食者-食饵模型的 Hopf分支
Hopf Bifurcation of a Leslie-Gower with Ratio-Dependent Functional Response and Allee Effect
DOI: 10.12677/PM.2022.127125, PDF, 下载: 264  浏览: 434 
作者: 贾昕蓺:西北师范大学数学与统计学院,甘肃 兰州
关键词: Leslie-Gower模型比率依赖型功能反应平衡点稳定性Hopf分支Leslie-Gower Model Ratio-Dependent Functional Response Equilibrium Points Stability Hopf Bifurcation
摘要: 本文研究带比率依赖型的功能反应和Allee效应的Leslie-Gower捕食者-食饵模型的稳定性与Hopf分支。 首先讨论平衡点的局部渐近稳定性,然后以捕食者的内在增长率 s为分支参数,给出 Hopf 分支存在的条件。最后,利用规范型理论和中心流形定理分析 Hopf 分支的方向及分支周期解的稳定性。
Abstract: In this paper, we investigate the stability and Hopf bifurcation of a Leslie-Gower predator-prey model with Ratio-Dependent Functional Response and Allee effect. First, the local asymptotic stability of the equilibrium points is discussed, and then the condition of the existence of Hopf bifurcation is given by taking the ratio s of the intrinsic growth rate for the predator as the bifurcation parameter. Finally, using the canonical theory and the central manifold theorem, the direction of Hopf bifurcation and the stability of periodic solution of bifurcation are analyzed.
文章引用:贾昕蓺. 一类具有比率依赖型功能反应和Allee效应的Leslie-Gower捕食者-食饵模型的 Hopf分支[J]. 理论数学, 2022, 12(7): 1136-1145. https://doi.org/10.12677/PM.2022.127125

参考文献

[1] Leslie, P.H. and Gower, J.C. (1960) The Properties of a Stochastic Model for the Predator- Prey Type of Interaction between Two Species. Biometrika, 47, 219-234.
https://doi.org/10.1093/biomet/47.3-4.219
[2] Schoener, R. (1974) Stability and Complexity in Model Ecosystems. Evolution, 28, 510-511.
https://doi.org/10.1111/j.1558-5646.1974.tb00784.x
[3] Aguirre, P., Gonzlez-Olivares, E. and Sez, E. (2009) Two Limit Cycles in a Leslie-Gower Predator-Prey Model with Additive Allee Effect. Nonlinear Analysis: Real World Applications, 10, 1401-1416.
https://doi.org/10.1016/j.nonrwa.2008.01.022
[4] Flores, J.D. and Gonzalez-Olivares, E. (2014) Dynamics of a Predator-Prey Model with Allee Effect on Prey and Ratio-Dependent Functional Response. Ecological Complexity, 18, 59-66.
https://doi.org/10.1016/j.ecocom.2014.02.005
[5] Qiao, T., Cai, Y., Fu, S., et al. (2019) Stability and Hopf Bifurcation in a Predator-Prey Model with the Cost of Anti-Predator Behaviors. International Journal of Bifurcation and Chaos, 29, Article ID: 1950185.
https://doi.org/10.1142/S0218127419501852
[6] Holyoak, M. (2003) Complex Population Dynamics: A Theoretical/Empirical Synthesis. Integrative and Comparative Biology, 43, 479.
https://doi.org/10.1093/icb/43.3.479
[7] Arancibia-Ibarra, C. and Gonzlez-Olivares, E. (2011) A Modified Leslie-Gower Predator-Prey Model with Hyperbolic Functional Response and Allee Effect on Prey. BIOMAT 2010 International Symposium on Mathematical and Computational Biology, Rio de Janeiro, Brazil, 24-29 July 2010, 146-162.
https://doi.org/10.1142/9789814343435 0010
[8] Aziz-Alaoui, M.A. and Okiye, M.D. (2003) Boundedness and Global Stability for a Predator-Prey Model with Modified Leslie-Gower and Holling-Type II Schemes. Applied Mathematics Letters, 16, 1069-1075.
https://doi.org/10.1016/S0893-9659(03)90096-6
[9] Feng, P. and Kang, Y. (2015) Dynamics of a Modified Leslie-Gower Model with Double Allee Effects. Nonlinear Dynamics, 80, 1051-1062.
https://doi.org/10.1007/s11071-015-1927-2
[10] Singh, A. and Gakkhar, S. (2014) Stabilization of Modified Leslie-Gower Prey-Predator Model. Differential Equations, Dynamical Systems, 22, 239-249.
https://doi.org/10.1007/s12591-013-0182-6
[11] Arancibia-Ibarra, C. and Flores, J. (2021) Dynamics of a Leslie-Gower Predator-Prey Model with Holling Type II Functional Response, Allee Effect and a Generalist Predator. Mathematics and Computers in Simulation, 188, 1-22.
https://doi.org/10.1016/j.matcom.2021.03.035
[12] Moustafa, M., Mohd, M.H., Ismail, A.I. and Abdullah, F.A. (2018) Dynamical Analysis of a Fractional-Order Rosenzweig-MacArthur Model Incorporating a Prey Refuge. Chaos, Solitons and Fractals, 109, 1-13.
https://doi.org/10.1016/j.chaos.2018.02.008
[13] Berec, L., Angulo, E. and Courchamp, F. (2007) Multiple Allee Effects and Population Management. Trends in Ecology and Evolution, 22, 185-191.
https://doi.org/10.1016/j.tree.2006.12.002
[14] Stephens, P.A., Sutherland, W.J., et al. (1999) Consequences of the Allee Effect for Behaviour, Ecology and Conservation. Trends in Ecology and Evolution, 14, 401-405.
https://doi.org/10.1016/S0169-5347(99)01684-5
[15] Kuznetsov, Y.A. (2013) Elements of Applied Bifurcation Theory. Springer Science and Business Media, Berlin.