TRAF7在肿瘤发展中的作用
The Role of TRAF7 in Tumorigenesis
DOI: 10.12677/WJCR.2022.123026, PDF, HTML, XML, 下载: 483  浏览: 857 
作者: 许文雯, 刘志强*:湖南科技大学生命科学与健康学院,湖南 湘潭
关键词: TRAF7肿瘤发生脑膜瘤间皮瘤肝癌TRAF7 Tumorigenesis Meningioma Mesothelioma Hepatocellular Carcinoma
摘要: 肿瘤坏死因子受体(TNF-R)相关因子(TRAF)家族有七个成员,是TNF-R超家族受体的细胞质区域偶联的信号转导分子。TRAF蛋白主要作为支架或酶蛋白激活NF-κB、MAPK等不同的下游信号通路,参与胚胎发育、组织稳态以及先天性和适应性免疫反应调节等重要生理过程。TRAF7是近年来被发现的一种具有E3泛素连接酶活性的TRAF家族成员,含有一个N端RING指结构域和一个负责底物识别的C端WD40结构域。最近几年的研究发现,TRAF7是一种新的肿瘤抑制蛋白,与人类多种癌症的发生和发展有着密切联系。本文主要综述了TRAF7与脑膜瘤、间皮瘤以及肝癌等几种人类肿瘤的发生和发展过程中的作用,期望对于认识肿瘤发病机制和治疗靶标有帮助。
Abstract: Abstract: The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family has seven members and is characterized as signaling transduction molecules coupled to the cytoplasmic regions of the TNF-R superfamily. All the TRAFs proteins functionally act as a scaffold and/or enzymatic proteins to regulate activation of mitogen-activated protein kinases (MAPKs) and transcription factors of nuclear factor-κB family (NF-κB). All TRAFs have been identified to be widely involved in embryonic development, tissue homeostasis, and regulation of innate and adaptive immune responses. TRAF7, as the last discovered member of the TRAFs protein with E3 ligase activation, containing an N-terminal RING finger domain and a C-terminal WD40 domain, has been identified to be involved in the genesis and progression of several human cancers, suggesting TRAF7 as a novel tumor suppressor protein. The paper attempts to review the role of TRAF7 in the genesis and progression of Meningioma, Mesothelioma and Hepatocellular Carcinoma, hoping to be helpful for understanding tumor pathogenesis and therapeutic targets.
文章引用:许文雯, 刘志强. TRAF7在肿瘤发展中的作用[J]. 世界肿瘤研究, 2022, 12(3): 188-198. https://doi.org/10.12677/WJCR.2022.123026

1. 引言

肿瘤坏死因子受体(tumor necrosis factor receptors, TNF-R)受体超家族成员与它们的配体结合后,激活多条信号通路,参与调控胚胎发育、形态发生、先天性和获得性免疫反应、细胞生存和增殖、组织稳态和应激反应的过程 [1] [2] [3]。肿瘤坏死因子受体相关因子(tumor necrosis factor receptors, TRAFs)是肿瘤坏死因子受体(TNF-R)超家族成员的信号转导接头分子,能够与受体结合形成复合物作为招募平台来募集下游的信号转导分子,激活核转录因子-κB (nuclear transcription factor-κB, NF-κB)、有丝分裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)等不同的下游信号通路 [1] [2]。

TRAF蛋白共有七个家族成员,都具有典型的、保守的模块化结构域。除TRAF1外,其他TRAF分子的N端都包含一个RING基序和若干个锌指结构。其中,RING基序是构成泛素连接酶催化结构域的核心。除TRAF7外,其他TRAF蛋白的C端由保守的TRAF结构域组成,它介导寡聚反应,并与伴侣蛋白相互作用 [1] [2]。但TRAF7缺少TRAF结构域,被七个重复的WD40结构域、1个卷曲螺旋(coiled-coil, CC)结构域所取代 [4] (如图1所示)。

TRAF7最先是在TNFα诱导的NF-κB信号通路中筛选到的一种能与MEKK3 (mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 3)相互作用的新蛋白 [5] [6] [7],其N端含有 TRAF家族的RING结构和相邻的锌指结构域。但是,TRAF7的羧基末端不是典型的TRAF结构域,而是包含7个重复的WD40结构域 [5] [7]。

与TRAF2、TRAF3和TRAF6类似 [2] [8] [9],TRAF7的RING结构域具有E3泛素连接酶活性 [5]。TRAF7除了能使自身泛素化以外 [5],还促进多种细胞内调控NF-κB转录活性所必需的NF-κB-essential modulator (NEMO) [10]、NF-κB转录因子的p65亚基 [10] [11]、抗凋亡蛋白cellular FADD-like interleukin 1β converting enzyme inhibitory protein (c-FLIP) [12] 和肿瘤抑制蛋白p53 [13] 等多种靶蛋白的泛素化。

研究发现,TRAF7主要促进NEMO、p65和c-FLIP中的Lys29多聚泛素化 [10] [12],且这种泛素化与靶蛋白的溶酶体降解有关 [10] [12] [14]。另一方面,TRAF7促进p53中Lys48的泛素化 [13],这通常伴随着泛素化蛋白的蛋白酶体降解。除了泛素化反应,TRAF7还能够结合并刺激原癌基因产物c-Myb的类泛素蛋白修饰分子(small ubiquitin-like modifier, SUMO)化 [15],其中c-Myb是一种调节造血细胞增殖和分化的转录因子 [16]。

体外研究表明,TRAF7通过各种机制在几种转录因子的调节中发挥作用。当细胞受到TNFα等应激的刺激下,TRAF7通过其C端的WD40重复结构域与MAP3激酶MEKK3相互作用,两者功能协同 [5],导致c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK)和p38的磷酸化,正调节它们的转录活性。此外,TRAF7通过对p65和NEMO的泛素化,正向或负向调节NF-κB的活性 [5] [7] [12]。

Figure 1. Structure of TRAFs [3]

图1. TRAFs蛋白结构域 [3]

TRAF蛋白除了在调节获得性和先天性免疫反应中起着主要作用外,越来越多的研究也发现TRAF蛋白与肿瘤相关。在多发性骨髓瘤样本中检测到TRAF2的缺失 [17] [18] 以及TRAF3的单等位基因或双等位基因的缺失,而这些通常与表观遗传改变相关 [17] [18] [19]。同时,在慢性淋巴细胞白血病 [20]、典型霍奇金淋巴瘤 [21]、Waldenstrom巨球蛋白血症(一种特殊的B细胞肿瘤,骨髓中的淋巴浆细胞大量增值并分泌IgM抗体所致)中也观察到了TRAF3基因的纯合缺失 [22]。TRAF2除了在B细胞恶性肿瘤中失活突变外,在很大一部分弥漫性大B细胞淋巴瘤(diffuse large B-cell lymphoma, DLBCL)的体细胞中,发生了激活突变 [23]。这些突变能增强NF-κB的活性,提高细胞在抗凋亡基因转录和细胞保护两方面的催化能力。因此,在同一细胞类型的B淋巴细胞中,TRAF2既可作为致癌基因,也可作为肿瘤抑制基因。Compagno等 [23] 在研究中发现,TRAF2与TRAF5的丢失或激活可能延长NF-κB途径,从而促使淋巴瘤形成。在NF-kB途径的正调节因子中发现错义突变,主要为:支架蛋白CARD11 (11%)、TRAF2 (3%)和TRAF5 (5%)。即与TRAF2相比,TRAF5的突变频率甚至更高。然而,TRAF5突变能否激活NF-κB或其他信号传导途径目前没有定论。研究也发现,更多癌症的发生与TRAF4和TRAF6相关。TRAF4蛋白过表达似乎是多种人类癌症的共同特征。TRAF4在大约60%的肺、乳腺和卵巢癌、44%的膀胱癌和28%的结肠癌中过度表达 [24]。此外,TRAF4过度表达不仅常见于上皮肿瘤(48%),而且也出现在31%的黑色素瘤、21%的神经源性肿瘤和17%的淋巴瘤中 [24]。另外,在肺癌 [25]、结肠癌 [26] 和骨肉瘤样本 [27] 中发现了TRAF6基因的频繁扩增,并且伴随着mRNA的过表达。胰腺癌组织中也发现TRAF6的表达升高,从而导致参与细胞生长、凋亡和迁移的多个基因的表达失调 [28]。因此,TRAF家族与肿瘤发生发展的关系非常密切。本文主要综述TRAF7对脑膜瘤、间皮瘤和肝癌的影响。

2. TRAF7与脑膜瘤(Meningioma)

脑膜瘤是最常见的良性颅内肿瘤,约占所有原发性脑肿瘤的35% [29]。脑膜瘤的一个常见基因突变是神经纤维蛋白2 (neurofibromin 2, NF2)的缺失或者突变,NF2基因编码一种69-kDa的肿瘤抑制因子Merlin,这是一种细胞骨架支架蛋白,可连接肌动蛋白丝、跨膜受体和细胞内信号分子,并调节控制增殖和存活的几个重要途径,大约一半(40%~60%)脑膜瘤病例中都出现了NF2突变。其易发生在脑膜瘤病例中,似乎与成纤维细胞/移行性脑膜瘤有关。NF2失活使肿瘤基因组不稳定性升高,半球中出现特殊多重定位 [30]。目前尚不清楚NF2的失活如何指导脑膜瘤的发展。一些假设表明,Merlin可以通过包括Hippo、Notch和Patched途径在内的接触依赖性调节来抑制细胞增殖,并且可以在肿瘤发展过程中激活哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)途径 [31] [32]。

NF2基因在脑膜瘤中这种突变的高频率可以将脑膜瘤细分为NF2和非NF2突变 [33]。在非NF2脑膜瘤中,多见的复发性体细胞突变是:TRAF7、Krupple样因子4 (Kruppel-like factor 4, KLF4)、v-akt鼠胸腺瘤病毒癌基因同源物1 (serine/threonine protein kinase, AKT1)、RNA聚合酶II亚基A (RNA polymerase II subunit A, POLR2A)、磷脂酰肌醇-4,5-二磷酸-3-激酶催化亚基α (Phosphatidyli-nositol 3-kinase catalytic subunit α, PIK3CA) [33] (如表1所示)。对脑膜瘤的全基因组进行分析时发现TRAF7突变与脑膜瘤肿瘤发生关系密切。在所研究的近四分之一的脑膜瘤和所有分泌性脑膜瘤中都观察到了TRAF7突变时脑膜瘤中常见的突变(25%的病例) [33] [34] [35] [36]。研究发现,TRAF7在脑膜瘤中的体细胞突变常与KLF4、AKT1、PIK3CA等其他基因的突变一起发生,TRAF7在脑膜瘤中的突变可能与这些基因突变相关 [33]。KLF4 K409Q错义突变与TRAF7突变相关的WHO 1级分泌亚型脑膜瘤,二者具有高度的特异相关性。大约40%的TRAF7突变脑膜瘤具有复发性KLF4-K409Q突变,在几乎100%的分泌型脑膜瘤中发现KLF4和TRAF7突变 [33]。KLF4是调节多种不同细胞类型增值、分化、迁移、炎症和多能性的转录调节因子 [37],其表达对于多能成体干细胞的重编程是必不可少的 [38]。据报道,在癌症中,KLF4既可作为肿瘤抑制因子,又可作为癌基因 [39] [40]。作为抑制因子,其表达与生长停滞有关。据报道,它是p53阻止DNA受损细胞周期进程中的重要介质 [41] [42]。最近的一项研究表明,间变性脑膜瘤干细胞样细胞中KLF4表达降低会促进其致瘤性,这表明KLF4在间变性脑膜瘤中具有肿瘤抑制作用 [43]。尽管如此,仍不清楚K409Q突变如何改变KLF4靶基因的调节,最终导致脑膜瘤的发展 [33]。

大约三分之一的TRAF7突变脑膜瘤具有AKT1突变。众所周知,唯一的复发性致癌AKT1-E17K突变可激活PI3K/AKT通路 [29]。由于PI3KCA的突变,在TRAF7突变的脑膜瘤中,PI3K/AKT通路也可能上调 [37]。Najim等 [44] 发现TRAF7可以作为RAS相关小GTP酶的负调节剂,KLF4功能的丧失破坏了由TRAF7缺失所激活的RAS/MAPK通路,进而增强了由TRAF7突变介导的细胞转化。而AKT1是参与细胞增殖的丝氨酸-苏氨酸激酶,与癌症的发生直接关联 [45]。虽然TRAF7与KLF4、AKT1同时发生突变(KLF4的K409QAKT1的E17K),但在多个脑膜瘤样本中,TRAF7突变分布在整个蛋白质中,多在WD4重复结构域发生突变 [3] (如图2所示)。事实上,WD40是蛋白质–蛋白质和蛋白质-DNA相互作用中的支架蛋白,包括与MEKK3的结合。MEKK3与TRAF7共表达激活了细胞因子和应激诱导的细胞凋亡中的关键信号通路——JNK和p38 MAP激酶通路 [5] [7]。除此之外,TRAF7还通过CC结构域与NEMO相互作用,对NF-kB的活性进行负调控 [10]。

Figure 2. TRAF7 mutations in meningioma [3]

图2. 脑膜瘤中TRAF7突变 [3]

Table 1. Main molecular alteration in meningioma

表1. 脑膜瘤中主要的基因突变

3. TRAF7与间皮瘤(Mesothelioma)

恶性间皮瘤(mesothelioma, MM)是一种侵袭性癌症,由胸膜腔、腹膜腔和心包腔内的间皮细胞不受控增殖引起的 [46]。绝大多数间皮瘤的发生与暴露的石棉和毛沸石等矿物纤维有关。间皮瘤在组织学上分为上皮、双相(或混合)和肉瘤三种亚型。恶性胸膜间皮瘤(malignant pleural mesothelioma, MPM)是最常见的间皮瘤类型,约占所有病例的70%。不幸的是,MPM通常被诊断为晚期,患者存活时间短于12个月 [46]。目前,在MPM中发挥作用的基因是CDKN2A (cyclin-dependent kinase inhibitor 2A)、NF2和BAP1 (BRCA1-associated protein 1) [47] [48]。CDKN2A基因座编码多种蛋白质,其中研究最多的是p16 (INK4a)和p14 (ARF)蛋白质,它们都起到了肿瘤抑制因子的作用 [49]。BAP1也是一种肿瘤抑制基因,它编码去泛素化酶,可调节一些关键的细胞通路,包括细胞周期、细胞分化、转录和DNA损伤反应 [50]。此外,对216个MPM的转录组和外显子组进行了测序工作,其中TRAF7发生了显著突变(5/216; 2.3%) [51]。与脑膜瘤的情况相似,观察到的大多数MMs中TRAF7 (4/5)突变位于羧基末端WD40重复序列,且TRAF7的突变通常与p53的突变同时发生。另外,在19%的样本中发现了NF2突变。相反,其与TRAF7同时突变的概率很小。从组织学的角度来看,TRAF7在MPM的上皮和双相亚型中发生突变,但在肉瘤样亚型中没有。除MPM外,TRAF7的复发性突变也存在于分化良好的乳头状间皮瘤中,作为一种罕见的间皮肿瘤,最常见于育龄妇女的腹膜腔,通常表现出惰性行为。Stevers等 [52] 发现所有肿瘤在TRAF7或CDC42基因中都存在体细胞错义突变,并且缺乏恶性间皮瘤中常见的涉及BAP1、NF2、CDKN2A、DDX3X、SETD2和ALK的改变。

相较于弥漫性恶性胸膜间皮瘤的中位生存期1~2年,局限性胸膜间皮瘤的侵袭性较低,48%的患者通过手术切除治愈 [53]。其中两个TRAF7突变——p.S561R、p.Q613E位于末端重复的WD40结构域中。事实上,致病性p.S561R突变是生殖器类型的腺瘤样肿瘤和神经内神经周围瘤中最常见的TRAF7改变 [54] [55] [56]。虽然尚未明确确定TRAF7 p.Q613E突变的功能作用,但附近的类似突变(例如p.K615E)在脑膜瘤的一个子集中具有致病性 [36]。迄今为止描述的所有TRAF7突变间皮肿瘤都缺乏BAP1、NF2、SETD2 和TP53的突变,这也表明TRAF7是成为了些间皮病变发病机制中新的驱动因素。

4. TRAF7与肝癌(Hepatocellular Carcinoma)

肝癌(hepatocellular carcinoma, HCC)是最常见的恶性肿瘤之一,在世界范围内被列为癌症相关死亡的第二大原因 [57]。乙型肝炎病毒和丙型肝炎病毒感染、酗酒、非酒精性脂肪肝被报道是HCC发生的主要因素 [58]。但HCC是如何发生的及其潜在机制仍然知之甚少。尽管肝癌的治疗方法很多,如肝切除术、靶向药物治疗等,但患者的预后仍然很差 [59]。因此,迫切需要确定用于HCC治疗的新治疗靶点和药物。通过对49例肝癌患者的肿瘤和相邻非肿瘤组织之间TRAF7表达差异分析发现,TRAF7在肝癌肿瘤组织中过度表达,TRAF7表达增加与肿瘤大小、组织学分级、TNM分期和预后不良密切相关 [60]。在肝癌患者中,TARF7表达增加往往与较短的总生存期(overall survival, OS)相关。10个月后,高表达TRAF7的总生存率低于80%。与此同时,低表达TARF7的总生存率仍高于90%。直至30个月后,总生存率的曲线逐渐平稳时,高表达TRAF7的总生存率低于40%,而低表达TARF7的总生存率接近于60% [60]。利用GEO数据库(GSE25097)对源自香港的268个早期至晚期HCC基因表达谱分析了结果发现,与相邻肝组织相比,肝癌组织中的TRAF7 mRNA水平显着上调 [61]。分析同时发现,TRAF7在肝癌组织中的表达与微血管浸润(microvascular invasion, MVI)有着明显的正相关关系。微血管浸润的存在是与肝癌患者较高的术后复发率和较低的生存率相关的重要预后预测因子 [62]。研究还发现肝癌组织中的微血管浸润的发生只与TRAF7的表达正相关关系,而与TRAF1、TRAF2、TRAF3、TRAF4、TRAF5和TRAF6没有显著关系 [61]。

在肝癌细胞水平上的研究发现,TRAF7过表达显著促进Huh7和SK-Hep1肝癌细胞的生长、增殖、迁移和侵袭能力,并阻止细胞凋亡。相反,在肝癌细胞中敲低TRAF7的表达抑制了肝癌细胞的增殖、侵袭、迁移和诱导的细胞凋亡。进一步研究发现,TRAF7促进K48连接的泛素化和P53的蛋白酶体降解。P53是多种肿瘤中的关键肿瘤抑制因子和关键的凋亡通路调节因子 [60]。免疫共沉淀和免疫荧光实验证实TRAF7与P53相互作用,TRAF7特异性地促进P53的K48泛素化和蛋白酶体降解。TRAF7在对肝癌细胞的促生长、促增殖作用依赖于TRAF7对P53蛋白的调控作用 [60]。这些研究发现表明,TRAF7在促进肝癌的进展中具有独特的作用。

Krüppel样因子(Krüppel-like factor, KLF)作为人类组织中广泛表达的转录因子,在细胞增殖、生长、分化和维持组织稳态等生理过程中发挥重要作用。其家族成员KLF4作为一种常见的转录因子,其羧基末端包含三个锌指基序,可以直接结合DNA,促进或抑制不同的肿瘤组织中靶基因的转录。虽然在不同肿瘤的研究中,KLF4功能所导致的结果不同,但都说明KLF4在肿瘤的发生与发展中具有重要作用 [63]。研究发现,KLF4的表达下调与HCC肝癌患者的不良生存率显着相关。在肝癌细胞中,KLF4的外源表达可以抑制细胞迁移和侵袭 [62]。TRAF7和KLF4的同时突变促进脑膜瘤的发展,研究也发现KLF4在肝癌细胞中被TRAF7降解,并参与抑制肝癌细胞的运动 [64]。采用免疫组化的方法研究发现TRAF7蛋白水平与肝癌组织中的KLF4呈负相关。进一步分析表明,在肝癌患者中,TRAF7低水平表达和KLF4高水平表达的患者的生存率明显优于TRAF7高水平表达和KLF4低水平表达的患者。总之,这些结果表明表达的TRAF7蛋白可能抑制KLF4蛋白的表达以促进肝癌的进展 [61]。免疫沉淀和免疫印记实验发现,TRAF7的锌指结构域和卷曲螺旋结构域都负责与KLF4的N端的1-60有相互作用,并通过这一区域介导KLF4的泛素化,促进KLF4降解。在肝癌细胞PLC5和MHCC97L细胞中过表达TRAF7降低KLF4蛋白的表达 [61];相反,在肝癌细胞中敲低TRAF7的表达会诱导KLF4蛋白的表达。因此,TRAF7含量上升和KLF4的降解都可以作为HCC风险预测的指标。通过对肝癌细胞的研究发现,TNFα通过介导TRAF7的下调以增加KLF4蛋白的稳定性,实现其在肝癌细胞中的抗肿瘤作用。相反,IL-6则快速刺激TRAF7上调和KLF4蛋白的降解更新而诱导肝癌的进展。研究还发现,在肝癌细胞中增加TRAF7的表达,通过降解KLF4的表达,促进肝癌细胞的迁徙。根据这些研究结果,推测TRAF7在肝癌的发生中很可能通过调控KLF4蛋白的功能起重要作用。鉴定和确认TRAF7的表达和泛素化与KLF4表达之间的关系是否为肝癌发生过程中的一种新颖而复杂的调节机制,可能为晚期肝癌患者的预后评估提供潜在的治疗靶点和分子标志物。

5. 小结

TRAF蛋白家族是一类在哺乳动物中发现的遗传学上保守的胞内接头蛋白,通过和受体结合传递上游信号激活不同下游通路,调控相关基因的表达,从而影响细胞的生存、增殖、分化和死亡等生物学过程。成员TRAF7因其特殊的结构域与多种人类癌症的发生有关。

对原发性肿瘤进行深度测序结果清晰表明,大约25%的脑膜瘤中TRAF7发生突变。另外,TRAF7也被发现与间皮瘤中和肝细胞癌的发生有关系。TRAF7大多数突变发生于WD40重复序列。在脑膜瘤中,TRAF7编码E3泛素连接酶,通过其WD40重复序列参与多个信号通路,包括MEKK3、JNK和p38 MAPK信号的调节,最终导致细胞凋亡,介导癌症的发生。且其体细胞突变常与KLF4、AKT1、PIK3CA等其他基因的突变一起发生。而在间皮瘤中,TRAF7多与p53的突变同时发生,它或许是间皮病变发病机制中重要的驱动因子。肝癌中,TARF7通过靶向降解p53、KLF4促进泛素介导的蛋白酶体途径的肿瘤发生。可以发现,不同肿瘤中的TRAF7突变都与其他基因同时发生,这表明单独的TRAF7功能障碍不足以驱动恶性转化和进展,必须需要参与信号转导途径的其他成分。除了上述肿瘤,TRAF7介导的p53泛素化显著干扰乳腺癌的发展,TRAF7的下调与乳腺癌的不良预后相关 [13]。TRAF7和MAP3K1基因的高突变负荷与Merkel细胞多瘤病毒阴性Merkel细胞癌有关 [65]。随着TRAF7在各大癌症发生中的重大作用被发现,为探索癌症患者的新治疗策略提供了巨大的机会。实验表明,使用Pak抑制剂,如FRAX597,可能有利于治疗TRAF7突变的脑膜瘤。同时,PAN-Pak抑制剂和组特异性Pak抑制剂已在不同癌症模型中测试了其抗癌功效 [66]。然而,不同人类肿瘤中TRAF7的突变,导致其执行的哪一功能受损仍有待确定。本文通过对脑膜瘤、间皮瘤、肝癌中TRAF7在各种信号通路中的作用机理进行综述,希望为鉴定TRAF7能否成为一种潜在的分子靶点,用于治疗涉及该蛋白质的多种人类癌症提供新的思路。

NOTES

*通讯作者。

参考文献

[1] Ha, H., Han, D. and Choi, Y. (2009) TRAF-Mediated TNFR-Family Signaling. Current Protocols in Immunology, 87, 11.9D.1-11.9D.19.
https://doi.org/10.1002/0471142735.im1109ds87
[2] Xie, P. (2013) TRAF Molecules in Cell Signaling and in Human Diseases. Journal of Molecular Signaling, 8, 7.
https://doi.org/10.1186/1750-2187-8-7
[3] Zotti, T., Scudiero, I., Vito, P. and Stilo, R. (2017) The Emerging Role of TRAF7 in Tumor Development. Journal of Cellular Physiology, 232, 1233-1238.
https://doi.org/10.1002/jcp.25676
[4] Zotti, T., Vito, P. and Stilo R. (2012) The Seventh Ring: Exploring TRAF7 Functions. Journal of Cellular Physiology, 227, 1280-1284.
https://doi.org/10.1002/jcp.24011
[5] Bouwmeester, T., Bauch, A., Ruffner, H., Bouwmeester, T., Bauch, A., Ruffner, H., Angrand, P.O., Bergamini, G., Croughton, K., Cruciat, C., Eberhard, D., Gagneur, J., Ghidelli, S., Hopf, C., Huhse, B., Mangano, R., Michon, A.M., Schirle, M., Schlegl, J., Schwab, M., Stein, M.A., Bauer, A., Casari, G., Drewes, G., Gavin, A.C., Jackson, D.B., Joberty, G., Neubauer, G., Rick, J., Kuster, B. and Superti-Furga, G. (2004) A Physical and Functional Map of the Human TNF-alpha/NF-kappa B Signal Transduction Pathway. Nature Cell Biology, 6, 97-105.
https://doi.org/10.1038/ncb1086
[6] Yang, J., Lin, Y. and Guo, Z. (2001) The Essential Role of MEKK3 in TNF-Induced NF-kappaB Activation. Nature Immunology, 2, 620-624.
https://doi.org/10.1038/89769
[7] Xu, L.G., Li, L.Y. and Shu, H.B. (2004) TRAF7 Potentiates MEKK3-Induced AP1 and CHOP Activation and Induces Apoptosis. Journal of Biological Chemistry, 279, 17278-17282.
https://doi.org/10.1074/jbc.C400063200
[8] Karin, M. and Gallagher, E. (2009) TNFR Signaling: Ubiquitin-Conjugated Traffic Signals Control Stop-and-Go for MAPK Signaling Complexes. Immunological Reviews, 228, 225-240.
https://doi.org/10.1111/j.1600-065X.2008.00755.x
[9] Hacker, H., Tseng, P.H. and Karin M. (2011) Expanding TRAF Function: TRAF3 as a Tri-Faced Immune Regulator. Nature Reviews Immunology, 11, 457-468.
https://doi.org/10.1038/nri2998
[10] Zotti, T., Uva, A., Ferravante, A., Campos, E.I., Lane, W.S., Sanchez, I. and Dynlacht, B.D. (2011) TRAF7 Protein Promotes Lys-29-Linked Polyubiquitination of IkappaB Kinase (IKKgamma)/NF-kappaB Essential Modulator (NEMO) and p65/RelA Protein and Represses NF-kappaB Activation, Journal of Biological Chemistry, 286, 22924-22933.
https://doi.org/10.1074/jbc.M110.215426
[11] Tsikitis, M., Acosta-Alvear, D. and Blais, A. (2010) Traf7, a MyoD1 Transcriptional Target, Regulates Nuclear Factor-kappaB Activity during Myogenesis, EMBO Reports, 11, 969-976.
https://doi.org/10.1038/embor.2010.154
[12] Scudiero, I., Zotti, T., Ferravante, A., Vessichelli, M., Reale, C., Masone, M.C., Leonardi, A., Vito, P. and Stilo, R. (2012) Tumor Necrosis Factor (TNF) Receptor-Associated Factor 7 Is Required for TNFalpha-Induced Jun NH2-Terminal Kinase Activation and Promotes Cell Death by Regulating Polyubiquitination and Lysosomal Degradation of c-FLIP Protein. Journal of Biological Chemistry, 287, 6053-6061.
https://doi.org/10.1074/jbc.M111.300137
[13] Wang, L., Wang, L., Zhang, S., Qu, G., Zhang, D., Li, S. and Liu, S. (2013) Downregulation of Ubiquitin E3 Ligase TNF Receptor-Associated Factor 7 Leads to Stabilization of p53 in Breast Cancer. Oncology Reports, 29, 283-287.
https://doi.org/10.3892/or.2012.2121
[14] Chastagner, P., Israel, A. and Brou, C. (2006) Itch/AIP4 Mediates Deltex Degradation through the Formation of K29-Linked Polyubiquitin Chains. EMBO Reports, 7, 1147-1153.
https://doi.org/10.1038/sj.embor.7400822
[15] Morita, Y., Kanei-Ishii, C., Nomura, T. and Ishii, S. (2005) TRAF7 Sequesters c-Myb to the Cytoplasm by Stimulating Its Sumoylation. Molecular Biology of the Cell, 16, 5433-5444.
https://doi.org/10.1091/mbc.e05-08-0731
[16] Mucenski, M.L., Mclain, K., Kier, A.B., Swerdlow, S.H., Schreiner, C.M., Miller, T.A., Pietryga, D.W., Scott, W.J., Potter, S. and Steven, A, (1991) functional c-myb Gene Is Required for Normal Murine Fetal Hepatic Hematopoiesis. Cell, 65, 677-689.
https://doi.org/10.1016/0092-8674(91)90099-K
[17] Keats, J.J., Fonseca, R., Chesi, M., Schop, R., Bake,r A., Chng, W.J., Van, W.S., Tiedemann, R. Shi, C.X., Sebag M., Braggio, E., Henry, T., Zhu, Y.X., Fogle, H., Price-Troska, T., Ahmann, G., Mancini, C., Brents, L.A., Kumar, S., Greipp, P., Dispenzieri, A., Bryant, B., Mulligan, G., Bruhn, L., Barrett, M., Valdez, R., Trent, J., Stewart, A.K., Carpten, J. and Bergsagel, P.L. (2007) Promiscuous Mutations Activate the Noncanonical NF-kappaB Pathway in Multiple Myeloma. Cancer Cell, 12, 131-144.
https://doi.org/10.1016/j.ccr.2007.07.003
[18] Demchenko, Y.N., Glebov, O.K., Zingone AKeats, J.J., Bergsagel, P.L. and Kuehl, W.M. (2010) Classical and/or Alternative NF-kappaB Pathway Activation in Multiple Myeloma. Blood, 115, 3541-3552.
https://doi.org/10.1182/blood-2009-09-243535
[19] Annunziata, C.M., Davis, R.E., Demchenko, Y., Bellamy, W., Gabrea, A., Zhan, F., Lenz, G. Hanamura, I., Wright, G., Xiao, W., Dave, S., Hurt, E.M., Tan, B., Zhao, H., Stephens, O., Santra, M., Williams, D.R., Dang, L., Barlogie, B., Shaughnessy, J.D.J., Kuehl, W.M. and Staudt, L.M. (2007) Frequent Engagement of the Classical and Alternative NF-kappaB Pathways by Diverse Genetic Abnormalities in Multiple Myeloma. Cancer Cell, 12, 115-130.
https://doi.org/10.1016/j.ccr.2007.07.004
[20] Nagel, I., Bug, S., Tonnies, H., Ammerpohl, O., Richter, J., Vater, I., Callet-Bauchu, E., Calasanz, M.J., Martinez- Climent, J.A., Bastard, C., Salido, M., Schroers, E., Martin-Subero, J.I., Gesk, S., Harder, L., Majid, A., Dyer, M.J. and Siebert, R. (2009) Biallelic Inactivation of TRAF3 in a Subset of B-Cell Lymphomas with Interstitial del(14)(q24.1q32.33). Leukemia, 23, 2153-2155.
https://doi.org/10.1038/leu.2009.149
[21] Otto, C., Giefing, M., Massow, A., Vater, I., Gesk, S., Schlesner, M., Richter, J., Klapper, W., Hansmann, M.L., Siebert, R. and Kuppers, R. (2012) Genetic Lesions of the TRAF3 and MAP3K14 Genes in Classical Hodgkin Lymphoma. British Journal of Haematology, 157, 702-708.
https://doi.org/10.1111/j.1365-2141.2012.09113.x
[22] Braggio, E., Keats, J.J., Leleu, X., Van Wier, S., Jimenez-Zepeda, V.H., Valdez, R., Schop, R.F. Price-Troska, T., Henderson, K., Sacco, A., Azab, F., Greipp, P., Gertz, M., Hayman, S. and Rajkumar, S.V. (2009) Identification of Copy Number Abnormalities and Inactivating Mutations in Two Negative Regulators of Nuclear Factor-kappaB Signaling Pathways in Waldenstrom’s Macroglobulinemia. Cancer Research, 69, 3579-3588.
https://doi.org/10.1158/0008-5472.CAN-08-3701
[23] Compagno, M., Lim, W.K., Grunn, A., Nandula, S.V., Brahmachary, M., Shen, Q., Bertoni, F., Ponzoni, M., Scandurra, M., Califano, A., Bhagat, G., Chadburn, A., Dalla-Favera, R. and Pasqualucci, L. (2009) Mutations of Multiple Genes Cause Deregulation of NF-kappaB in Diffuse Large B-Cell Lymphoma. Nature, 459, 717-721.
https://doi.org/10.1038/nature07968
[24] Camilleri-Broet, S., Cremer, I., Marmey, B., Comperat, E., Viguie, F., Audouin, J., Rio, M.C., Fridman, W.H., Sautes- Fridman, C. and Regnier, C.H. (2007) TRAF4 Overexpression Is a Common Characteristic of Human Carcinomas. Oncogene, 26, 142-147.
https://doi.org/10.1038/sj.onc.1209762
[25] Starczynowski, D.T., Lockwood, W.W., Delehouzee S., Chari R., Wegrzyn, J., Fuller M., Tsao, M.S., Lam, S., Gazdar, A.F., Lam, W.L. and Karsan, A. (2011) TRAF6 Is an Amplified Oncogene Bridging the RAS and NF-kappaB Pathways in Human Lung Cancer. Journal of Clinical Investigation, 121, 4095-4105.
https://doi.org/10.1172/JCI58818
[26] Sun, H., Li, X., Fan, L., Wu, G., Li, M. and Fang, J. (2014) TRAF6 Is Upregulated in Colon Cancer and Promotes Proliferation of Colon Cancer Cells. The International Journal of Biochemistry & Cell Biology, 53, 195-201.
https://doi.org/10.1016/j.biocel.2014.04.010
[27] Meng, Q., Zheng, M., Liu, H., Song, C., Zhang, W., Yan, J., Qin, L. and Liu, X. (2012) TRAF6 Regulates Proliferation, Apoptosis, and Invasion of Osteosarcoma Cell. Molecular and Cellular Biochemistry, 371, 177-186.
https://doi.org/10.1007/s11010-012-1434-4
[28] Rong, Y., Wang, D., Wu, W., Jin, D., Kuang, T., Ni, X., Zhang, L. and Lou, W. (2014) TRAF6 Is Over-Expressed in Pancreatic Cancer and Promotes the Tumorigenicity of Pancreatic Cancer Cells. Medical Oncology, 31, 260.
https://doi.org/10.1007/s12032-014-0260-9
[29] Bi, W.L., Zhang, M., Wu, W.W., Mei, Y. and Dunn, I.F. (2016) Meningioma Genomics: Diagnostic, Prognostic, and Therapeutic Applications. Frontiers in Surgery, 3, Article No. 40.
https://doi.org/10.3389/fsurg.2016.00040
[30] Lee, S., Karas, P.J., Hadley, C.C., Bayley, V.J., Khan, A.B., Jalali, A., Sweeney, A.D., Klisch, T.J. and Patel, A.J. (2019) The Role of Merlin/NF2 Loss in Meningioma Biology. Cancers (Basel), 11, 1633.
https://doi.org/10.3390/cancers11111633
[31] Curto, M. and Mcclatchey, A.I. (2008) Nf2/Merlin: A Coordinator of Receptor Signalling and Intercellular Contact. British Journal of Cancer, 98, 256-262.
https://doi.org/10.1038/sj.bjc.6604002
[32] Plotkin, S.R., James, M.F., Han, S., Gusella, J.F., Manning, B.D., Stemmer-Rachamimov, A.O., Polizzano, C. and Ramesh, V. (2009) NF2/Merlin Is a Novel Negative Regulator of mTOR Complex 1, and Activation of mTORC1 Is Associated with Meningioma and Schwannoma Growth. Molecular and Cellular Biology, 29, 4250-4261.
https://doi.org/10.1128/MCB.01581-08
[33] Clark, V.E., Erson-Omay, E.Z., Serin, A., Yin, J., Cotney, J., Ozduman, K., Avsar, T., Li J., Murray, P.B., Henegariu, O., Yilmaz, S., Gunel, J.M., Carrion-Grant, G., Yilmaz, B., Grady, C., Tanrikulu, B., Bakircioglu, M., Kaymakcalan, H., Caglayan, A.O., Sencar, L., Ceyhun, E., Atik, A.F., Bayri, Y., Bai, H., Kolb, L.E., Hebert, R.M., Omay, S.B., Mishra-Gorur, K., Choi, M., Overton, J.D., Holland, E.C., Mane, S., State, M.W., Bilguvar, K., Baehring, J.M., Gutin, P.H., Piepmeier, J.M., Vortmeyer, A., Brennan, C.W., Pamir, M.N. Kilic, T., Lifton, R.P., Noonan, J.P., Yasuno, K. and Gunel, M. (2013) Genomic Analysis of Non-NF2 Meningiomas Reveals Mutations in TRAF7, KLF4, AKT1, and SMO. Science, 339, 1077-1080.
https://doi.org/10.1126/science.1233009
[34] Brastianos, P.K., Horowitz, P.M, Santagata, S., Jones, R.T., McKenna, A., Getz, G., Ligon, K.L., Palescandolo, E., Van., H.P., Ducar, M.D., Raza, A., Sunkavalli A., Macconaill, L.E., Stemmer-Rachamimov, A.O., Louis, D.N., Hahn, W.C., Dunn, I.F. and Beroukhim, R. (2013) Genomic Sequencing of Meningiomas Identifies Oncogenic SMO and AKT1 Mutations. Nature Genetics, 45, 285-289.
https://doi.org/10.1038/ng.2526
[35] Reuss, D.E., Piro, R.M., Jones, D.T., Reuss, D.E., Piro, R.M., Jones, D.T., Simon, M., Ketter, R., Kool, M., Becker, A., Sahm, F., Pusch, S., Meyer, J., Hagenlocher, C., Schweizer, L., Capper, D., Kickingereder, P., Mucha, J., Koelsche, C., Jager N., Santarius, T., Tarpey, P.S., Stephens, P.J., Andrew, F.P., Wellenreuther, R., Kraus, J., Lenartz, D., Herold- Mende, C., Hartmann, C., Mawrin, C., Giese, N., Eils, R., Collins, V.P., Konig, R., Wiestler, O.D., Pfister, S.M. and von Deimling, A. (2013) Secretory Meningiomas Are Defined by Combined KLF4 K409Q and TRAF7 Mutations. Acta Neuropathologica, 125, 351-358.
https://doi.org/10.1007/s00401-013-1093-x
[36] Clark, V.E., Harmanci, A.S., Bai, H., Youngblood, M.W., Lee, T.I., Baranoski, J.F., Ercan-Sencicek, A.G., Abraham, B.J., Weintraub, A.S., Hnisz, D., Simon, M., Krischek, B., Erson-Omay, E.Z., Henegariu, O., Carrion-Grant, G., Mishra- Gorur, K., Duran D., Goldmann, J.E., Schramm, J., Goldbrunner, R., Piepmeier, J.M., Vortmeyer, A.O., Gunel, J.M., Bilguvar, K., Yasuno, K., Young, R.A. and Gunel, M. (2016) Recurrent Somatic Mutations in POLR2A Define a Distinct Subset of Meningiomas. Nature Genetics, 48, 1253-1259.
https://doi.org/10.1038/ng.3651
[37] Yuzawa, S., Nishihara, H. and Tanaka, S. (2016) Genetic Landscape of Meningioma. Brain Tumor Pathology, 33, 237- 247.
https://doi.org/10.1007/s10014-016-0271-7
[38] Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K. and Yamanaka, S. (2007) Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell, 131, 861-872.
https://doi.org/10.1016/j.cell.2007.11.019
[39] Zammarchi F., Morelli, M., Menicagli, M., Di Cristofano, C., Zavaglia, K., Paolucci, A., Campani, D., Aretini, P., Boggi, U., Mosca, F., Cavazzana, A., Cartegni, L., Bevilacqua, G. and Mazzanti, C.M. (2011) KLF4 Is Novel Candidate Tumor Suppressor Gene in Pancreatic Ductal Carcinoma. The American Journal of Pathology, 178, 361-372.
https://doi.org/10.1016/j.ajpath.2010.11.021
[40] Yu, F., Li, J., Chen, H., Fu, J., Ray, S., Huang, S., Zheng, H. and Ai, W. (2011) Kruppel-Like Factor 4 (KLF4) Is Required for Maintenance of Breast Cancer Stem Cells and for Cell Migration and Invasion, Oncogene, 30, 2161-2172.
https://doi.org/10.1038/onc.2010.591
[41] Yoon, H.S. and Yang, V.W. (2004). Requirement of Krüppel-Like Factor 4 in Preventing Entry into Mitosis Following DNA Damage. Journal of Biological Chemistry, 279, 5035-5041.
https://doi.org/10.1074/jbc.M307631200
[42] Yoon, H.S., Ghaleb, A.M., Nandan, M.O., Hisamuddin, I.M., Dalton, W.B. and Yang, V.W. (2005) Krüppel-Like Factor 4 Prevents Centrosome Amplification Following γ-Irradiation-Induced DNA Damage. Oncogene, 24, 4017-4025.
https://doi.org/10.1038/sj.onc.1208576
[43] Tang, H., Zhu, H., Wang, X., Hua, L., Li, J., Xie, Q., Chen, X., Zhang, T. and Gong, Y. (2017) KLF4 Is a Tumor Suppressor in Anaplastic Meningioma Stem-Like Cells and Human Meningiomas. Journal of Molecular Cell Biology, 9, 315-324.
https://doi.org/10.1093/jmcb/mjx023
[44] Najm, P, Zhao, P, Steklov, M., Najm, P., Zhao, P., Steklov, M., Sewduth, R.N., Baietti, M.F., Pandolfi, S., Criem, N., Lechat, B., Maia, T.M., Van, H.D., Corthout, N., Eyckerman, S., Impens, F. and Sablina, A.A. (2021) Loss-of-Function Mutations in TRAF7 and KLF4 Cooperatively Activate RAS-Like GTPase Signaling and Promote Meningioma Development. Cancer Research, 81, 4218-4229.
https://doi.org/10.1158/0008-5472.CAN-20-3669
[45] Vivanco, I. and Sawyers, C.L. (2002) The Phosphatidylinositol 3-Kinase AKT Pathway in Human Cancer. Nature Reviews Cancer, 2, 489-501.
https://doi.org/10.1038/nrc839
[46] Yang, H., Testa, J.R. and Carbone, M. (2008) Mesothelioma Epidemiology, Carcinogenesis, and Pathogenesis. Current Treatment Options in Oncology, 9, 147-157.
https://doi.org/10.1007/s11864-008-0067-z
[47] Bianchi, A.B., Mitsunaga, S.I., Cheng, J.Q., Cheng, J.Q., Klein, W.M., Jhanwar, S.C., Seizinger, B., Kley, N., Klein- Szanto, A.J. and Testa, J.R. (1995) High Frequency of Inactivating Mutations in the Neurofibromatosis Type 2 Gene (NF2) in Primary Malignant Mesotheliomas. Proceedings of the National Academy of Sciences of the United States of America, 92, 10854-10858.
https://doi.org/10.1073/pnas.92.24.10854
[48] Guo, G., Chmielecki, J., Goparaju, C., Heguy, A., Dolgalev, I., Carbone, M., Seepo, S., Meyerson, M. and Pass, H.I. (2015) Whole-Exome Sequencing Reveals Frequent Genetic Alterations in BAP1, NF2, and CUL1 in Malignant Pleural Mesothelioma. Cancer Research, 75, 264-269.
https://doi.org/10.1158/0008-5472.CAN-14-1008
[49] Zhao, R., Choi, B.Y., Lee, M.H., Bode, A.M. and Dong, Z. (2016) Implications of Genetic and Epigenetic Alterations of CDKN2A (p16(INK4a)) in Cancer. EBioMedicine, 8, 30-39.
https://doi.org/10.1016/j.ebiom.2016.04.017
[50] Wang, A., Papneja, A., Hyrcza, M., Al-Habeeb, A. and Ghazarian, D. (2016) Gene of the Month: BAP1. Journal of Clinical Pathology, 69, 750-753.
https://doi.org/10.1136/jclinpath-2016-203866
[51] Bueno, R., Stawiski, E.W., Goldstein, L.D., Durinck, S. De Rienzo, A., Modrusan, Z., Gnad, F., Nguyen, T.T., Jaiswal, B.S., Chirieac, L.R., Sciaranghella, D., Dao, N., Gustafson, C.E., Munir, K.J., Hackney, J.A., Chaudhuri, A., Gupta, R., Guillory, J., Toy, K., Ha, C., Chen, Y.J., Stinson, J., Chaudhuri, S., Zhang, N., Wu, T.D., Sugarbaker, D.J., de Sauvage, F.J., Richards,, W.G. and Seshagiri, S. (2016) Comprehensive Genomic Analysis of Malignant Pleural Mesothelioma Identifies Recurrent Mutations, Gene Fusions and splicing Alterations. Nature Genetics, 48, 407-416.
https://doi.org/10.1038/ng.3520
[52] Stevers, M., Rabban, J.T., Garg, K., Van, Z.J. Onodera, C. Grenert, J.P., Yeh, I., Bastian, B.C., Zaloudek, C. and Solomon, D. (2019), A Well-Differentiated Papillary Mesothelioma of the Peritoneum Is Genetically Defined by Mutually Exclusive Mutations in TRAF7 and CDC42. Modern Pathology, 32, 88-99.
https://doi.org/10.1038/s41379-018-0127-2
[53] Allen, T.C., Cagle, P.T., Churg, A.M., Colby, T.V., Gibbs, A.R., Hammar, S.P., Corson, J.M., Grimes, M.M., Ordonez, N.G., Roggli, V., Travis, W.D. and Wick, M.R. (2005) Localized Malignant Mesothelioma. The American Journal of Surgical Pathology, 29, 866-873.
https://doi.org/10.1097/01.pas.0000165529.78945.dc
[54] Goode, B., Joseph, N.M., Stevers, M., Van, Z.J., Onodera, C., Talevich, E., Grenert, J.P., Yeh, I., Bastian, B.C., Phillips, J.J., Garg, K., Rabban, J.T., Zaloudek, C. and Solomon, D.A. (2018) Adenomatoid Tumors of the Male and Female Genital Tract Are Defined by TRAF7 Mutations That Drive Aberrant NF-κB Pathway Activation. Modern Pathology, 31, 660-673.
https://doi.org/10.1038/modpathol.2017.153
[55] Klein, C.J., Wu, Y., Jentoft, M.E., Mer, G., Spinner, R.J., Dyck, P.J., Dyck, P.J. and Mauermann, M.L. (2017) Genomic Analysis Reveals Frequent TRAF7 Mutations in Intraneural Perineuriomas. Annals of Neurology, 81, 316-321.
https://doi.org/10.1002/ana.24854
[56] Tamura, D., Maeda, D., Halimi, S.A., Okimura, M. and Goto, A. (2018) Adenomatoid Tumour of the Uterus Is Frequently Associated with Iatrogenic Immunosuppression. Histopathology, 73, 1013-1022.
https://doi.org/10.1111/his.13726
[57] Mcglynn, K.A., Petrick, J.L. and London, W.T. (2015) Global Epidemiology of Hepatocellular Carcinoma: An Emphasis on Demographic and Regional Variability. Clinical Liver Disease, 19, 223-238.
https://doi.org/10.1016/j.cld.2015.01.001
[58] Jiang, Y., Han, Q., Zhao, H. and Zhang, J. (2021) The Mechanisms of HBV-Induced Hepatocellular Carcinoma. Journal of Hepatocellular Carcinoma, 8, 435-450.
https://doi.org/10.2147/JHC.S307962
[59] Forner, A., Reig, M. and Bruix, J. (2018) Hepatocellular Carcinoma. The Lancet, 391, 1301-1314.
https://doi.org/10.1016/S0140-6736(18)30010-2
[60] Zhang, Q., Zhang, X. and Dong, W. (2021) TRAF7 Contributes to Tumor Progression by Promoting Ubiquitin-Proteasome Mediated Degradation of P53 in Hepatocellular Carcinoma. Cell Death Discovery, 7, 352.
https://doi.org/10.1038/s41420-021-00749-w
[61] He, H., Wu, Z., Li, S., Chen, K., Wang, D., Zou, H., Chen, H., Li, Y., Liu, Z. and Qu, C. (2020) TRAF7 Enhances Ubiquitin-Degradation of KLF4 to Promote Hepatocellular Carcinoma Progression. Cancer Letters, 469, 380-389.
https://doi.org/10.1016/j.canlet.2019.11.012
[62] Sumie, S., Kuromatsu, R., Okuda, K., Ando, E., Takata, A., Fukushima, N., Watanabe, Y., Kojiro, M. and Sata, M. (2008) Microvascular Invasion in Patients with Hepatocellular Carcinoma and Its Predictable Clinicopathological Factors. Annals of Surgical Oncology, 15, 1375-1382.
https://doi.org/10.1245/s10434-008-9846-9
[63] Ghaleb, A.M. and Yang, V.W. (2017) Kruppel-Like Factor 4 (KLF4): What We Currently Know. Gene, 611, 27-37.
https://doi.org/10.1016/j.gene.2017.02.025
[64] Li, Q., Gao, Y., Jia, Z., Mishra, L. and Xie, K. (2012) Dysregulated Kruppel-Like Factor 4 and Vitamin D Receptor Signaling Contribute to Progression of Hepatocellular Carcinoma. Gastroenterology, 143, 799-810e792.
https://doi.org/10.1053/j.gastro.2012.05.043
[65] Goh, G., Walradt, T., Markarov, V., Blom, A., Riaz N., Doumani, R., Stafstrom, K., Moshiri, A., Yelistratova, L. and Levinsohn, J. (2016) Mutational Landscape of MCPyV-Positive and MCPyV-Negative Merkel Cell Carcinomas with Implications for Immunotherapy. Oncotarget, 7, 3403-3415.
https://doi.org/10.18632/oncotarget.6494
[66] Radu, M., Semenova, G., Kosoff, R. and Chernoff, J. (2014) PAK Signalling during the Development and Progression of Cancer. Nature Reviews Cancer, 14, 13-25.
https://doi.org/10.1038/nrc3645