关于阻塞性睡眠呼吸暂停综合征生物标志物的研究现状
Research Status on Biomarkers of Obstructive Sleep Apnea Syndrome
DOI: 10.12677/ACM.2022.1281016, PDF, HTML, XML, 下载: 225  浏览: 355 
作者: 马 静*, 李 慧, 杜延玲:延安大学附属医院,呼吸内科,陕西 延安
关键词: 阻塞性睡眠呼吸暂停综合征氧化应激生物标志物Obstructive Sleep Apnea Syndrome Oxidative Stress Organism Biomarker
摘要: 阻塞性睡眠呼吸暂停综合征(OSAS)是一种复杂的慢性炎症性呼吸道疾病,具有多种致病因素,其主要临床表现是夜间睡眠时打鼾、呼吸及睡眠节律紊乱、反复出现呼吸暂停及觉醒,白天嗜睡、记忆力下降甚至认知行为障碍等。考虑到OSAS发病率和死亡率高,但诊断率和治疗率却很低的主要原因是目前国内外均采用多导睡眠监测(Polysomnography, PSG)来诊断OSAS,并以睡眠呼吸暂停低通气指数(AHI)及最低血氧饱和度(LSaO2)的分级来判定OSAS的严重程度。但是PSG的检查需要较多的人力资源和时间,作为判断病情严重程度较为复杂。因此,在血清中寻找一种简单、安全用于辅助PSG评估OSAHS严重程度和缺氧负担,以及监测治疗效果的生物标志物,将为睡眠呼吸暂停的研究和临床管理带来很大的进步。
Abstract: Obstructive sleep apnea syndrome (OSAS) is a complex chronic inflammatory respiratory disease with multiple pathogenic factors. Its main clinical manifestations are snoring, respiratory and sleep rhythm disorders, recurrent apnea and wakefulness, daytime sleepiness, memory decline and even cognitive and behavioral disorders. Considering that Polysomnography (PSG) is currently used to diagnose OSAS at home and abroad, the main reason for the low rate of diagnosis and treatment is the high incidence and mortality of OSAS. The severity of OSAS was determined by sleep apnea hy-popnea index (AHI) and lowest blood oxygen saturation (LSaO2). However, PSG examination re-quires more human resources and time, so it is complicated to judge the severity of the disease. Therefore, finding a simple and safe biomarker in serum to assist PSG in assessing the severity and hypoxia burden of OSAHS, as well as monitoring the therapeutic effect, will bring great progress to the research and clinical management of sleep apnea.
文章引用:马静, 李慧, 杜延玲. 关于阻塞性睡眠呼吸暂停综合征生物标志物的研究现状[J]. 临床医学进展, 2022, 12(8): 7059-7064. https://doi.org/10.12677/ACM.2022.1281016

1. 引言

阻塞性睡眠呼吸暂停综合征(obstructive sleep apnea syndrome, OSAS)目前总体人群患病率在9%至38%之间,男性和女性的患病率分别为13%至33%和6%至19%,并且随着年龄的增长而增加,在老年人中,男性高达90%,女性高达78% [1]。OSAS主要与肥胖有关,肥胖男性和女性的OSAS患病率也更高。OSAS是一种慢性呼吸系统疾病,其主要特征是在睡眠期间反复发作的上气道完全(呼吸暂停)或部分(低通气)阻塞10秒以上,睡眠期间呼吸肌组织持续运动,呼吸暂停和呼吸不足可导致血氧饱和度降低、血液中二氧化碳增加,以及随后由中枢神经系统的重复激活引起的觉醒和睡眠破碎 [2]。因此导致慢性间歇性缺氧,这种缺氧-再氧合循环可能通过诱导过量的氧自由基改变氧化平衡,从而引起氧化应激,产生相关炎症因子 [3]。现就OSAS相关的生物标志物的最新研究进展做一综述。

1) MMPs (Matrix Metalloproteinases):即基质金属蛋白酶,是指一个肽链内切酶家族,因其需要Ca、Zn等金属离子作为辅助因子而得名。MMPs是一种蛋白水解酶,主要参与细胞外基质的重塑,也被证明在细胞内具有生物作用。其中,MMP-9在广泛的生理及病理过程至关重要。Chuang [4] 等人发现在OSAS患者中血浆MMP-9水平显着升高,并且首次证明血浆MMP-9水平升高可能是由于外周血单核细胞MMP-9 mRNA表达上调所致,而MMP-1、-2、-3和TIMP-1 (基质金属蛋白酶抑制剂-1)却没有显著升高。目前有研究表明,与轻度和中度OSAS患者相比,重度OSA的MMP-9水平升高更明显,并且这种升高与OSAS严重程度呈正相关 [5]。Hopps等人 [6] 将OSAS患者分为H-OSAS (高等级)和L-OSAS (低等级)后发现与L-OSAS相比,H-OSAS中的氧化应激受损更明显,并且H-OSAS中的MMP-9和TIMP-1血浆水平更高。有一项Simon B.等人研究的数据表明,开始CPAP治疗会导致短期内关键MMP (主要是MMP-8、-9)水平下降;然而,经过5年长期CPAP治疗后,再次检测MMP水平甚至超过了OSAS诊断时检测到的水平,表明长期CPAP治疗并不会使MMP持续下降 [7]。

NLR (Neutrophil-lymphocyte Ratio):即中性粒细胞与淋巴细胞比率,目前有研究人员提议将NLR作为全身炎症反应的新生物标志物,OSAS主要表现为全身的慢性炎症。Koseoglu S [8] 等人对284名主诉打鼾和白天过度嗜睡的患者进行PSG检测后发现,与对照组相比,OSAS组的NLR水平明显升高,并且表明随着夜间SaO2 < 90%的时间增加,NLR值也随之增加。Sunbul M [9] 等人对195名临床疑似OSA的患者进行整夜PSG监测后采用Logistics回归法首次表明NLR与AHI评分相关,并计算出ROC曲线面积证明NLR大于1.62是OSAS的独立预测因子,其灵敏度为56.2%,特异性为63.1%。由于肥胖和OSAS之间的相互作用引起的全身炎症,炎症标志物可用于预测全身炎症的程度。Bozkuş F [10] 等通过BMI将OSAS受试者进行分组,发现NLR比率将会随着肥胖等级的增加而增加,这表明相关的炎症反应也会增加。然而,在其他一些文献中 [11] [12] [13] 报道不可能通过NLR比率测量来评估OSAS相关的全身炎症反应,表明与正常人相比,OSAS患者中NLR无明显变化。在一项Mate分析 [14] 中纳入2259名OSAS患者,研究表明OSA患者的NLR显着高于对照组,而重度OSAS患者的差异更大。NLR可能是检测OSAS患者全身炎症和预测疾病严重程度的可靠标志物。

Sestrin2:Sestrin2是Sestrin家族的一名成员,是一种重要的氧化应激因子,主要由两个结构相似的球状亚结构域组成,是一种应激诱导的代谢调节剂。Sestrin2的表达主要是由缺氧或缺氧诱导的一系列反应介导产生 [15]。OSAS主要表现为缺氧-再氧合,进一步引起氧化应激反应产生大量氧自由基,Sestrin2是参与氧化应激的关键因素。在Bai L [16] 等人的研究中发现OSAS患者尿Sestrin2水平明显高于对照组,且随着OSAS病情加重,Sestrin2水平也随之升高。此外,在nCPAP治疗4周后,尿Sestrin2显着降低。Chai J等人 [17] 则测量了64名研究对象血浆中Sestrin2水平,发现OSAS患者的血浆Sestrin2水平显着高于对照组,并且证明其与氧减指数呈正相关,与平均血氧饱和度和最低血氧饱和度呈负相关;还计算出Sestrin2诊断OSAS的ROC曲线下面积(AUC)为0.740,其临界值为1.86 ng/mL。表示Setrin2将会是一个潜在指标可作为诊断OSAS,评价其疾病严重程度的重要生物标志物。

维生素D:维生素D是一种脂溶性维生素,主要以两种模式存在:VitD2 (麦角固醇,从植物或酵母中获得)和VitD3 (胆固醇,由皮肤在紫外线照射下产生或25 (OH)D)。之前的多项研究评估了维生素D与 OSAS之间的关系,包括随机对照试验和观察性研究 [18] [19] [20]。Kerley C. P. [18] 等人发现在高加索人群中OSAS组的维生素D水平明显低于非OSAS组;证明OSAS组的夜间心率显著高于非OSAS组,采用Spearman相关分析表明维生素D水平与夜间心率存在负相关,并计算出R值为−0.33。Mete T. [19] 等人发现,随着OSAS的严重程度增加,维生素D缺乏症变得更加明显。然而,Yassa O. Y. [20] 等人却认为OSAS的严重程度与血清维生素D无关,维生素D状态不会改变OSAS的严重程度。虽然OSAS患者血清维生素D水平的变化可能与炎症反应、氧化应激、能量代谢、神经内分泌调节等有关,但其具体发病机制却无从知晓。

脂联素:脂联素是脂肪细胞分泌的一种内源性生物活性多肽,是脂肪组织中重要的脂肪细胞因子,不仅能促进成熟脂肪细胞的合成,还具有调节前脂肪细胞分化的作用。它主要以三种形式存在于人体血浆中:三聚体、六聚体和高分子量形式,高分子量脂联素是脂联素的活性形式,占细胞内脂联素的大部分。一项研究表明 [21],OSAS患者的血清脂联素水平相对降低,并且有人认为OSAS会导致血清中血清脂联素水平降低。同样,Kanbay A. [22] 等人进行了一项研究,OSAS患者血清脂联素显着降低,且与肥胖无关。一项研究表示,血浆脂联素水平降低与肥胖人群中OSAS的患病率呈正相关 [23]。然而,在另一项研究中表示OSAS严重程度与血清脂联素水平之间没有显著关系,并且进一步表明,血清脂联素水平的波动主要是由于脂肪组织,而与 OSAS的存在无关 [24]。

TNF-α:肿瘤坏死因子α (TNF-α)是一种促炎细胞因子,主要由单核巨噬细胞、自然杀伤细胞和其他免疫细胞分泌。它在宿主防御中起着至关重要的作用,并介导多种疾病过程的发病机制,例如癌症、传染病、自身免疫性疾病、心血管疾病和动脉粥样硬化 [25]。Vgontzas [26] 及其同事在1997年首次指出TNF-α升高与白天过度嗜睡 (EDS) 疾病有关,表明TNF-α参与睡眠的调节,分泌增加可能与嗜睡和疲劳有关。之前的一项Mate分析研究评估了TNF-α水平与OSAS之间的关联,证明OSAS患者中TNF-α水平高于对照组 [25]。但考虑到此研究仅涉及儿童OSAS,并且收集研究较少。最新一项Mate分析中表示OSAS患者的TNF-α水平比对照组高1.77倍,并进行亚组分析后显示TNF-α水平与OSAS严重程度呈正相关 [27]。在Kanbay A [22] 等人的研究中发现与非肥胖OSAS组相比,肥胖组OSAS患者血浆TNF-α水平较高,并且表明TNF-α的血浆水平与SaO2 < 90%、BMI和空腹血糖水平呈正相关。

纤维蛋白原:OSAS主要病理改变为缺氧-再氧合,这种病理改变诱导氧自由基产生,从而导致氧化应激以及由此产生的内皮功能障碍可能触发凝血级联反应。血浆纤维蛋白原在凝血级联反应中起着关键的作用。在Steiner S [28] 等人的一项研究中,OSAS患者血清纤维蛋白原与夜间最低氧饱和度呈负相关,与AHI呈正相关。然而在von Känel R [29] 等人的一项研究中,OSAS风险与任何凝血因子均无显着相关性。在最新的一项荟萃分析中,证明OSAS患者血浆纤维蛋白原水平高于对照组,而且CPAP治疗会降低OSAS患者血浆中纤维蛋白原水平,并且与CPAP治疗依从性有关 [30]。在Deokar K.等人的一项病例对照研究中观察到随着OSAS和低氧血症事件严重程度的增加,纤维蛋白原水平呈升高趋势,表明血清纤维蛋白原可用作评估OSAS患者发生心血管疾病风险的生物标志物 [31]。

8-异前列腺素:OSAS中慢性间歇性缺氧和随之而来的再氧合类似于缺血-再灌注损伤,这种病理改变导致活性氧(ROS)增加,而作为反映机体氧化应激状态的生物学指标8-异前列腺素在OSAS患者中也呈现高表达状态。在一项动物实验中,给予大鼠不同氧浓度来模拟间歇性缺氧引起的氧化应激和肺部炎症,证明将会以剂量依赖性方式激活抗氧化Nrf2/HO-1信号通路 [32]。Villa M P等人招募了65名患有睡眠呼吸障碍的患儿,在结果整夜PSG监测后于次日凌晨收集了其尿液并测量尿液中8-异前列腺素水平,结果示实验组中尿8-异前列腺素水平显著高于对照组,表示尿8-异前列腺素可作为特异性炎症标志物预测OSA的严重程度 [33]。Barreto M及其同事测量了OSAS儿童呼出气冷凝液和呼出气一氧化氮中8-异前列腺素水平,结果示呼出气冷凝液中8-异前列腺素水平较高,并且与AHI相关 [34]。在一项横断面研究中,在控制各种混杂因素后,仍证明OSAS的严重程度与循环8-异前列腺素水平独立相关,表示8-异前列腺素可能成为OSAS氧化应激的有用生物标志物 [35]。

2. 小结

目前睡眠医学作为快速发展的一门学科,引起越来越多的临床医生的关注。睡眠呼吸疾病是以睡眠期呼吸节律异常及通气功能异常为主要表现的一组疾病,包括阻塞性睡眠呼吸暂停低通气综合征(OSAHS)、中枢性睡眠呼吸暂停综合征(CSAS)、睡眠相关低通气疾病(SHVD)、睡眠相关低氧血症、单独症候群和正常变异(鼾症)。目前主要采用PSG监测诊断OSAS,考虑该技术较为繁琐,需要专业人员操作及判读,基层医院尚未引入该项技术,目前许多研究者主要依据OSAS的病理生理改变,在血清中寻找简便、安全、敏感的指标,可为初步筛查OSAS、评估疾病严重程度、治疗效果及判断预后提供参考。提高OSAS患者就诊率及治疗率,避免患者病情持续发展以及发生严重并发症,提高患者生活质量。

利益冲突

所有作者都已阅读并批准了内容,并且没有利益冲突。文章中不涉及道德及法律冲突。

NOTES

*通讯作者。

参考文献

[1] Senaratna, C.V., Perret, J.L., Lodge, C.J., et al. (2017) Prevalence of Obstructive Sleep Apnea in the General Population: A Systematic Review. Sleep Medicine Reviews, 34, 70-81.
https://doi.org/10.1016/j.smrv.2016.07.002
[2] Kapur, V.K., Auckley, D.H., Chowdhuri, S., et al. (2017) Clinical Practice Guideline for Diagnostic Testing for Adult Obstruc-tive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. Journal of Clinical Sleep Medi-cine, 13, 479-504.
https://doi.org/10.5664/jcsm.6506
[3] Lavie, L. (2015) Oxidative Stress in Obstructive Sleep Apnea and Intermittent Hypoxia—Revisited—the Bad Ugly and Good: Implications to the Heart and Brain. Sleep Medi-cine Reviews, 20, 27-45.
https://doi.org/10.1016/j.smrv.2014.07.003
[4] Chuang, L.P., Chen, N.H., Lin, S.W., et al. (2013) Increased Ma-trix Metalloproteinases-9 after Sleep in Plasma and in Monocytes of Obstructive Sleep Apnea Patients. Life Sciences, 93, 220-225.
https://doi.org/10.1016/j.lfs.2013.06.009
[5] Fang, X., Chen, J., Wang, W., et al. (2020) Matrix Metal-loproteinase 9 (MMP9) Level and MMP9-1562C>T in Patients with Obstructive Sleep Apnea: A Systematic Review and Meta-Analysis of Case-Control Studies. Sleep Medicine, 67, 110-119.
https://doi.org/10.1016/j.sleep.2019.11.1247
[6] Hopps, E., Lo Presti, R., Montana, M., et al. (2015) Analysis of the Correlations between Oxidative Stress, Gelatinases and Their Tissue Inhibitors in the Human Subjects with Obstruc-tive Sleep Apnea Syndrome. Journal of Physiology and Pharmacology, 66, 803-810.
[7] Simon, B., Barta, I., Gabor, B., et al. (2020) Effect of 5-Year Continuous Positive Airway Pressure Treatment on MMPs and TIMPs: Implications for OSA Comorbidities. Scientific Reports, 10, Article No. 8609.
https://doi.org/10.1038/s41598-020-65029-6
[8] Koseoglu, S., Ozcan, K.M., Ikinciogullari, A., et al. (2015) Rela-tionship between Neutrophil to Lymphocyte Ratio, Platelet to Lymphocyte Ratio and Obstructive Sleep Apnea Syndrome. Advances in Clinical and Experimental Medicine, 24, 623-627.
https://doi.org/10.17219/acem/58969
[9] Sunbul, M., Sunbul, E.A., Kanar, B., et al. (2015) The Association of Neutrophil to Lymphocyte Ratio with Presence and Sever-ity of Obstructive Sleep Apnea. Bratislavske Lekarske Listy, 116, 654-658.
https://doi.org/10.4149/BLL_2015_125
[10] Bozkuş, F., Dikmen, N., Samur, A., et al. (2018) Does the Neutro-phil-to-Lymphocyte Ratio Have Any Importance between Subjects with Obstructive Sleep Apnea Syndrome with Obesi-ty and without Obesity? Tüberküloz ve Toraks, 66, 8-15.
https://doi.org/10.5578/tt.66535
[11] Korkmaz, M., Korkmaz, H., Küçüker, F., et al. (2015) Evaluation of the Association of Sleep Apnea-Related Systemic Inflammation with CRP, ESR, and Neutrophil-to-Lymphocyte Ratio. Medical Science Monitor, 21, 477-481.
https://doi.org/10.12659/MSM.893175
[12] Fan, Z., Lu, X., Long, H., et al. (2019) The Association of Hemocyte Profile and Obstructive Sleep Apnea. Journal of Clinical Laboratory Analysis, 33, e22680.
https://doi.org/10.1002/jcla.22680
[13] Kıvanc, T., Kulaksızoglu, S., Lakadamyalı, H., et al. (2018) Importance of Laboratory Parameters in Patients with Obstructive Sleep Apnea and Their Relationship with Cardiovascular Diseases. Journal of Clinical Laboratory Analysis, 32, e22199.
https://doi.org/10.1002/jcla.22199
[14] Rha, M.S., Kim, C.H., Yoon, J.H., et al. (2020) Association between the Neutrophil-to-Lymphocyte Ratio and Obstructive Sleep Apnea: A Me-ta-Analysis. Scientific Reports, 10, Article No. 10862.
https://doi.org/10.1038/s41598-020-67708-w
[15] Ho, A., Cho, C.S., Namkoong, S., et al. (2016) Biochemical Basis of Sestrin Physiological Activities. Trends in Biochemical Sciences, 41, 621-632.
https://doi.org/10.1016/j.tibs.2016.04.005
[16] Bai, L., Sun, C., Zhai, H., et al. (2019) Investigation of Urinary Sestrin2 in Patients with Obstructive Sleep Apnea. Lung, 197, 123-129.
https://doi.org/10.1007/s00408-019-00205-8
[17] Chai, J., Wang, J., Jiang, R., et al. (2020) Diagnostic Value of Sestrin2 in Patients with Obstructive Sleep Apnea. Metabolic Syndrome and Related Disorders, 18, 362-367.
https://doi.org/10.1089/met.2020.0018
[18] Kerley, C.P., Hutchinson, K., Bolger, K., et al. (2016) Serum Vitamin D Is Significantly Inversely Associated with Disease Severity in Caucasian Adults with Obstructive Sleep Apnea Syn-drome. Sleep, 39, 293-300.
https://doi.org/10.5665/sleep.5430
[19] Mete, T., Yalcin, Y., Berker, D., et al. (2013) Obstructive Sleep Apnea Syndrome and Its Association with Vitamin D Deficiency. Journal of Endocrinological Investigation, 36, 681-685.
[20] Yassa, O.Y., Domac, S.F. and Kenangil, G. (2020) Serum Vitamin D Status Does Not Correlate with the Severity of Obstructive Sleep Apnea in Male Adults: A Controlled Study Design with Minimized Factors Influencing Serum Vitamin D Levels. International Journal for Vitamin and Nutrition Research, 90, 470-476.
https://doi.org/10.1024/0300-9831/a000539
[21] Zhang, D.M., Pang, X.L., Huang, R., et al. (2018) Adiponectin, Omentin, Ghrelin, and Visfatin Levels in Obese Patients with Severe Obstructive Sleep Apnea. BioMed Research Inter-national, 2018, Article ID: 3410135.
https://doi.org/10.1155/2018/3410135
[22] Kanbay, A., Kokturk, O., Ciftci, T.U., et al. (2008) Comparison of Se-rum Adiponectin and Tumor Necrosis Factor-Alpha Levels between Patients with and without Obstructive Sleep Apnea Syndrome. Respiration, 76, 324-330.
https://doi.org/10.1159/000134010
[23] Zeng, F., Wang, X., Hu, W., et al. (2017) Association of Adiponectin Level and Obstructive Sleep Apnea Prevalence in Obese Subjects. Medicine (Baltimore), 96, e7784.
https://doi.org/10.1097/MD.0000000000007784
[24] Tokuda, F., Sando, Y., Matsui, H., et al. (2008) Serum Lev-els of Adipocytokines, Adiponectin and Leptin, in Patients with Obstructive Sleep Apnea Syndrome. Internal Medicine, 47, 1843-1849.
https://doi.org/10.2169/internalmedicine.47.1035
[25] Nadeem, R., Molnar, J., Madbouly, E.M., et al. (2013) Se-rum Inflammatory Markers in Obstructive Sleep Apnea: A Meta-Analysis. Journal of Clinical Sleep Medicine, 9, 1003-1012.
https://doi.org/10.5664/jcsm.3070
[26] Vgontzas, A.N., Papanicolaou, D.A., Bixler, E.O., et al. (1997) Elevation of Plasma Cytokines in Disorders of Excessive Daytime Sleepiness: Role of Sleep Disturbance and Obesity. The Journal of Clinical Endocrinology & Metabolism, 82, 1313-1316.
https://doi.org/10.1210/jcem.82.5.3950
[27] Cao, Y., Song, Y., Ning, P., et al. (2020) Association between Tumor Necrosis Factor Alpha and Obstructive Sleep Apnea in Adults: A Meta-Analysis Update. BMC Pulmonary Medicine, 20, Article No. 215.
https://doi.org/10.1186/s12890-020-01253-0
[28] Steiner, S., Jax, T., Evers, S., et al. (2005) Altered Blood Rhe-ology in Obstructive Sleep Apnea as a Mediator of Cardiovascular Risk. Cardiology, 104, 92-96.
https://doi.org/10.1159/000086729
[29] von Känel, R., Princip, M., Schmid, J.P., et al. (2018) Association of Sleep Problems with Neuroendocrine Hormones and Coagulation Factors in Patients with Acute Myocardial Infarction. BMC Cardiovascular Disorders, 18, Article No. 213.
https://doi.org/10.1186/s12872-018-0947-5
[30] Lin, J., Hu, S., Shi, Y., et al. (2021) Effects of Continuous Positive Airway Pressure on Plasma Fibrinogen Levels in Obstructive Sleep Apnea Patients: A Systemic Review and Meta-Analysis. Bioscience Reports, 41, BSR20203856.
https://doi.org/10.1042/BSR20203856
[31] Deokar, K., Meshram, S., Chawla, G., et al. (2020) Obstructive Sleep Apnea, Intermittent Hypoxemia and Prothrombotic Biomarkers. Sleep Science, 13, 230-234.
[32] Wang, Y., Chai, Y., He, X., et al. (2017) Intermittent Hypoxia Simulating Obstructive Sleep Apnea Causes Pulmonary Inflammation and Ac-tivates the Nrf2/HO-1 Pathway. Experimental and Therapeutic Medicine, 14, 3463-3470.
https://doi.org/10.3892/etm.2017.4971
[33] Villa, M.P., Supino, M.C., Fedeli, S., et al. (2014) Urinary Concentra-tion of 8-Isoprostane as Marker of Severity of Pediatric OSAS. Sleep and Breathing, 18, 723-729.
https://doi.org/10.1007/s11325-013-0934-0
[34] Barreto, M., Montuschi, P., Evangelisti, M., et al. (2018) Com-parison of Two Exhaled Biomarkers in Children with and without Sleep Disordered Breathing. Sleep Medicine, 45, 83-88.
https://doi.org/10.1016/j.sleep.2018.01.011
[35] Peres, B.U., Allen, A.J.H., Shah, A., et al. (2020) Obstructive Sleep Apnea and Circulating Biomarkers of Oxidative Stress: A Cross-Sectional Study. Antioxidants (Basel), 9, 476.
https://doi.org/10.3390/antiox9060476