基于Au/BiOI的光电化学传感器对血清素超灵敏检测
Au/BiOI Based Photoelectrochemical Sensor for Ultra-Sensitive Detection of 5-Hydroxytryptamine
DOI: 10.12677/AAC.2022.123025, PDF, HTML, XML, 下载: 255  浏览: 418  科研立项经费支持
作者: 郭 旭, 卑佳丽, 范 春, 董一鑫, 梁海贤, 王 锦, 陈婷婷*:南通大学化学化工学院,江苏 南通
关键词: 金纳米粒子碘氧化铋生物小分子光电化学传感器Au NPs BiOI Small Biological Molecules Photoelectrochemical Sensors
摘要: 目的:本研究通过水热法制备了尺寸均一的金纳米粒子以及碘氧化铋(BiOI)纳米花,将二者复合后(Au/BiOI)用于血清素(5-hydroxytryptamine, 5-HT)的光电化学检测。Au/BiOI检测5-HT时有显著的光电流响应,这主要是由于在可见光照下,BiOI产生光生电子(e−)-空穴(h+)对,可以吸附更多的5-HT至电极表面并氧化,增加光电流;而Au纳米粒子的局域表面等离子共振效应可以增强光电流响应;此外,Au较强的导电能力可以阻止电子–空穴对的复合,进一步提高光电流,最终实现对5-HT的超灵敏性检测。该光电传感器检测5-HT时的浓度范围在0.25~20 μM之间,检出限为0.07 μM,表明Au/BiOI对5-HT具有较好的光电化学检测效果。该光电化学传感器还拥有稳定性好和灵敏度高等优点,期待其在生物小分子的检测中具有广阔的应用前景。
Abstract: Purpose: In this study, homogeneous Au NPs and BiOI nanoflowers were synthesized by hydrothermal method and the Au/BiOI composite was applied to the specific photochemical detection of 5-hydroxytryptamine (5-HT). Au/BiOI based photoelectrochemical (PEC) sensor has a significant photocurrent response for detection of 5-HT, which is mainly due to the photogenerated electron (e−) hole (h+) pair generated by BiOI under visible light irradiation, which can adsorb more 5-HT to the electrode surface and oxidize 5-HT, increasing the photocurrent. Au NPs has strong effect of local surface plasmon resonance (LSPR) effect, which can improve the PEC response. Furthermore, Au NPs has good electrical conductivity, which will prevent the recombination of electron-hole pairs, further increases the photocurrent response, and finally realizes the ultra-sensitive detection of 5-HT. The concentration range of the photochemical sensor for AC detection was between 0.25 μM and 20 μM, the detection limit was 0.07 μM, indicating that Au/BiOI had a good performance towards 5-HT detection. The PEC sensor has good stability and high sensitivity; it is expected to have a broad application prospect in small biological molecules.
文章引用:郭旭, 卑佳丽, 范春, 董一鑫, 梁海贤, 王锦, 陈婷婷. 基于Au/BiOI的光电化学传感器对血清素超灵敏检测[J]. 分析化学进展, 2022, 12(3): 196-205. https://doi.org/10.12677/AAC.2022.123025

1. 引言

5-羟色胺(血清素)是人体内极为重要的单胺神经递质,存在于中枢神经系统,是一种用于调节情绪、睡眠、呕吐、性欲、食欲和疼痛的物质 [1] [2] 。正常含量的血清素对身体有代谢和排毒作用,还可以促进胃液分泌,增强人的食欲,并且能缓解精神上的情绪,有助于镇定心情、缓解焦虑。但是较低浓度和较高浓度的血清素可能会导致抑郁、焦虑和偏头痛,对身体具有毒性和潜在的致命影响 [3] [4] [5] [6] 。因此,需要用灵敏的方法检测血清素。目前血清素的主要检测方法有电化学方法 [2] [7] [8] 、光电化学方法 [9] [10] 、光谱法 [11] 、荧光传感技术 [12] [13] 、比色法 [14] [15] 和反相高效液相色谱–脉冲安培法 [11] [16] [17] 等。与其他检测血清素的方法相比,电化学检测操作简单、灵敏度高、选择性好、成本低。而光电化学检测的检测范围更广、灵敏度更好、响应速度更快。而影响光电化学传感器的关键因素是光点材料的选取。

铋基半导体光电材料,如BiFeO3、Bi2S3、Bi2WO6、Bi2O3、BiOX等,由于其无毒、成本低、性能高等特性吸引了较多的研究关注。尤其是卤氧化铋(BiOX,其中X = F、Cl、Br和I)半导体光电材料,因其独特的四方结构 [18] 可形成片层状组成的花状结构,层状结构又能提供足够的空间来计划相关原子和轨道构建内部电场,促进电子–空穴分离,进而易于吸收光能产生高性能的光电流响应而被广泛研究 [19] 。其中BiOI在四种卤氧化铋中具有最窄的带隙(Eg = 1.7~1.9 eV)和最宽的可见光响应范围 [20] [21] ,可有效利用光能。但是由于其光生载流子传输减慢导致的电子和空穴对容易复合,进而减缓其光电化学性能。这在一定程度上影响了其在各方面的应用。金纳米粒子在物理、化学、生物学等领域被广泛应用,因其具有特殊的光光电化学性能,如局域表面等离子共振效应、拉曼效应、荧光效应等 [22] 。更为重要的是,金纳米粒子还具有稳定性高、形貌多样、易于功能化等优点。将金纳米粒子和无机半导体复合既可以有效缓解无机半导体导电弱、光生电子–空穴易重组等缺点,又可以协同二者的优点,实现其高性能的光电化学应用 [23] 。

本课题通过水热法合成了均匀的金纳米粒子和碘氧化铋纳米花状微球,将二者经超声复合后制备Au/BiOI纳米复合材料,将其修饰于玻碳电极上用于血清素的光电化学检测。实验结果表明Au/BiOI在血清素检测时有优异的光电化学性能,这可能归因于二者协同作用。在可见光照射下,BiOI吸收一定强度的光能产生光生电子(e)-空穴(h+)对,空穴可将5-HT氧化产生光电流;Au NPs吸收光能产生局域表面等离子效应(LSPR)提高光电流响应,并抑制BiOI纳米花上光生电子(e)-空穴(h+)对重组。在二者的协同作用下,显著提高检测血清素的光电流响应,使其拥有较低的检测限、较宽的检测范围、优异的重复性、稳定性等性能。检测机理如流程图1所示。

Scheme 1. Detection mechanism of the photoelectrochemical sensoring for 5-HT

流程图1. 血清素的光电化学传感机理图

2. 实验部分

2.1. 实验试剂

本实验中使用的所有试剂均为分析级。氯金酸(HAuCl4)购买于Sigma公司,磷酸氢二钠十二水合物 (Na2HPO4∙12H2O)、磷酸二氢钠二水合物(NaH2PO4∙2H2O)、铁氰化钾(K3[Fe(CN)6])、亚铁氰化钾三水合物(K4[Fe(CN)6]∙3H2O)、氯化钾(KCl)、五水合硝酸铋(Bi(NO3)3∙5H2O)购买自上海阿拉丁生化科技股份有限公司,尿酸(C5H4N4O3)、氯化钾(KCl)、氯化钠(NaCl)购买自上海麦克林生化科技有限公司。

2.2. 实验仪器

通过扫描电镜(SEM: ZEISS Gemini SEM 300)对BiOI以及其复合材料的形貌进行了表征。实验使用岛津UV-2501 PC紫外可见光谱仪进行了紫外可见光谱测量。通过石墨单色器件和Cu Kα辐射(λ = 0.15406 nm)在D8 Advance超高速粉末衍射仪(Bruker)获得了XRD数据,该衍射仪主要工作在30˚~90˚ (2θ)范围内,管电压为80 kV。CHI 660D电化学工作站(上海晨华仪器有限公司)和氙灯光源CEL-S500/350/150 (北京中教金源科技有限公司)进行了所有的光化学/电化学测量。所有实验均采用传统的三电极系统进行。PBS的pH值用pH计(PHSJ-3F)测定。铂网电极、饱和甘汞电极(SCE)、玻碳电极(Glass Carbon Electrode,型号:3 mm-L)购买自上海市楚兮实业有限公司。

2.3. 实验方法

2.3.1. BiOI纳米花的制备

首先将0.485 g的Bi(NO3)3∙5H2O到30 mL超纯水和乙二醇的混合液(二者体积比为1:5)中,超声分散后得到透明溶液。然后将0.4 g的聚乙烯吡咯烷酮溶解到Bi(NO3)3∙5H2O溶液中,磁力搅拌30 min后加入0.166 g碘化钾,在室温下搅拌30 min得到橘红色悬浊液。将上述溶液移至50 mL高压釜中在160℃加热3小时,随后在室温下冷却,得到的沉淀物用超纯水清洗若干次,然后将制备好的样品冷冻干燥后保存待用。

2.3.2. Au NPs的制备

Au NPs的制备参照文献合成方法 [24] 。具体步骤如下:将0.90 mL H3Cit (0.1 M)、2.10 mL Na3Cit (0.1 M)滴入150 mL沸腾的超纯水中搅拌15分钟。随后将1 mL 25.4 mM HAuCl4注入混合溶液中,搅拌3分钟。结束后立即转入冰水中猝灭,得到澄清透明的亮红色Au NPs溶液。将得到的亮红色Au NPs离心收集,用超纯水离心洗涤3次,最后再分散到12.5 mL超纯水中。

2.3.3. Au/BiOI复合材料的制备

量取0.20 mL上文制备的Au NPs溶胶和2.82 mg BiOI粉末,置于1.80 mL超纯水中,进行超声并搅拌40 min,制备Au/BiOI分散液待用。

3. 结果与讨论

3.1. Au、BiOI和Au/BiOI复合材料的物理表征

Figure 1. SEM images of (A) BiOI and (B) Au/BiOI NPs

图1. (A) BiOI和(B) Au/BiOI NPs的扫描电镜图

为了探究合成的材料的形貌和围微观尺寸,利用扫描电子显微镜(SEM)对材料进行了表征。图1(A)为SEM图像,从图中可以看到BiOI是由片状组成的花状结构,片状结构表面粗糙,尺寸约为2.3 μm。粗糙的表面可能有利于纳米材料的吸附,且有利于可见光的吸收,提高光电化学性能。图1(B)为Au/BiOI样品的SEM图像,可以发现BiOI表面薄片表面有均匀的金纳米粒子,表明金纳米粒子成功修饰到BiOI表面(Au/BiOI)。

Figure 2. (A) Ultraviolet-visible absorption spectra (UV-vis) and (B) XRD patterns of Au, BiOI and Au/BiOI

图2. Au,BiOI和Au/BiOINPs的(A) 紫外–可见漫反射光谱图和(B) X射线衍射图

通过紫外–可见漫射光谱对修饰材料Au,BiOI和Au/BiOINPs吸收光的能力进行了表征。如图2(A)所示,Au NPs在521 nm处有典型的表面等离子共振带的吸收峰。BiOI纳米花在408 nm处呈现特征的吸收峰。且Au/BiOINPs有典型的Au NPs和BiOI纳米花的特征吸收峰,证明了有效合成了Au/BiOI纳米复合材料。

利用X射线衍射(XRD)探究了样品的晶体结构。从图2(B)中黑色曲线可以看出,Au NPs典型的衍射峰出现在2θ处为38.48˚,44.58˚,64.95˚和75.95˚,分别归属于金纳米粒子的(111)、(200)、(220)、(311)晶面(JCPDS No.06-893697 Au)。BiOI的衍射峰出现在29.33˚,31.39˚,45.18˚,54.86˚,65.91˚,74.87˚位置,对应BiOI((JCPDS NO. 10-0445)的(102),(110),(200),(212),(220),(310)晶面。图中红色曲线为Au/BiOI NPs典型的X射线衍射图,2θ为29.25˚,31.45˚,38.79˚,45.16˚,54.79˚,65.83˚,74.93˚分别对应Au和BiOI的(102),(110),(111),(200),(212),(220),(310)晶面,和预期制备的复合材料一致,表明合成了Au/BiOI纳米粒子。

3.2. 制备复合材料的电化学和光电化学性能表征

为了探究制备复合材料检测血清素的性能,利用循环伏安曲线(CVs)和差分脉冲伏安曲线(DPVs)探究了BiOI和Au/BiOINPs在1 mM血清素中的电化学和光电化学行为。从图3(A)中可以看到,在有光(黑色虚线)和无光照(黑色实线)的情况下,BiOI纳米花的光照有显著提升。这可能是由于在可见光照射下,BiOI纳米花吸收一定强度的光照,产生光生电子和空穴,电子转移到电化学体系中;空穴可以将血清素氧化产生光电流响应。Au/BiOINPs检测血清素时在有光照辅助时(红色实线),光电流也有明显的增加。该显著增加的光电流可能是由两个方面的因素产生的:首先在可见光照下,Au NPs吸收光能产生局域表面等离子共振效应(local surface plasmon resonance LSPR),增加光电流 [25] ;同时Au NPs可快速将电子传送到反应体系内 [26] ,既有效抑制了电荷–空穴对的重组,又增加电子转移速率;最后这二者的协同效应可以有效提高检测血清素时的光电流。而相较于BiOI,无论是有光还是无光照情况下,Au/BiOINPs检测血清素时的光电流显著增加。这主要归因于,Au NPs既可以快速传输电子,又可以吸收光产生LSPR效应,有效提高光电流。同时,我们还用差分脉冲伏安曲线探究了BiOI和Au/BiOINPs检测血清素的性能。从结果(图3(B))可以看到曲线图和CVs结果相似。因此,从图3可以明显看到,可将Au NPs和BiOI纳米花复合,提升二者检测血清素的光电化学响应。

Figure 3. (A) CVs and (B) DPVs of BiOI and Au/BiOI recorded in 0.1 mol/L PBS (pH = 7.4) containing 1 mM 5-HT under visible light irradiation and dark environment

图3. 在有光和无光的条件下,BiOI和Au/BiOI电极在含有1 mM血清素的PBS缓冲溶液(pH = 7.4)中的(A)循环伏安曲线图和(B)差分脉冲伏安曲线图

3.3. 探究制备的Au/BiOI复合材料检测血清素的电化学机理

为了探索在可见光照射下Au/BiOI检测血清素的光化学反应动力学因素,探究了扫描速率和溶液中pH值对检测血清素的影响。图4(A)显示了在0.02 mM血清素溶液中,在扫描速度的范围为0.02~0.2 V/s时Au/BiOI电极的线性扫描伏安曲线(LSV)。可以发现氧化峰电流(Ipa)随着扫描速度的增加而线性地增加,对应的线性回归方程为I(μA) =7.7032ν + 0.6141,(R2 = 0.9977) (图4(B)),表明Au/BiOI在检测血清素时,Au/BiOI和血清素之间的电子转移过程是电子参与的反应,电极上的转移是吸附过程控制的 [27] 。图4(C)显示了Au/BiOI在不同pH值溶液中(pH = 6、6.5、7、7.4、8、8.5)的光电流响应曲线。从中可以观察到,氧化峰电位随pH增加而负移,相应的线性方程为Epa = −0.05407 pH + 0.6608,(R2 = 0.9926) 图4(D),其中斜率接近能斯特值−59 mV/pH,表明该光电化学反应是两个质子和两个电子参加的反应过程 [28] 。

3.4. Au/BiOI电极检测血清素的耐久性、抗干扰性和重现性的研究

耐久性、抗干扰性和重现性是影响修饰电极光电化学性能的重要因素。图5(A)为Au/BiOI电极在含有0.5 mM血清素溶液中的循环伏安曲线,从图中可以观察到,连续扫描100圈之后,光电流曲线只有稍许下降,证明了该Au/BiOI在检测血清素时有优异的耐久性。为了探究Au/BiOI电极检测血清素的抗干扰性,实验选择具有相似化学结构的小分子作为抗干扰分子。如图5(B)所示,在0.02 mM血清素溶液中加入0.1 mM尿酸、氯化钾、氯化钠以及三者的混合溶液后,相对响应灵敏度都接近且都接近于90%,表明这几种干扰物对血清素检测时的干扰性较小,Au/BiOI有较好的抗干扰能力。同时,我们还探究了Au/BiOI电极的重现性(图5(C)),当用五根平行电极在相同条件下检测血清素时,光电流曲线相似且氧化峰电流几乎重合,证明了Au/BiOI电极检测血清素时有极好的重现性。上述结果均证明Au/BiOI电极可用血清素的检测,且具有优异的检测性能。

Figure 4. (A) The LSVs of scan rates of the Au/BiOI electrode from 0.02 to 0.2 V/s in 0.02 mM 5-HT, (B) The corresponding plots of anodic oxidation peak photocurrent densities versus the scan rates; (C) The LSVs of the Au/BiOI electrode in 0.1 mol/L PBS solution containing 0.02 mM 5-HT under visible light illumination at various pH values from 6.0 to 8.5, (D) Peak potential versus pH values

图4. (A) 可见光照下,Au/BiOI电极在扫描速率在0.02~0.2 V/s范围内检测0.02 mM血清素的线性扫描伏安曲线图,(B) 相应的氧化峰电流和扫描速率之间的线性关系图;(C) Au/BiOI电极在PBS值不同时(0.1 mol/L PBS pH = (6、6.5、7、7.4、8、8.5)检测0.02 mM血清素的差分脉冲伏安曲线图,(D) 氧化峰电流和pH的线性关系图

Figure 5. (A) CVs of Au/BiOI electrode in 0.1 mol/L PBS (pH = 7.4) solution containing 0.5 mM 5-HT under visible-light illumination (100 cycles), (B) Relative analytical response (Ipa/Ip) for 0.02 mM 5-HT in presence of the potential interferents containing 0.1mM UA, KCl, NaCl, and the mixtures, respectively, (C) DPVs of five parallelAu/BiOI electrode in 0.02 mM 5-HT solution

图5. 可见光照射下,(A) Au/BiOI电极在含有0.5 mM血清素的浓度为0.1 mol/L PBS,pH = 7.4的PBS缓冲溶液中连续扫描100圈的循环伏安曲线图,(B) 0.02 mM血清素和存在干扰物质时的相对光电流值,干扰物质分别为0.1 mM UA (Uric Acid尿酸),KCl (Potassium Chloride氯化钾),NaCl (Sodium Chloride氯化钠)和三者混合溶液,(C) 五根平行的Au/BiOI电极在0.02 mM血清素溶液中的差分脉冲伏安曲线

3.5. Au/BiOI电极光电化学检测血清素

Figure 6. (A) The DPVs of Au/BiOI electrode in 0.1 mol/L PBS (pH = 7.4) solution containing different concentrations of 5-HT from 0.25 to 20 μM, (B) The plots of the oxidation photocurrent densities versus the concentration of 5-HT

图6. (A) 光照条件下,Au/BiOI在0.1 mol/L PBS (PH = 7.4)缓冲溶液中含有0.25~20 μM血清素时的差分脉冲伏安曲线图,(B) 相应的氧化峰电流和不同对血清素浓度之间的线性关系图

为了探究Au/BiOI电极检测血清素的浓度范围和检测限,通过差分脉冲伏安曲线研究了Au/BiOI对不同浓度血清素的光电化学性能。如图6(A)所示,随着溶液中血清素的浓度不断增加(0.25~20 μM),氧化峰电流也不断增加,且光电流和血清素浓度呈较好的线性关系。线性回归方程如图6(B)所示:I = 0.0439C + 0.00246 (R2 = 0.9971),计算得到的检测限为0.07 μM。表明Au/BiOI电极检测血清素时有较好的分析性能。

4. 结论

在本篇工作中报道了一种新型的基于Au/BiOI纳米花修饰的光电化学传感器,用于对血清素的超灵敏性光电化学检测。在可见光照射下,Au/BiOI电极检测血清素时有明显的光电流响应,较宽的检测范围(0.25~20 μM)和较低的检测限(0.07 μM)。文中Au/BiOI优异的光电化学性能主要是由于Au和BiOI对血清素均有良好的光电化学响应,且二者的协同效应显著增强对5-HT的超灵敏性检测。此外,Au/BiOI电极还具有优异的耐久性、重现性和抗干扰能力。期待Au/BiOI光电化学传感器在其他生物小分子的检测中有广阔的应用前景。

基金项目

本项目由南通市科技局项目支持(项目号:MS12021079)。

NOTES

*通讯作者。

参考文献

[1] Kathiresan, V., Rajarathinam, T., Lee, S., Kim, S., Lee, J., Thirumalai, D. and Chang, S.C. (2020) Cost-Effective Electrochemical Activation of Graphitic Carbon Nitride on the Glassy Carbon Electrode Surface for Selective Determination of Serotonin. Sensors (Basel), 20, 6083.
https://doi.org/10.3390/s20216083
[2] Raj, M., Gupta, P., Goyal, R.N. and Shim, Y.B. (2017) Graphene/Conducting Polymer Nano-Composite Loaded Screen Printed Carbon Sensor for Simultaneous Determination of Dopamine and 5-Hydroxytryptamine. Sensors and Actuators B: Chemical, 239, 993-1002.
https://doi.org/10.1016/j.snb.2016.08.083
[3] Biondi, M.L., Agostoni, A. and Marasini, B. (1986) Serotonin Levels in Hypertension. Journal of Hypertension, 4, S39-S41.
[4] Holck, A., Wolkowitz, O.M., Mellon, S.H., Reus, V.I., Nelson, J.C., Westrin, Å. and Lindqvist, D. (2019) Plasma Serotonin Levels Are Associated with Antidepressant Response to SSRIS. Journal of Affective Disorders, 250, 65-70.
https://doi.org/10.1016/j.jad.2019.02.063
[5] Kwon, O., Yu, J.H., Jeong, E., Yoo, H.J. and Kim, M.S. (2018) Meal-Related Oscillations in the Serum Serotonin Levels in Healthy Young Men. Clinical Endocrinology, 88, 549-555.
https://doi.org/10.1111/cen.13545
[6] Murugesan, A., Rani, M.R.S., Vilella, L., Lacuey, N., Hampson, J.P., Faingold, C.L., Friedman, D., Devinsky, O., Sainju, R.K., Schuele, S., Diehl, B., Nei, M., Harper, R.M., Bateman, L.M., Richerson, G. and Lhatoo, S.D. (2019) Postictal Serotonin Levels Are Associated with Peri-Ictal Apnea. Neurology, 93, e1485-e1494.
https://doi.org/10.1212/WNL.0000000000008244
[7] Wu, B., Sanjida, Y., Liu, Y. and Chen, L.J. (2021) Sensitive and Selective Electrochemical Sensor for Serotonin Detection Based on Ferrocene-Gold Nanoparticles Decorated Multiwall Carbon Nanotubes. Sensors and Actuators B: Chemical, 354, Article ID: 131216.
https://doi.org/10.1016/j.snb.2021.131216
[8] Li, R., Li, X.X., Su, L., Qi, H.T., Yue, X.F. and Qi, H.L. (2021) Label-Free Electrochemical Aptasensor for the Determination of Serotonin. Electroanalysis, 34, 1048-1053.
https://doi.org/10.1002/elan.202100373
[9] Wang, J., Bei, J.L., Guo, X., Ding, Y., Chen, T.T., Lu, B., Wang, Y., Du, Y.K. and Yao, Y. (2022) Ultrasensitive Photoelectrochemical Immunosensor for Carcinoembryonic Antigen Detection Based on Pillar[5]arene-Functionalized Au Nanoparticles and Hollow Pani Hybrid Biobr Heterojunction. Biosensors and Bioelectronics, 208, Article ID: 114220.
https://doi.org/10.1016/j.bios.2022.114220
[10] Wang, J., Zhou, L., Bei, J.L., Xie, M.Y., Zhu, X.T., Chen, T.T., Wang, X.M., Du, Y.K. and Yao, Y. (2022) An Specific Photoelectrochemical Sensor Based on Pillar[5]arenes Functionalized Gold Nanoparticles and Bismuth Oxybromide Nanoflowers for Bovine Hemoglobin Recognition. Journal of Colloid and Interface Science, 620, 187-198.
https://doi.org/10.1016/j.jcis.2022.04.014
[11] Danaceau, J.P. anderson, G.M., McMahon, W.M. and Crouch, D.J. (2003) A Liquid Chromatographic-Tandem Mass Spectrometric Method for the Analysis of Serotonin and Related Indoles in Human Whole Blood. Journal of Analytical Toxicology, 27, 440-444.
https://doi.org/10.1093/jat/27.7.440
[12] Sha, Q.Y., Sun, B.Y., Yi, C., Guan, R.X., Fei, J., Hu, Z.Y., Liu, B.F. and Liu, X. (2019) A Fluorescence Turn-On Biosensor Based on Transferrin Encapsulated Gold Nanoclusters for 5-Hydroxytryptamine Detection. Sensors and Actuators B: Chemical, 294, 177-184.
https://doi.org/10.1016/j.snb.2019.05.060
[13] Wang, Z.H., Zhang, Y.F., Zhang, B. and Lu, X.Q. (2018) Mn2+ Doped ZNS QDs Modified Fluorescence Sensor Based on Molecularly Imprinted Polymer/Sol-Gel Chemistry for Detection of Serotonin. Talanta, 190, 1-8.
https://doi.org/10.1016/j.talanta.2018.07.065
[14] Godoy-Reyes, T.M., Llopis-Lorente, A., Costero, A.M., Sancenón, F.L., Gaviña, P. and Martínez-Máñez, R. (2017) Selective and Sensitive Colorimetric Detection of the Neurotransmitter Serotonin Based on the Aggregation of Bifunctionalised Gold Nanoparticles. Sensors and Actuators B: Chemical, 258, 829-835.
https://doi.org/10.1016/j.snb.2017.11.181
[15] Wang, W., Zhang, B., Zhang, Y., Ma, P.Y., Wang, X.H., Sun, Y., Song, D.Q. and Fei, Q. (2021) Colorimetry and Sers Dual-Mode Sensing of Serotonin Based on Functionalized Gold Nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 261, Article ID: 120057.
https://doi.org/10.1016/j.saa.2021.120057
[16] He, Q.Q., Li, M.R., Wang, X.C., Xia, Z.J., Du, Y.Z., Li, Y., Wei, L.X. and Shang, J. (2019) A Simple, Efficient and Rapid HPLC-UV Method for the Detection of 5-HT in RIN-14B Cell Extract and Cell Culture Medium. BMC Chemistry, 13, Article No. 76.
https://doi.org/10.1186/s13065-019-0591-x
[17] Chirfa, G., Merdassa, Y. and Gure, A. (2020) Salting-Out Assisted Liquid-Liquid Extraction for Analysis of Caffeine and Nicotinic Acid in Coffee by HPLC-UV/Vis Detector. Journal of Analysis and Testing, 4, 298-306.
https://doi.org/10.1007/s41664-020-00148-7
[18] Bavani, T., Madhavan, J., Prasad, S., AlSalhi, M.S., M, A.L.J. and Vijayanand, S. (2021) Fabrication of Novel AgVO3/BiOI Nanocomposite Photocatalyst with Photoelectrochemical Activity towards the Degradation of Rhodamine b under Visible Light Irradiation. Environmental Research, 200, Article ID: 111365.
https://doi.org/10.1016/j.envres.2021.111365
[19] Meng, X.C. and Zhang, Z.S. (2018) New Insight into BiOX (X = Cl, Br, and I) Hierarchical Microspheres in Photocatalysis. Materials Letters, 225, 152-156.
https://doi.org/10.1016/j.matlet.2018.04.086
[20] Wang, X., Zhu, J.Q., Fu, X.H., Xu, J.G., Yu, X., Zhu, Y., Zhang, Y.M. and Zhu, M.S. (2022) Boosted Visible-Light Photocatalytic Performance of Au/BiOCl/BiOI by High-Speed Spatial Electron Transfer Channel. Journal of Alloys and Compounds, 890, Article ID: 161736.
https://doi.org/10.1016/j.jallcom.2021.161736
[21] Zhao, Q., Hao, L., Li, F., Liu, T.Y., He, Y.Q., Yang, J., Zhang, Y.F. and Lu, Y. (2021) Piezo/Photocatalytic Activity of Flexible BiOCl-BiOI Films Immobilized on SUS304 Wire Mesh. Journal of Water Process Engineering, 42, Article ID: 102105.
https://doi.org/10.1016/j.jwpe.2021.102105
[22] Wang, C., Nie, X.G., Shi, Y., Zhou, Y., Xu, J.J., Xia, X.H. and Chen, H.Y. (2017) Direct Plasmon-Accelerated Electrochemical Reaction on Gold Nanoparticles. ACS Nano, 11, 5897-5905.
https://doi.org/10.1021/acsnano.7b01637
[23] Bi, J.H., Zhou, Z.Y., Chen, M.Y., Liang, S.J., He, Y.H., Zhang, Z.Z. and Wu, L. (2015) Plasmonic Au/CdMoO4 Photocatalyst: Influence of Surface Plasmon Resonance for Selective Photocatalytic Oxidation of Benzylic Alcohol. Applied Surface Science, 349, 292-298.
https://doi.org/10.1016/j.apsusc.2015.04.213
[24] Wang, J., Zhou, L., Bei, J.L., Zhao, Q.Y., Li, X., He, J.Q., Cai, Y., Chen, T.T., Du, Y.K. and Yao, Y. (2022) An Enhanced Photo-Electrochemical Sensor Constructed from Pillar [5]arene Functionalized au NPS for Ultrasensitive Detection of Caffeic Acid. Talanta, 243, Article ID: 123322.
https://doi.org/10.1016/j.talanta.2022.123322
[25] Feng, J., Li, N., Du, Y., Ren, X., Wang, X., Liu, X., Ma, H. and Wei, Q. (2021) Ultrasensitive Double-Channel Microfluidic Biosensor-Based Cathodic Photo-Electrochemical Analysis via Signal Amplification of SOD-Au@PANI for Cardiac Troponin I Detection. Analytical Chemistry, 93, 14196-14203.
https://doi.org/10.1021/acs.analchem.1c02922
[26] Zhan, L., Li, C.M., Gao, P.F. and Huang, C.Z, (2021) Au NPs/Graphene Hybrids-Based Enzyme-Free Plasmonic Immunoassay for Respiratory Syncytial Virus Detection. Journal of Analysis and Testing, 5, 203-209.
https://doi.org/10.1007/s41664-021-00195-8
[27] Guo, S., Dong, S. and Wang, E. (2008) A General Method for the Rapid Synthesis of Hollow Metallic or Bimetallic Nanoelectrocatalysts with Urchinlike Morphology. Chemistry, 14, 4689-4695.
https://doi.org/10.1002/chem.200800077
[28] Cui, S., Li, L., Ding, Y., Zhang, J., Yang, H. and Wang, Y. (2017) Mesoporous NiCO2O4-Decorated Reduced Graphene Oxide as a Novel Platform for Electrochemical Determination of Rutin. Talanta, 164, 291-299.
https://doi.org/10.1016/j.talanta.2016.10.109