VEGF通路抑制剂相关肾损伤研究新进展
Advances in Research on VEGF Pathway Inhibitors Related Renal Injury
DOI: 10.12677/ACM.2022.1281077, PDF, HTML, XML, 下载: 194  浏览: 577 
作者: 唐文武*, 谢席胜#:川北医学院第二临床学院(南充市中心医院)肾内科,四川 南充
关键词: VEGF通路抑制剂蛋白尿高血压血栓性微血管病急性肾损伤VEGF Pathway Inhibitor Proteinuria Hypertension Thrombotic Microangiopathy Acute Kidney In-jury
摘要: 随着接受VEGF通路抑制剂治疗恶性肿瘤患者的不断增加,该药引发的相关肾脏损伤也越来越得到重视。靶向药物肾损伤的有效预防、早期识别及管理是肾内科及肿瘤科医生共同面临的挑战。本文综述了VEGF通路抑制剂所致蛋白尿、高血压、血栓性微血管病和急性肾损伤的相关临床诊治进展,为临床规范化诊疗奠定基础。
Abstract: With the increasing number of patients receiving VEGF pathway inhibitors in the treatment of ma-lignant tumors, more and more attention has been paid to the related renal damage caused by this drug. Effective prevention, early identification and management of targeted drug renal injury are common challenges for physicians in nephrology and oncology. This paper reviews the progress in clinical diagnosis and treatment of proteinuria, hypertension, thrombotic microvascular disease and acute kidney injury caused by VEGF pathway inhibitors, which lays the foundation for stand-ardized clinical diagnosis and treatment.
文章引用:唐文武, 谢席胜. VEGF通路抑制剂相关肾损伤研究新进展[J]. 临床医学进展, 2022, 12(8): 7462-7472. https://doi.org/10.12677/ACM.2022.1281077

1. 引言

在世界范围内,恶性肿瘤是具有巨大挑战性的疾病,也是全球第二大常见死亡原因 [1]。据统计,2008年~2018年全球范围恶性肿瘤发病率持续上升,从约1270万例增长到约1810万例,增幅达42.5% [2]。随着“个体化治疗”理念深入人心,因新型抗肿瘤药物具有对肿瘤细胞杀伤的精准靶向性而对正常组织伤害小的特点而被临床广泛应用 [3]。血管内皮生长因子(Vascular endothelial growth actor, VEGF)通路抑制剂是目前应用最多的一类靶向药物,主要分为:VEGF配体抑制剂(如:阿柏西普、贝伐珠单抗等)和小分子酪氨酸激酶抑制剂(Tyrosine kinase inhibitor, TKIs,如:舒尼替尼、索拉非尼等)。但接受该类药物治疗的同时,也引发导致患者出现蛋白尿、高血压、血栓性微血管病(thrombotic microangiopathy, TMA),以及急性肾损伤(Acute renal injury, AKI)等不同类型和程度的肾脏损伤,影响患者整体疗效和预后 [4]。尽管接受该类药物后肾损伤常发生,但临床医师重视程度仍有待提升且目前尚缺乏指南就该问题给予规范。我们系统回顾了相关文献,就临床诊治进展综述如下,以期为临床规范化诊疗奠定基础。

2. 流行病学、临床表现及诊断

2.1. 蛋白尿

关于VEGF通路抑制剂引发的蛋白尿,因所患肿瘤和接受药物种类、联合用药方案不同以及患者基本情况差异等,导致蛋白尿发病率、发病时间和严重程度有明显差异。在Qian的研究中,纳入36名接受阿帕替尼(250 mg qd)的晚期肺鳞癌患者,蛋白尿发生率为23.7% [5];另一项纳入51例因复发和难治性鼻咽癌接受阿帕替尼治疗(500 mg qd)患者的研究,蛋白尿发生率为49.02% [6]。在Izzedine的研究中,纳入了100例接受VGFR通路抑制剂治疗的恶性肿瘤患者,药物暴露6.87 ± 7.18月后出现肾脏受累,31%的患者24 h蛋白尿 > 1 g/d [7]。另一项研究纳入22例接受VEGF通路抑制剂治疗后出现蛋白尿患者,药物暴露13.0 ± 8.7月,尿蛋白定量达2.97 ± 2.00 g/d [8]。对于高血压和蛋白尿引发的预后,一项纳入140名因复发性胶质母细胞瘤接受贝伐单抗治疗患者的研究发现,高血压组的无进展生存期明显长于血压正常组;蛋白尿组的无进展生存期也明显长于无蛋白尿组;似乎提示该类药物所引起的“高血压和蛋白尿”预示着更好药物反应及预后 [9]。但其间的潜在机制尚未阐明,有假说认为可能VEGF通路抑制剂使肿瘤血管趋于正常化,而使正常组织血管内皮出现功能障碍和毛细血管稀疏,进而导致预后改善和相应的毒理作用 [10] [11]。

2.2. 高血压

据报道,肿瘤患者中本身合并高血压者比例较高。在一项纳入22,500例新诊断肿瘤患者的横断面调查中,有26.0%合并高血压 [12]。在接受该类药物治疗时进一步增加高血压发生率。在一项纳入1850名接受贝伐单抗治疗患者的荟萃分析中,新发高血压或原有高血压恶化发生率为17%~80%,相对风险为3~7倍 [13]。值得注意的是,此类研究往往将合并有心血管疾病和血压失控等的患者排除在外,故高血压和其他心血管毒性事件的真实发生率可能会更高 [14]。

此外,VEGF通路抑制剂相关高血压具有明显的剂量依赖性和可逆性。早在2008年的一项纳入既往无高血压而因恶性肿瘤接受舒尼替尼治疗患者的研究发现 [15],在用药开始的第1周患者血压就出现明显升高;当治疗维持到第4周时,血压已达高血压水平;停药后1~2周内,血压均逐渐恢复至正常水平。再次启动相同周期的治疗,则会出现相似或更明显的血压波动。而一项针对妇科肿瘤的研究发现,在贝伐单抗停药87天(范围3~236天)后,82.3%患者的高血压才得到缓解 [16]。尽管如此,大部分接受该类药物而引发的高血压仍需降压药物强化治疗。一项纳入202名接受VEGF通路抑制剂治疗患者的研究中,其中43%出现高血压,而合并高血压的患者中46%经过药物治疗后血压才得到控制 [17]。所幸的是,降压治疗往往都十分有效,故因此停用靶向药物的情况少见 [18]。此外,多项研究表明长期持续高血压会增加中风、心肌梗塞等心血管事件风险,故应积极管控血压以减少心血管不良事件发生 [12] [19] [20] [21]。

2.3. TMA

关于VEGF通路抑制剂所引发TMA,因患者基本情况、所患肿瘤类型及是否肾活检,使其确诊率出现明显差异。一项纳入22人因患恶性肿瘤接受VGFR通路抑制剂治疗的研究报道,4名患者因低结合珠蛋白、血小板减少症、细胞碎裂和急性肾功能衰竭而被诊断为TMA [22]。而在另一项研究中,在接受VGFR通路抑制剂治疗的100例恶性肿瘤患者中,肾活检发现73例为TMA [7]。随着药物使用范围扩大和完善肾活检的人群增加,TMA的真实发生率及流行学情况才会逐渐清晰。此外,若患者既往或当下接受联合化疗,又或是接受双重VEGF通路抑制剂治疗,可能会增加内皮损伤范围及严重程度而导致其发生率进一步升高,故值得密切关注 [22] [23] [24]。

2.4. AKI

对于VEGF通路抑制剂所引发的AKI,仅被少量研究报道 [7] [25]。可能因为AKI不为非肾科医生熟悉和重视,或其真实发生率极低,又或是发生AKI时完善肾活检病例有限,故流行病学情况无法系统阐述,期待进一步研究。

3. 病理类型和生物标志物

关于VEGF通路抑制剂引发肾脏病理损害类型,也在积极探索中。在一项在纳入100例接受VGFR通路抑制剂治疗的恶性肿瘤患者的研究中,经肾活检发现73例为TMA,21例为肾小球病变(以Minimal-change disease, MCD/collapsing-like focal segmental glomerulosclerosis, cFSGS为主(20/21)) [7]。研究发现,VEGF配体抑制剂更容易诱发TMA,而TKIs则更容易对足细胞造成损害,表现为MCD/cFSGS [26]。此外,一项纳入22例接受VEGF通路抑制剂后伴随蛋白尿患者的研究中,活检发现除TMA外,还有4例为急性肾小管坏死(acute tubular necrosis, ATN) [8],该病理类型也应引起密切关注。

VGFR通路抑制剂所诱发TMA的肾脏组织学表现为内皮细胞肿胀、毛细血管环和小动脉内纤维蛋白血栓、红细胞碎片、系膜溶解以及小动脉和肾小球毛细血管增厚 [27] [28]。通过与非典型溶血–尿毒症综合征或高血压引起的急性TMA比较发现,接受VEGF通路抑制剂所诱导TMA的典型形态学特征是节段性透明质增生和节段性肾小球毛细血管微动脉瘤,而纤维蛋白、血小板血栓或碎裂红细胞很少发现或缺失,微血管病变广泛分布于肾小球中,小球血管形态仍保留,类似于慢性TMA形态学特征 [29]。电镜观察贝伐单抗导致TMA,可见肾小球基底膜重复、窗孔丢失、内皮细胞从基底膜脱落、部分区域脏层上皮细胞足突明显消失 [7]。

关于VEGF通路抑制剂引发肾脏损伤的生物标记物,Izzedine的研究发现:对肾脏TMA活检显示低氧诱导因子-1α (hypoxia-inducible factor 1α, HIF-1α)和RelA (p56)明显高于对照组 [30]。因为TMA发生后导致细胞和组织缺氧,诱发分泌HIF-1α以促进VEGF产生 [31]。缺氧促进RelA (主要的NF-κB转录因子)分泌,参与调控炎症基因,进而引发炎症表现 [31]。Izzedine还发现:TKIs相关MCD/cFSGS肾小球染色显示出高丰度的ki-67 (提示肾小球塌陷和损伤后肾小球上皮细胞增殖)、c-mip (c-maf-inducing protein),但未检测到突触素;而抗VGFR相关TMA肾小球显示出正常丰度的突触素,ki-67、c-mip却并不存在 [7]。RelA与c-mip启动子结合并抑制其转录活性,而索拉非尼通过抑制RelA活性并间接促进c-mip转录激活,阻断酪氨酸激酶Fyn激活肾小球足细胞裂孔蛋白Nephrin,进而导致足细胞结构和功能损伤 [30]。说明VEGF配体抑制剂相关TMA是种炎症反应,而TKIs相关MCD/cFSGS则不是 [7]。突触素是足细胞足突中的肌动蛋白,对受伤足细胞有保护作用;故TKIs阻断突触素表达,进而引发了足细胞损伤 [32] [33]。综上所述,结合HIF-1α、RelA、ki-67、c-mip、及突触素的表达差异可作为鉴别VEGF通路抑制剂所致TMA的标记物。

关于血浆生物标志物预测VEGF通路抑制剂毒性的研究少见。近期一项纳入398例接受贝伐单抗治疗肿瘤患者的研究首次报道 [34],较低水平的血管生成素-2、血管细胞粘附分子-1 (vascular cellular adhesion molecule-1, VCAM-1)和VEGF-A与3级高血压风险增加相关。对维持内皮细胞存活和正常功能而言,VEGF-A是至关重要的调节因子。VGFR信号通路阻断后,血浆VEGF-A水平下降,功能失调的内皮细胞无法利用NO和其他分子来调控血压,导致高血压发生。血管生成素-2协同VEGF-A促血管生成,VEGF-A还介导血管内皮细胞产生VCAM-1以维持自身稳态。而血管生成素-2和VCAM-1的表达又与VEGF-A浓度息息相关,故三者交相影响最终导致了血管内皮损伤、血压异常。多变量模型提示当其中2~3种蛋白为低水平时,高血压风险OR (odds ratio)为10.06 (95% CI 3.92~34.18),敏感性为89.7%,特异性为53.5%,阳性预测值为17.3%,阴性预测值为97.9%。这些生物标记对早期预测严重药物性高血压、心脏、肾脏不良事件的发生具有重要意义。

4. 发病机制

4.1. 蛋白尿

VEGF通路抑制剂相关蛋白尿主要与足细胞损害相关。由足细胞产生的VEGF与内皮细胞VEGFR-2结合,对肾小球血–尿滤过屏障建立、正常功能维持和损伤修复都至关重要 [35]。若足细胞产生VEGF受抑,则会导致肾小球毛细血管内皮细胞丢失、内皮细胞增殖受阻、足细胞丢失和滤过屏障破坏,最终形成蛋白尿 [36]。此外,蛋白尿发生还可能与高血压的肾小球内压升高相关 [37]。在接受VEGF通路抑制剂治疗期间,患者的“高血压、蛋白尿和肾小球损伤”与妊娠并发先兆子痫临床表现非常相似,故很多学者将此刻的不良血管和肾脏影响称为“先兆子痫样”综合征 [14]。在妊娠并先兆子痫发作之前,血浆中可溶性fms酪氨酸激酶-1水平升高,导致VEGF生物利用度大大降低,这是其主要发病机制 [14]。因阿司匹林能够有效恢复血管舒张与收缩因子之间的平衡,故被用于高危妇女子痫前期预防 [14]。近期一项研究表明,阿司匹林有助于改善舒尼替尼诱导大鼠的肾损伤,但在相同背景下人体治疗是否获益尚待进一步验证 [38]。

4.2. 高血压

VEGF通路抑制剂引发高血压的主要机制一是VEGF信号通过PLCγ/PKC通路激活磷脂酶A2和内皮一氧化氮(Nitric Oxide, NO)合酶介导花生四烯酸,促进血管扩张性前列腺素(prostaglandin, PGI2)和NO的产生;抑制VEGF信号通路可导致血浆PGI2与NO产生减少,失去两者的拮抗作用将导致水钠潴留和血管异常收缩而血压升高 [39] [40] [41] [42]。二是失去VEGF保护,内皮细胞受到氧化应激继发损伤后间接影响NO合酶转录 [39] [43] [44]。三是抑制VEGF通路导致毛细血管稀疏而导致高血压 [41]。四是VEGF信号通路被阻断后引起内皮功能障碍,引起血浆中扩管因子减少(如:前列环素),而缩管因子增加(如:内皮素-1, Endothelin-1, ET-1),最终血压升高 [45]。

ET-1导致高血压的具体机制仍不明朗,目前主要假说认为:血管平滑肌细胞上的ETA和ETB受体受到ET-1刺激后出现血管收缩,而ETB受体作为ET-1的清除受体,因为VEGF通路被阻断导致ETB受体丢失,使血浆循环中ET-1升高2~3倍 [46]。近期Katrina的研究表明,选择性ETA与双重ETA/B受体阻断剂可改善舒尼替尼所诱发大鼠的高血压和蛋白尿 [38]。尽管因为选择性ETA受体阻断剂可能产生严重水肿而未被批准用于降压治疗,但随着研究深入,有望克服缺陷成为新一代降压药。

4.3. TMA

TMA有两种类型:由化疗药物直接内皮细胞毒性有关的TMA定义为I型和由VGFR通路抑制剂引起的TMA定义为II型 [47]。II型TMA与肿瘤靶向药物降低VEGF水平或阻断信号通路导致健康有孔内皮表型缺失,进而引发肾脏微血管损伤有关 [47];同时,也与VEGF通路抑制降低肾小球中局部抑制性补体因子H和其他补体调节因子,引发补体激活有关 [48]。此外,高血压、蛋白尿、AKI以及肾小球微血栓形成是VEGF通路抑制剂所诱导TMA的典型特征,这表现都与VEGF通路抑制剂诱导肾小球血管内皮损伤密切相关。

与其他类肿瘤相比,转移性肿瘤(如卵巢癌、淋巴瘤、粘液性胃癌和急性髓系白血病)本身更容易引起TMA [26]。有研究发现ADAMTS13 (A disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13)是vwf (von willebrand factor)蛋白酶,其可以切割vwf多聚体以避免血栓形成 [49]。若机体患有恶性肿瘤则会出现ADAMTS-13水平降低,尤其是发生转移肿瘤患者ADAMTS-13活性可下降50%~95% [50]。在此基础上接受VEGF通路抑制剂治疗,导致肾小管健康内皮缺失和vwf释放增加,最终肾脏TMA发生。此外,造血干细胞移植和化疗也与TMA有关 [26],但化疗引起的TMA往往更严重,且较大药物剂量会增加发病率和死亡率 [7]。

4.4. AKI

VEGF通路抑制剂引发AKI的机制仍尚不清楚。已证实TMA可能诱发AKI且通常都较为严重,甚至需要透析治疗 [51]。但在接受该类药物治疗背景下的TMA与其他机制引发TMA可能完全不同,且与AKI之间的关联性也尚不清楚。正如上文所述,因接受VEGF通路抑制剂治疗后肾活检提示ATN存在 [8],而ATN也可能是VEGF通路抑制剂相关AKI的重要病因。药物导致ATN三种主要机制为 [52] 一是药物经肾脏排泄途径主要有肾小管分泌与肾小球滤过,但无论哪种途径均存在药物与肾小管上皮接触,导致肾小管上皮细胞坏死。二是药物及其代谢物在远端小管沉积为晶体或管型造成肾小管阻塞。三是药物及其代谢物诱发的间质性肾炎。值得注意的是,后两种机制与药物剂量成正相关。

5. 治疗进展

5.1. 蛋白尿

关于VEGF通路抑制剂引发蛋白尿的治疗,近期一项纳入124名患者因肿瘤接受VEGF通路抑制剂治疗的研究给临床颇多启示 [53]。该研究发现,VEGF通路抑制剂诱导的蛋白尿呈剂量依赖,其发生率和严重程度也随药物暴露时间增加,尤其是治疗维持 ≥ 13个周期(1周期 = 28天)时更为显著;同时发现,收缩压 ≥ 135 mmHg也是蛋白尿的危险因素。血管紧张素转换酶抑制剂(angiotensin-converting enzyme inhibitor, ACEI)与血管紧张素II受体拮抗剂(Angiotensin receptor blocker, ARB)既非蛋白尿发生的有害因素也非有利因素,而钙通道阻滞剂为有害因素。鉴于该研究结果,对VEGF通路抑制剂引发蛋白尿的治疗,最重要的就是减量或停药和血压控制 [6] [37] [53];其次应尽可能减少该类药物剂量及使用周期 [53]。ACEI、ARB可以用于此背景下的蛋白尿控制,而钙通道阻滞剂则需谨慎使用。因为目前研究较少,以上结果需要谨慎解读和应用。

5.2. 高血压

对VEGF通路抑制剂相关高血压的治疗,NICE指南、联合国家委员会指南、欧洲高血压指南、以及美国心脏病学会/美国心脏协会临床实践指南等均不针对VEGF通路抑制剂相关高血压或适用于肿瘤患者人群 [45]。尽管各指南均提出所有的高血压均需管控以减少心血管事件风险,但在肿瘤学环境中必须取得短期高血压风险与活动性肿瘤治疗生存优势平衡。Chris团队针对宫颈癌和卵巢癌患者中贝伐单抗诱导高血压的管理,参照相关指南、建议或共识及各专业专家经验,制定了更符合肿瘤患者的实用方案 [45]。该方案突出的特点有:一是为保证抗肿瘤治疗的可持续,将临床血压 < 160/100 mmHg视为相对安全范围,只要患者没有“其他心血管危险因素”或“明确靶器官损伤”,均无需调整治疗方案并开始贝伐单抗治疗,这明显区别于其他指南。二是对各个治疗阶段出现的高血压进行了分类分层、并制定完整的治疗流程且更强调动态评估。三是对于判别血压情况时,认为多次家庭或动态血压测量比单次临床血压测量更值得信赖。四是尽管不同种类VGFR通路抑制剂所引起高血压发病率和相对风险不同,但他们机制却可能相同,故有理由将该方案举一反三,推广到其他种类VGFR通路抑制剂相关高血压的管控,具体流程见图1图2

Figure 1. Flow chart of hypertension induced by VEGF pathway inhibitor before treatment

图1. VEGF通路抑制剂引发的高血压治疗前流程图

注释:血压(blood pressure, BP);收缩压(Systolic blood pressure, SBP);舒张压(Diastolic blood pressure, DBP);每天一次(quaque die, qd)。

Figure 2. Flow chart of hypertension treatment induced by VEGF pathway inhibitor

图2. VEGF通路抑制剂引发的高血压治疗中流程图

Daan也制定了相似的方案 [14],与前者相比有三点相同:一是同样要求对不同治疗阶段高血压进行分类分层和动态评估。二是都主张在血压异常升高的情况下,药物减量和降压治疗;仅在高血压危象或其他严重心血管不良事件发生时才立即停药并住院治疗。三是同样强调动态血压与家庭血压监测的重要性。有两点不同:一是Daan的方案对血压要求更严苛,以确保治疗前达到最佳心血管状态(以“<130/80 mmHg”为目标),既往患有心血管疾病、糖尿病或蛋白尿性肾病的患者更应达标,若确实难以实现才适当放宽标准(“<140/90 mmHg”)。二是对血压分层明显区别于前者(<140/90 mmHg, 140~159/90~99 mmHg, ≥160/100 mmHg)。类似方案可能存在很多,至于孰优孰劣,还有待进一步临床研究。

关于降压药选择上,英国的国家卫生与临床优化研究所指南与欧洲心脏病学会的建议存在相似之处,认为ACEI、ARB与二氢吡啶类钙通道阻滞剂是此背景下控制高血压的一线药物 [45] [54] [55]。β受体阻滞剂和利尿剂为二线药物,但应警惕当抗肿瘤药物引起腹泻时,利尿剂会加重脱水和电解质紊乱。非二氢吡啶类钙通道阻滞剂可能强烈抑制CYP3A4 (舒尼替尼和索拉非尼代谢的重要酶 [54])和其他药物代谢酶来影响部分VEGF通路抑制剂药物水平,故应被禁用于此背景下治疗 [45] [54] [55]。

5.3. TMA

关于VEGF通路抑制剂引发TMA的治疗,在Izzedine与Vigneau的研究中,发现只有停药后,予以积极降压治疗(包括ACEI、ARB、钙通道阻滞剂、噻嗪类复方制剂和奈必洛尔)和有效控制蛋白尿后肾功能才有望得到改善 [7] [8],故对于该类药物所引发的TMA最佳治疗措施是停药、血压和蛋白尿控制。若TMA仅限于肾小球内且在血压得到有效控制或停用VEGF通路抑制剂的情况下,肾功若能维持不变则可作为鉴别其他医源性TMA的线索 [7]。如:吉西他滨和丝裂霉素所诱导的TMA更具侵袭性,会波及肾小球和小动脉,即使停药或血浆置换后肾脏存活率仍然很低,仅对补体抑制治疗反应较好 [7] [26]。肿瘤所致TMA往往随肿瘤有效治疗而消失,但会伴随肿瘤复发再次出现 [26]。一项研究报道,再次使用VEGF通路抑制剂治疗的4人中,有3名患者出现更严重的TMA,说明再次启用该类药物可能会有更高风险 [7],值得高度重视。尽管接受该类药物治疗后出现严重TMA非常罕见,若一旦发生则会非常严重且需要血浆置换治疗 [8]。若出现大量蛋白尿或肾功能迅速恶化则应积极肾活检,以排除其他病变可能(如ATN)。若活检证实为孤立的TMA且没有其他替代治疗方法的情况下,需经多学科讨论后在密切监测下可考虑继续维持治疗 [8]。

5.4. AKI

研究发现高血压也是诱发AKI的独立危险因素 [56]。因此,VEGF通路抑制剂诱发TMA相关AKI时需立即减量或停药,当出现蛋白尿或高血压时可应用ACEI、ARB治疗及行高血压综合管理 [51]。由于该类药物诱发ATN相关AKI的具体机制尚不明确,故相应治疗方案也无法系统阐述。若患者在接受VEGF通路抑制剂治疗时不仅出现“先兆子痫样”综合征(高血压、蛋白尿和肾小球损伤),还伴有快速肾功能衰竭,应警惕ATN存在的可能,应立即停药并积极肾活检明确诊断。Vigneau的研究报道,接受VEGF通路抑制剂治疗的患者经活检证实有4名为ATN,在停药后肾功能恢复情况不同,其中1名需要继续透析,有2名发展为慢性肾功能衰竭(约30 mL/min/1.73 m2),仅1名患者肾功能恢复正常 [8]。故一旦证实为ATN应立即停止治疗,避免肾功能丢失或恶化进入永久性透析。

6. 小结与展望

新型肿瘤靶向药物通过不同机制引起了不同种类肾损伤且大部分机制仍不清楚。部分肿瘤靶向药物所致肾损伤仍有着较高的发病率,而各种不同肾损伤的临床症状、实验室检查都缺乏敏感度和特异性,这都严重影响了及时诊断和治疗。尽管部分新型生物标记物被提出,但仍需大规模前瞻性临床研究。作为临床医生,我们需要充分掌握VEGF通路抑制剂相关肾损伤的流行病学特点和发病机制,密切观察药物使用过程中尿蛋白、肾功能、血压等变化,及时识别,尽早专科干预,切实改善患者预后。

利益冲突声明

未发现有潜在的利益冲突。

NOTES

*第一作者E-mail: tww-2-17@163.com

#通讯作者E-mail: xishengx@163.com

参考文献

[1] GBD 2015 Risk Factors Collaborators (2016) Global, Regional, and National Comparative Risk Assessment of 79 Be-havioural, Environmental and Occupational, and Metabolic Risks or Clusters of Risks, 1990-2015: A Systematic Analy-sis for the Global Burden of Disease Study 2015. The Lancet, 388, 1659-1724.
https://doi.org/10.1016/S0140-6736(16)31679-8
[2] Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424.
https://doi.org/10.3322/caac.21492
[3] Mauro, M.J., O’dwyer, M.E. and Druker, B.J. (2001) ST1571, a Tyrosine Kinase Inhibitor for the Treatment of Chronic Myelogenous Leukemia: Validating the Promise of Molecularly Targeted Therapy. Cancer Chemotherapy and Pharmacology, 48, S77-S78.
https://doi.org/10.1007/s002800100310
[4] Perazella, M.A. (2012) Onco-Nephrology: Renal Toxicities of Chemotherapeutic Agents. Clinical Journal of the American Society of Nephrology, 7, 1713-1721.
https://doi.org/10.2215/CJN.02780312
[5] Geng, Q., Shen, H., Zhu, W., et al. (2020) Safety and Efficacy of Low-Dosage Apatinib Monotherapy in Advanced Lung Squamous-Cell Carcinoma: A Prospective Cohort Study. On-coTargets and Therapy, 13, 11529-11535.
https://doi.org/10.2147/OTT.S277532
[6] Li, L., Kong, F., Zhang, L., et al. (2020) Apatinib, a Novel VEGFR-2 Tyrosine Kinase Inhibitor, for Relapsed and Refractory Nasopharyngeal Carcinoma: Data from an Open-Label, Sin-gle-Arm, Exploratory Study. Investigational New Drugs, 38, 1847-1853.
https://doi.org/10.1007/s10637-020-00925-2
[7] Izzedine, H., Escudier, B., Lhomme, C., et al. (2014) Kidney Diseases Associated with Anti-Vascular Endothelial Growth Factor (VEGF): An 8-Year Observational Study at a Single Center. Medicine (Baltimore), 93, 333-339.
https://doi.org/10.1097/MD.0000000000000207
[8] Vigneau, C., Lorcy, N., Dolley-Hitze, T., et al. (2014) All Anti-Vascular Endothelial Growth Factor Drugs Can Induce “Pre-Eclampsia-Like Syndrome”: A RARe Study. Neph-rology Dialysis Transplantation, 29, 325-332.
https://doi.org/10.1093/ndt/gft465
[9] Carvalho, B., Lopes, R.G., Linhares, P., et al. (2020) Hypertension and Proteinuria as Clinical Biomarkers of Response to Bevacizumab in Glioblastoma Patients. Journal of Neuro-Oncology, 147, 109-116.
https://doi.org/10.1007/s11060-020-03404-z
[10] Khoja, L., Kumaran, G., Zee, Y.K., et al. (2014) Evaluation of Hypertension and Proteinuria as Markers of Efficacy in Antiangiogenic Therapy for Metastatic Colorectal Cancer. Jour-nal of Clinical Gastroenterology, 48, 430-434.
https://doi.org/10.1097/MCG.0b013e3182a8804c
[11] Mourad, J.J., Des Guetz, G., Debbabi, H., et al. (2008) Blood Pressure Rise Following Angiogenesis Inhibition by Bevacizumab. A Crucial Role for Microcirculation. Annals of Oncology, 19, 927-934.
https://doi.org/10.1093/annonc/mdm550
[12] Liu, F., Hidru, T.H., Gao, R., et al. (2020) Cancer Patients with Po-tential Eligibility for Vascular Endothelial Growth Factor Antagonists Use Have an Increased Risk for Cardiovascular Diseases Comorbidities. Journal of Hypertension, 38, 426-433.
https://doi.org/10.1097/HJH.0000000000002277
[13] Zhu, X., Wu, S., Dahut, W.L., et al. (2007) Risks of Pro-teinuria and Hypertension with Bevacizumab, an Antibody against Vascular Endothelial Growth Factor: Systematic Re-view and Meta-Analysis. American Journal of Kidney Diseases, 49, 186-193.
https://doi.org/10.1053/j.ajkd.2006.11.039
[14] Van Dorst, D.C.H., Dobbin, S.J.H., Neves, K.B., et al. (2021) Hypertension and Prohypertensive Antineoplastic Therapies in Cancer Patients. Circulation Research, 128, 1040-1061.
https://doi.org/10.1161/CIRCRESAHA.121.318051
[15] Azizi, M., Chedid, A. and Oudard, S. (2008) Home Blood-Pressure Monitoring in Patients Receiving Sunitinib. The New England Journal of Medicine, 358, 95-97.
https://doi.org/10.1056/NEJMc072330
[16] Corr, B.R., Breed, C., Sheeder, J., et al. (2016) Bevacizumab Induced Hypertension in Gynecologic Cancer: Does It Resolve after Completion of Therapy? Gynecologic Oncology Reports, 17, 65-68.
https://doi.org/10.1016/j.gore.2016.06.002
[17] Izzedine, H., Rixe, O., Billemont, B., et al. (2007) Angiogenesis Inhibitor Therapies: Focus on Kidney Toxicity and Hypertension. American Journal of Kidney Diseases, 50, 203-218.
https://doi.org/10.1053/j.ajkd.2007.04.025
[18] Aghajanian, C., Goff, B., Nycum, L.R., et al. (2015) Final Overall Survival and Safety Analysis of OCEANS, a Phase 3 Trial of Chemotherapy with or without Bevacizumab in Patients with Platinum-Sensitive Recurrent Ovarian Cancer. Gynecologic Oncology, 139, 10-16.
https://doi.org/10.1016/j.ygyno.2015.08.004
[19] Rapsomaniki, E., Timmis, A., George, J., et al. (2014) Blood Pressure and Incidence of Twelve Cardiovascular Diseases: Lifetime Risks, Healthy Life-Years Lost, and Age-Specific Associations in 1.25 Million People. The Lancet, 383, 1899-1911.
https://doi.org/10.1016/S0140-6736(14)60685-1
[20] Law, M.R., Morris, J.K. and Wald, N.J. (2009) Use of Blood Pressure Lowering Drugs in the Prevention of Cardiovascular Disease: Meta-Analysis of 147 Randomised Trials in the Context of Expectations from Prospective Epidemiological Studies. BMJ, 338, b1665.
https://doi.org/10.1136/bmj.b1665
[21] Dobbin, S.J.H., Petrie, M.C., Myles, R.C., et al. (2021) Cardiotoxic Effects of Angiogenesis Inhibitors. Clinical Science (London), 135, 71-100.
https://doi.org/10.1042/CS20200305
[22] Mittal, K., Koon, H., Elson, P., et al. (2014) Dual VEGF/VEGFR Inhi-bition in Advanced Solid Malignancies: Clinical Effects and Pharmacodynamic Biomarkers. Cancer Biology & Therapy, 15, 975-981.
https://doi.org/10.4161/cbt.29187
[23] Rini, B.I., Garcia, J.A., Cooney, M.M., et al. (2010) Toxicity of Sunitinib plus Bevacizumab in Renal Cell Carcinoma. Journal of Clinical Oncology, 28, e284-e285.
https://doi.org/10.1200/JCO.2009.27.1759
[24] Usui, J., Glezerman, I.G., Salvatore, S.P., et al. (2014) Clinico-pathological Spectrum of Kidney Diseases in Cancer Patients Treated with Vascular Endothelial Growth Factor Inhibitors: A Report of 5 Cases and Review of Literature. Human Pathology, 45, 1918-1927.
https://doi.org/10.1016/j.humpath.2014.05.015
[25] Walter, R.B., Joerger, M. and Pestalozzi, B.C. (2002) Gem-citabine-Associated Hemolytic-Uremic Syndrome. American Journal of Kidney Diseases, 40, E16.
https://doi.org/10.1053/ajkd.2002.35758
[26] Weitz, I.C. (2018) Thrombotic Microangiopathy in Cancer. Throm-bosis Research, 164, S103-S105.
https://doi.org/10.1016/j.thromres.2018.01.014
[27] Moake, J.L. (2002) Thrombotic Microangiopathies. The New England Journal of Medicine, 347, 589-600.
https://doi.org/10.1056/NEJMra020528
[28] Renaghan, A.D., Jaimes, E.A., Malyszko, J., et al. (2020) Acute Kid-ney Injury and CKD Associated with Hematopoietic Stem Cell Transplantation. Clinical Journal of the American Society of Nephrology, 15, 289-297.
https://doi.org/10.2215/CJN.08580719
[29] Pfister, F., Amann, K., Daniel, C., et al. (2018) Characteristic Mor-phological Changes in Anti-VEGF Therapy-Induced Glomerular Microangiopathy. Histopathology, 73, 990-1001.
https://doi.org/10.1111/his.13716
[30] Izzedine, H., Mangier, M., Ory, V., et al. (2014) Expression Patterns of RelA and c-mip Are Associated with Different Glomerular Diseases Following Anti-VEGF Therapy. Kidney Interna-tional, 85, 457-470.
https://doi.org/10.1038/ki.2013.344
[31] Forsythe, J.A., Jiang, B.H., Iyer, N.V., et al. (1996) Activation of Vascu-lar Endothelial Growth Factor Gene Transcription by Hypoxia-Inducible Factor 1. Molecular and Cellular Biology, 16, 4604-4613.
https://doi.org/10.1128/MCB.16.9.4604
[32] Ning, L., Suleiman, H.Y. and Miner, J.H. (2020) Synaptopodin Is Dispensable for Normal Podocyte Homeostasis but Is Protective in the Context of Acute Podocyte Injury. Journal of the American Society of Nephrology, 31, 2815-2832.
https://doi.org/10.1681/ASN.2020050572
[33] Ning, L., Suleiman, H.Y. and Miner, J.H. (2021) Synaptopodin Deficiency Exacerbates Kidney Disease in a Mouse Model of Alport Syndrome. The American Journal of Physiolo-gy—Renal Physiology, 321, F12-F25.
https://doi.org/10.1152/ajprenal.00035.2021
[34] Quintanilha, J.C.F., Liu, Y., Etheridge, A.S., et al. (2022) Plasma Levels of Angiopoietin-2, VEGF-A, and VCAM-1 as Markers of Bevacizumab-Induced Hypertension: CALGB 80303 and 90401 (Alliance). Angiogenesis, 25, 47-55.
https://doi.org/10.1007/s10456-021-09799-1
[35] Izzedine, H., Massard, C., Spano, J.P., et al. (2010) VEGF Sig-nalling Inhibition-Induced Proteinuria: Mechanisms, Significance and Management. European Journal of Cancer, 46, 439-448.
https://doi.org/10.1016/j.ejca.2009.11.001
[36] Kamba, T., Tam, B.Y., Hashizume, H., et al. (2006) VEGF-Dependent Plasticity of Fenestrated Capillaries in the Normal Adult Microvasculature. The American Journal of Physiology-Heart and Circulatory Physiology, 290, H560-H576.
https://doi.org/10.1152/ajpheart.00133.2005
[37] Porta, C., Cosmai, L., Gallieni, M., et al. (2015) Renal Effects of Targeted Anticancer Therapies. Nature Reviews Nephrology, 11, 354-370.
https://doi.org/10.1038/nrneph.2015.15
[38] Mirabito Colafella, K.M., Neves, K.B., Montezano, A.C., et al. (2020) Selective ETA vs. Dual ETA/B Receptor Blockade for the Prevention of Sunitinib-Induced Hypertension and Albuminu-ria in WKY Rats. Cardiovascular Research, 116, 1779-1790.
https://doi.org/10.1093/cvr/cvz260
[39] Gurevich, F. and Perazella, M.A. (2009) Renal Effects of Anti-Angiogenesis Therapy: Update for the Internist. The American Journal of Medicine, 122, 322-328.
https://doi.org/10.1016/j.amjmed.2008.11.025
[40] Zou, A.P. and Cowley, A.W. (1999) Role of Nitric Oxide in the Control of Renal Function and Salt Sensitivity. Current Hypertension Reports, 1, 178-186.
https://doi.org/10.1007/s11906-999-0016-7
[41] Robinson, E.S., Khankin, E.V., Karumanchi, S.A., et al. (2010) Hypertension Induced by Vascular Endothelial Growth Factor Signaling Pathway Inhibition: Mechanisms and Potential Use as a Biomarker. Seminars in Nephrology, 30, 591-601.
https://doi.org/10.1016/j.semnephrol.2010.09.007
[42] Hsu, P.Y., Mammadova, A., Benkirane-Jessel, N., et al. (2021) Updates on Anticancer Therapy-Mediated Vascular Toxicity and New Horizons in Therapeutic Strategies. Fron-tiers in Cardiovascular Medicine, 8, Article ID: 694711.
https://doi.org/10.3389/fcvm.2021.694711
[43] González-Pacheco, F.R., Deudero, J.J., Castellanos, M.C., et al. (2006) Mechanisms of Endothelial Response to Oxidative Aggression: Protective Role of Autologous VEGF and Induc-tion of VEGFR2 by H2O2. The American Journal of Physiology-Heart and Circulatory Physiology, 291, H1395-H1401.
https://doi.org/10.1152/ajpheart.01277.2005
[44] 张菊, 谢席胜. TSP-1-CD47激活氧化应激与肾脏损伤[J]. 中国中西医结合肾病杂志, 2016, 17(5): 458-460.
[45] Plummer, C., Michael, A., Shaikh, G., et al. (2019) Expert Rec-ommendations on the Management of Hypertension in Patients with Ovarian and Cervical Cancer Receiving Bevaci-zumab in the UK. British Journal of Cancer, 121, 109-116.
https://doi.org/10.1038/s41416-019-0481-y
[46] Versmissen, J., Mirabito Colafella, K.M., Koolen, S.L.W., et al. (2019) Vascular Cardio-Oncology: Vascular Endothelial Growth Factor Inhibitors and Hypertension. Cardiovascular Research, 115, 904-914.
https://doi.org/10.1093/cvr/cvz022
[47] Izzedine, H. and Perazella, M.A. (2015) Thrombotic Microangiopathy, Cancer, and Cancer Drugs. American Journal of Kidney Diseases, 66, 857-868.
https://doi.org/10.1053/j.ajkd.2015.02.340
[48] Fremeaux-Bacchi, V., Dragon-Durey, M.A., Blouin, J., et al. (2004) Complement Factor I: A Susceptibility Gene for Atypical Haemolytic Uraemic Syndrome. Journal of Medical Genetics, 41, e84.
https://doi.org/10.1136/jmg.2004.019083
[49] Favaloro, E.J., Pasalic, L., Henry, B., et al. (2021) Laboratory Test-ing for ADAMTS13: Utility for TTP Diagnosis/Exclusion and Beyond. American Journal of Hematology, 96, 1049-1055.
https://doi.org/10.1002/ajh.26241
[50] Mannucci, P.M., Karimi, M., Mosalaei, A., et al. (2003) Pa-tients with Localized and Disseminated Tumors Have Reduced But Measurable Levels of ADAMTS-13 (von Willebrand Factor Cleaving Protease). Haematologica, 88, 454-458.
[51] Rosner, M.H., Jhaveri, K.D., Mcmahon, B.A., et al. (2021) Onconephrology: The Intersections between the Kidney and Cancer. CA: A Cancer Journal for Clinicians, 71, 47-77.
https://doi.org/10.3322/caac.21636
[52] Kwiatkowska, E., Domański, L., Dziedziejko, V., et al. (2021) The Mechanism of Drug Nephrotoxicity and the Methods for Preventing Kidney Damage. International Journal of Molecular Sciences, 22, 6109.
https://doi.org/10.3390/ijms22116109
[53] Kanbayashi, Y., Ishikawa, T., Tabuchi, Y., et al. (2020) Predictive Fac-tors for the Development of Proteinuria in Cancer Patients Treated with Bevacizumab, Ramucirumab, and Aflibercept: A Single-Institution Retrospective Analysis. Scientific Reports, 10, Article No. 2011.
https://doi.org/10.1038/s41598-020-58994-5
[54] Maitland, M.L., Bakris, G.L., Black, H.R., et al. (2010) Initial Assessment, Surveillance, and Management of Blood Pressure in Patients Receiving Vascular Endothelial Growth Factor Signaling Pathway Inhibitors. Journal of the National Cancer Institute, 102, 596-604.
https://doi.org/10.1093/jnci/djq091
[55] Zamorano, J.L., Lancellotti, P., Rodriguez Muñoz, D., et al. (2016) 2016 ESC Position Paper on Cancer Treatments and Cardiovascular Toxicity Developed under the Auspices of the ESC Com-mittee for Practice Guidelines: The Task Force for Cancer Treatments and Cardiovascular Toxicity of the European Soci-ety of Cardiology (ESC). European Heart Journal, 37, 2768-2801.
https://doi.org/10.1093/eurheartj/ehw211
[56] James, M.T., Grams, M.E., Woodward, M., et al. (2015) A Me-ta-Analysis of the Association of Estimated GFR, Albuminuria, Diabetes Mellitus, and Hypertension with Acute Kidney Injury. American Journal of Kidney Diseases, 66, 602-612.
https://doi.org/10.1053/j.ajkd.2015.02.338