表观遗传学治疗在急性髓系白血病中的研究进展
Research Progress of Epigenetic Therapy in Acute Myeloid Leukemia
DOI: 10.12677/ACM.2022.1281152, PDF, HTML, XML, 下载: 293  浏览: 455 
作者: 杨香会, 付 滕, 张海亚:潍坊医学院临床医学院,山东 潍坊;王彦丽, 李 丽, 接贵涛*:临沂市中心医院血液科,山东 临沂
关键词: 急性髓系白血病表观遗传学修饰分子靶向治疗Acute Myeloid Leukemia Epigenetic Modification Molecular Targeted Therapy
摘要: 急性髓系白血病(acute myeloid leukemia, AML)是一种高度异质性的血液系统恶性肿瘤,为造血干细胞的克隆性疾病。近年来,随着对表观遗传学机制及分子靶向药物的深入研究和临床应用,AML个体精准化治疗水平明显提高,对于无法耐受强化治疗和复发难治性AML患者提供了新的治疗策略。该文对在急性髓系白血病中表观遗传学治疗药物的最新研究进展进行了综述。
Abstract: Acute myeloid leukemia (AML) is a highly heterogeneous hematological malignancy, which is a clonal disease of hematopoietic stem cells. In recent years, with the in-depth research and clinical application of epigenetic mechanisms and molecular targeted drugs, the level of individual targeted treatment of AML has been significantly improved, providing a new treatment strategy for patients who cannot tolerate intensive treatment and relapsed refractory AML. This article reviews the lat-est research progress of epigenetic drugs in acute myeloid leukemia.
文章引用:杨香会, 付滕, 张海亚, 王彦丽, 李丽, 接贵涛. 表观遗传学治疗在急性髓系白血病中的研究进展[J]. 临床医学进展, 2022, 12(8): 8001-8007. https://doi.org/10.12677/ACM.2022.1281152

1. 引言

急性髓系白血病(AML)是一种骨髓造血干细胞的异常克隆扩增和分化停滞导致的恶性增生性疾病,其克隆演变是一个复杂的适应性过程,涉及基因多样化以及克隆选择和亚克隆扩增等,具有高度的遗传异质性。表观遗传学主要是指不依赖DNA序列改变而调控基因表达的可遗传性改变,表观遗传变化是动态的、可逆的,其发生机制主要包括DNA甲基化、组蛋白修饰、染色质结构重塑和非编码RNA调控 [1]。表观遗传学修饰通过调控染色质构象进而调节基因的表达,在AML的发生、发展中至关重要。随着对表观遗传学调控和分子靶向药物的深入研究和临床应用,AML的疾病缓解率得到了显著改善,且表观遗传靶向药物与其他抗肿瘤药物联合治疗具有良好的临床应用前景,为不可耐受高强度化疗和复发/难治性AML (R/R AML)患者提供了新的治疗方式。现将目前阶段可能改善AML患者预后的几种表观遗传学药物的研究进展及应用综述如下。

2. DNMT抑制剂(DNMTi)

DNA甲基转移酶(DNMT)抑制剂也称为去甲基化药物(HMA),DNMTi能够与DNMT结合并抑制其活性,可特异性介导细胞周期阻滞,促进抑癌基因重新表达,具有显著的抗肿瘤作用,用于治疗不适合强化化疗的AML和骨髓增生异常综合征(myelodysplastic syndromes, MDS)患者 [2]。目前常用的HMA主要有阿扎胞苷(AZA)和地西他滨(DAC),多项研究表明其联合应用其他化疗方案治疗AML能显著提高总有效率(ORR)和完全缓解率(CR) [2] [3] [4]。其中去甲基化药物联合BCL-2抑制剂——Venetoclax目前被认为是治疗 ≥ 75岁的不适合强化化疗AML患者的一线疗法 [5] [6]。尽管去甲基化药物显著改善了患者的缓解率,但治疗失败仍常见。HMA的DNA合成期依赖性及短暂的半衰期是其应答率不高的主要原因之一 [7],因此为延长细胞暴露时间,提高治疗效果,新型HMA进入了临床试验,包括Guadecitabine (SGI-110、瓜地西他滨)以及地西他滨、阿扎胞苷的口服制剂。

SGI-110是第二代DNA甲基化抑制剂,是一种将地西他滨偶联到脱氧鸟苷的二核苷酸,可抵抗胞苷脱氨酶的降解作用,具有较长的体内暴露时间和临床活性 [8]。在新诊断的老年AML患者中,HMA的CR率不超过30%,而SGI-110的CR率为57%,总生存期(OS)为18.2个月 [2]。鉴于其稳定性、易于给药、安全性和延长的暴露时间,SGI-110将会比阿扎胞苷和地西他滨更适用于髓系恶性肿瘤患者的联合治疗方案 [8]。一项II期研究 [7] 评估了瓜地西他滨的疗效和安全性,在55名对阿扎胞苷治疗失败的高危MDS/低原始细胞计数AML患者中,ORR为14.3%,中位OS为7.1个月,安全性良好,表明了SGI-110可能获得相对延长的生存期。Jessica等 [9] 的体外研究发现,SGI-110和IAP拮抗剂ASTX660联合可通过参与外源性和内源性凋亡途径协同诱导AML细胞凋亡。

地西他滨口服制剂ASTX727将胞苷脱氨酶抑制剂E7727与地西他滨相结合,其人体I期剂量递增试验成功地模拟了静脉注射地西他滨的药代动力学曲线,最常见的不良反应是血液学反应 [10]。最新研究表示 [11],ASTX727被批准用于治疗患有中高危MDS的成年患者以及患有慢性粒单核细胞白血病的患者,现暂无对AML患者的临床试验研究。

口服阿扎胞苷(CC-486)具有独特的药代动力学和药效学特征,在每个28天的治疗周期中延长给药14天,采用延长给药方案来延长药物在每个治疗周期中暴露和持续治疗效果。一项III期对照试验显示 [12],在首次诱导后缓解的AML患者的维持治疗中,与安慰剂组相比,CC-486组可显著延长患者的总生存期(24.7个月vs 14.8个月;P < 0.001)和无复发生存期(10.2个月vs 4.8个月;P < 0.001),患者耐受性良好。口服阿扎胞苷被美国食品药品监督管理局(FDA)和欧洲药品管理局批准用于首次诱导化疗后获得CR/CRi且不符合造血细胞移植(HCT)的成人AML患者的维持治疗。也有研究认为口服阿扎胞苷可用于移植后的维持治疗,一项进一步评估口服AZA对MDS或HCT后AML患者进行维持治疗的安全性和有效性的Ⅲ期研究也正在进行中(NCT04173533)。口服AZA维持治疗AML在年轻患者、既往HMA失败患者和低风险AML亚型中的疗效仍需要进一步研究。

3. HDAC抑制剂(HDACi)

组蛋白去乙酰化酶(HDAC)抑制剂能增加组蛋白乙酰化水平,进而促进沉默基因在细胞中的再表达,还可通过抑制癌细胞周期或促进癌细胞凋亡影响AML的发展,可使AML细胞发生周期停滞、生长抑制或者细胞凋亡。HDACi在血液恶性肿瘤疾病中具有较好的治疗前景,西达本胺、Vorinostat (伏林司他)、Panobinostat (帕比司他)等HDACi药物目前已应用于临床治疗AML、MDS、淋巴瘤等疾病 [13]。大量研究表明HDACi单一药物效果欠佳,但与其他药物联合应用时可让患者反应率得到改善。有研究分析了帕比司他与柔红霉素、阿糖胞苷联合治疗高危AML患者的安全性及有效性,结果显示,46例患者ORR为60.9%,43.5%达CR,不良反应较少 [14]。另有临床试验结果显示,伏林司他、地西他滨和阿糖胞苷联合治疗R/R AML患者总体耐受性良好,ORR为35% [15]。西达本胺是一个亚型选择性HDACi,可特异性抑制HDAC1、HDAC2、HDAC3和HDAC10,主要被批准用于外周T细胞淋巴瘤及皮肤T细胞淋巴瘤。Jiang X等 [16] 证明了西达苯胺通过破坏AML细胞中Smo/Gli-1途径和下游信号靶点p-AKT抑制EZH2、H3K27me3和DNMT3A的水平,发挥潜在的抗白血病活性并增加对阿霉素的敏感性。西达苯胺联合HMAs能协同地诱导肿瘤细胞沉默的基因再表达,可获得更好的缓解率和更长的生存期。一项I/II期多中心临床试验 [17] 评估了表观遗传调控药物(西达苯胺和地西他滨)与阿克拉霉素、阿糖胞苷和G-CSF联合治疗R/R AML的安全性和有效性,结果显示,在93例患者中,24例患者获得CR,19例获得CRi,ORR为46%,43例缓解者的OS明显延长。另外一项研究 [18] 表示西达苯胺联合阿扎胞苷通过下调BCL-2和髓样细胞白血病1 (MCL-1)水平在诱导AML细胞凋亡方面具有显著的协同效应。西达苯胺也可与其他化疗药物联合用于治疗白血病。体外实验 [19] 表明:西达苯胺联合venetoclax通过抑制PI3K/AKT通路和JAK2/STAT3通路的激活,协同促进AML原始细胞的凋亡。

4. 其他表观遗传疗法

4.1. BET抑制剂

溴结构域和超末端结构(BET)家族是目前研究最多的溴结构域蛋白(BRD)家族,主要通过结合到组蛋白尾部,发挥调控基因转录、调节细胞生长等作用,进而参与调控肿瘤发生和发展的过程 [20]。BET抑制剂作用机制主要是阻断BET蛋白与组蛋白之间的联系,干扰转录,发挥抗肿瘤活性。目前BET抑制剂JQ1和OTX015已被证明可诱导AML细胞凋亡,可与其他化疗药物联合使用对AML治疗产生协同作用 [21] [22]。更多的口服BET抑制剂的有效性在临床试验中被证实。ZEN-3365是一种新的BRD4抑制剂,其可以通过抑制AML细胞中的GLI转录因子来降低Hedgehog (HH)信号级联的活性,与GANT-61联合治疗可显著降低白血病细胞的增殖能力,为今后AML的靶向治疗策略提供新的证据 [23]。Noortje等 [24] 的小鼠试验研究描述了两种新型口服抑制剂NEO1132和NEO2734,可以通过双重抑制BET蛋白和组蛋白乙酰基转移酶CPB/p300诱导G1期细胞周期停滞从而诱导白血病细胞凋亡,并有效下调c-Myc和Bcl2的表达,并且NEO2734在小鼠模型中可联合化疗降低残留白血病细胞(MRD)负荷。一项I期临床试验 [25] 表明了BETi抑制剂Mivebresib (ABBV-075)单独或联合Venetoclax治疗R/R AML的安全性和有效性,且大部分患者对不良反应可耐受,但是样本量小,需要更多的临床试验来证明。

4.2. IDH抑制剂

异柠檬酸脱氢酶(IDH)突变后可产生2-羟基戊二酸促进白血病的发生,IDH抑制剂通过抑制2-羟基戊二酸的产生让α-酮戊二酸在DNA甲基化过程中正常代谢,从而恢复正常DNA甲基化模式 [26]。Ivosidenib (AG-120)和enasidenib (AG-221)分别是IDH1和IDH2突变体的口服靶向小分子抑制剂,被FDA作为治疗成年IDH突变的R/R AML患者的一线药物。目前大量研究证明了其在AML治疗中的其安全性和有效性,其联合传统化疗药物、新型靶向药物等治疗方案也具有良好的应用前景 [6]。一项I期临床试验 [27] 分析了ivosidenib联合诱导化疗治疗IDH突变的新诊断AML患者的疗效,结果显示,在151例患者中,CR/CRi率分别为63%和72%,估计一年OS率为76%~78%。enasidenib联合阿扎胞苷的I期数据显示 [28],CR率为57%,CR + CRi率为70%,患者的耐受性及安全性良好。上述两种药物治疗AML均取得了不错的疗效,同时值得注意的是,IDH抑制剂可诱导原始细胞分化而使20%的患者出现分化综合征,可及时予以全身糖皮质激素化解,其他不良反应均可耐受 [29]。

4.3. LDS1抑制剂

组蛋白赖氨酸特异性去甲基化酶1 (LSD1)抑制剂通过阻断LSD1和染色质转录因子GFI1b之间的相互作用从而抑制LSD1的组蛋白去甲基化活性及其与其他共抑制复合物的联系,恢复H3K4m3,从而重新激活细胞分化和细胞周期调控基因(如CEBPα、P21和P27)的转录。目前,已发现许多LDS1抑制剂,其中TCP (tnylcypromine)、ORY-1001、GSK2879552、IMG-7289等正在进行AML治疗评估 [30]。目前研究认为绝大多数LDS1抑制剂单药试验应答率低,联合治疗可能带来更大的临床效益。临床前研究已证实LDS1抑制剂与HMA、全反式维甲酸等均具有协同活性。Wass M等 [31] 研究表明TCP与维甲酸联合治疗R/R AML患者ORR可达到20.0%,OS为3.3个月,一年OS为22%,且不良反应较少,证明了LSD1抑制剂在AML方面的治疗潜力。另外,有研究 [32] 表明LSD1抑制剂可与其他表观遗传药物如EZH2和HDAC抑制剂联合使用可以协同诱导AML分化。

4.4. DOT1L抑制剂

组蛋白赖氨酸甲基转移酶(DOT1L)是靶向H3K79的赖氨酸甲基化转移酶,可通过抑制H3K79甲基化诱导MLL重排(MLL-r)白血病细胞的分化和凋亡从而促使MLL重排白血病的发生。EPZ-5676是一种DOT1L的小分子抑制剂,已经在R/R AML患者中进行了研究。在一项对51例R/R AML患者(其中37例为KMT2Ar)进行的多中心剂量递增研究中 [33],EPZ-5676耐受性良好,最常见的副作用为乏力、恶心、发热伴中性粒细胞减少和电解质异常。EPZ5676可通过减少融合靶基因HOXA9和PBX3的表达,有效地和选择性地促进NPMc + 白血病细胞凋亡 [34]。Lonetti A等 [35] 研究发现,在不发生MLL基因重排的儿童AML中,EPZ-5676可增加多激酶抑制剂索拉非尼治疗的敏感性从而抑制白血病细胞分化,为儿童AML患者提供了新的治疗选择。

4.5. EZH2抑制剂

组蛋白甲基转移酶EZH2抑制剂可降低H3K27m3水平,重激活静息的抑癌基因,从而抑制肿瘤细胞增殖。许多临床前研究评估了EZH2抑制剂与其他治疗方法结合的疗效。EZH2抑制剂与组蛋白去乙酰化酶抑制剂(如romidepsin)的联合应用可以减少甲基化和乙酰化,并导致AML细胞的凋亡 [36]。目前,基于EZH2抑制的其他联合方法正在开发中。Porazzi等 [37] 的研究表明,EZH2抑制剂GSK126可使AML细胞的H3K27me3标记的染色质解聚,使DNA更容易被DNA损伤剂破坏,促进了白血病细胞的凋亡。因此,EZH2抑制剂联合低剂量的细胞毒性药物可以降低化疗剂量并减少治疗相关的副作用,尤其适用于降低老年AML患者化疗的副作用,可能使无法耐受高剂量化疗或进行造血干细胞移植的老年AML患者获益。

5. 总结

表观遗传学调控在AML的发生、发展中起着重要作用,也是重要的治疗靶点,最近的临床研究评估了表观遗传学药物的安全性及有效性,为提高AML个体精准化治疗水平带来了良好的治疗前景。目前研究显示了表观遗传学药物单一疗法往往效果不佳,将不同的表观遗传药物联合或与常规诱导化疗相结合可取得更好的治疗效果,为不可耐受高强度化疗和复发/难治性AML患者提供了可能的治疗选择。目前仍有很多表观遗传学药物的作用机制尚不清楚,还需要进行更多的大样本、多中心联合的临床试验研究探索更多新型靶向药物,尽可能为AML患者带来更多的治疗策略。

NOTES

*通讯作者。

参考文献

[1] Gonzalez-Lugo, J.D., Chakraborty, S., Verma, A., et al. (2021) The Evolution of Epigenetic Therapy in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Seminars in Hematology, 58, 56-65.
https://doi.org/10.1053/j.seminhematol.2020.12.003
[2] Lee, E., Koh, Y., Hong, J., et al. (2021) Recent Clinical Update of Acute Myeloid Leukemia: Focus on Epigenetic Therapies. Journal of Korean Medical Science, 36, e85.
https://doi.org/10.3346/jkms.2021.36.e85
[3] Wang, B., Guan, W., Lv, N., et al. (2021) Genetic Features and Ef-ficacy of Decitabine-Based Chemotherapy in Elderly Patients with Acute Myeloid Leukemia. Hematology, 26, 371-379.
https://doi.org/10.1080/16078454.2021.1921434
[4] Stahl, M., Menghrajani, K., Derkach, A., et al. (2021) Clini-cal and Molecular Predictors of Response and Survival Following Venetoclax Therapy in Relapsed/Refractory AML. Blood Advances, 5, 1552-1564.
https://doi.org/10.1182/bloodadvances.2020003734
[5] Pollyea, D.A., Pratz, K., Letai, A., et al. (2021) Veneto-clax with Azacitidine or Decitabine in Patients with Newly Diagnosed Acute Myeloid Leukemia: Long-Term Follow-Up from a Phase 1b Study. American Journal of Hematology, 96, 208-217.
https://doi.org/10.1002/ajh.26039
[6] Kayser, S. and Levis, M.J. (2022) Updates on Targeted Therapies for Acute Myeloid Leukaemia. British Journal of Haematology, 196, 316-328.
https://doi.org/10.1111/bjh.17746
[7] Sébert, M., Renneville, A., Bally, C., et al. (2019) A Phase II Study of Guadecitabine in Higher-Risk Myelodysplastic Syndrome and Low Blast Count Acute Myeloid Leukemia after Azacitidine Failure. Haematologica, 104, 1565-1571.
https://doi.org/10.3324/haematol.2018.207118
[8] Daher-Reyes, G.S., Merchan, B.M. and Yee, K.W.L. (2019) Guadecitabine (SGI-110): An Investigational Drug for the Treatment of Myelodysplastic Syndrome and Acute Myeloid Leukemia. Expert Opinion on Investigational Drugs, 28, 835-849.
https://doi.org/10.1080/13543784.2019.1667331
[9] Dittmann, J., Haydn, T., Metzger, P., et al. (2020) Next-Generation Hypomethylating Agent SGI-110 Primes Acute Myeloid Leukemia Cells to IAP Antagonist by Acti-vating Extrinsic and Intrinsic Apoptosis Pathways. Cell Death & Differentiation, 27, 1878-1895.
https://doi.org/10.1038/s41418-019-0465-8
[10] Garcia-Manero, G., Odenike, O., Amrein, P.C., et al. (2016) Successful Emulation of IV Decitabine Pharmacokinetics with an Oral Fixed-Dose Combination of the Oral Cytidine Deaminase Inhibitor (CDAi) E7727 with Oral Decitabine, in Subjects with Myelodysplastic Syndromes (MDS): Final Data of Phase I Study. Blood, 128, Article No. 114.
https://doi.org/10.1182/blood.V128.22.114.114
[11] Kipp, D. and Wei, A. (2021) The Path to Approval for Oral Hypomethylating Agents in Acute Myeloid Leukemia and Myelodysplastic Syndromes. Future Oncology, 17, 2563-2571.
https://doi.org/10.2217/fon-2020-1318
[12] Wei, A.H., Döhner, H., Pocock, C., et al. (2020) Oral Azacitidine Maintenance Therapy for Acute Myeloid Leukemia in First Remission. The New England Journal of Medicine, 383, 2526-2537.
[13] San José-Enériz, E., Gimenez-Camino, N., Agirre, X., et al. (2019) HDAC Inhibitors in Acute Mye-loid Leukemia. Cancers (Basel), 11, 1794.
https://doi.org/10.3390/cancers11111794
[14] DeAngelo, D.J., Walker, A.R., Schlenk, R.F., et al. (2019) Safety and Efficacy of Oral Panobinostat plus Chemotherapy in Patients aged 65 Years or Younger with High-Risk Acute Myeloid Leukemia. Leukemia Research, 85, Article ID: 106197.
https://doi.org/10.1016/j.leukres.2019.106197
[15] Mims, A.S., Mishra, A., Orwick, S., et al. (2018) A Novel Regimen for Relapsed/Refractory Adult Acute Myeloid Leukemia Using a KMT2A Partial Tandem Duplication Targeted Therapy: Results of Phase 1 Study NCI 8485. Haematologica, 103, 982-987.
https://doi.org/10.3324/haematol.2017.186890
[16] Jiang, X., Jiang, L., Cheng, J., et al. (2021) Inhibition of EZH2 by Chidamide Exerts Antileukemia Activity and Increases Chemosensitivity through Smo/Gli-1 Pathway in Acute Mye-loid Leukemia. Journal of Translational Medicine, 19, Article No. 117.
https://doi.org/10.1186/s12967-021-02789-3
[17] Wang, L., Luo, J., Chen, G., et al. (2020) Chidamide, Decitabine, Cytarabine, Aclarubicin, and Granulocyte Colony-Stimulating Factor (CDCAG) in Patients with Relapsed/Refractory Acute Myeloid Leukemia: A Single-Arm, Phase 1/2 Study. Clinical Epigenetics, 12, Article No. 132.
https://doi.org/10.1186/s13148-020-00923-4
[18] Li, Z., Zhang, J., Zhou, M., Li, J.L., et al. (2022) Epigenetic Therapy with Chidamide Alone or Combined with 5-Azacitidine Exerts Antitumour Effects on Acute Myeloid Leukaemia Cells in Vitro. Oncology Reports, 47, Article No. 66.
https://doi.org/10.3892/or.2022.8277
[19] Li, G., Li, D., Yu-an, F., et al. (2021) Synergistic Effect of Chidamide and Venetoclax on Apoptosis in Acute Myeloid Leukemia Cells and Its Mechanism. Annals of Translational Medicine, 9, Article No. 1575.
https://doi.org/10.21037/atm-21-5066
[20] Chen, N.C., Borthakur, G. and Pemmaraju, N. (2021) Bromodomain and Extra-Terminal (BET) Inhibitors in Treating Myeloid Neoplasms. Leukemia & Lymphoma, 62, 528-537.
https://doi.org/10.1080/10428194.2020.1842399
[21] Djamai, H., Berrou, J., Dupont, M., et al. (2021) Biological Effects of BET Inhibition by OTX015 (MK-8628) and JQ1 in NPM1-Mutated (NPM1c) Acute Myeloid Leukemia (AML). Biomedicines, 9, Article No. 1704.
https://doi.org/10.3390/biomedicines9111704
[22] Pericole, F.V., Lazarini, M., de Paiva, L.B., et al. (2019) BRD4 Inhibition Enhances Azacitidine Efficacy in Acute Myeloid Leukemia and Myelodysplastic Syndromes. Frontiers in On-cology, 9, Article No. 16.
https://doi.org/10.3389/fonc.2019.00016
[23] Wellbrock, J., Behrmann, L., Muschhammer, J., et al. (2021) The BET Bromodomain Inhibitor ZEN-3365 Targets the Hedgehog Signaling Pathway in Acute Myeloid Leukemia. Annals of Hematology, 100, 2933-2941.
https://doi.org/10.1007/s00277-021-04602-z
[24] van Gils, N., Martiañez Canales, T., Vermue, E., et al. (2021) The Novel Oral BET-CBP/p300 Dual Inhibitor NEO2734 Is Highly Effective in Eradicating Acute Myeloid Leukemia Blasts and Stem/Progenitor Cells. Hemasphere, 5, e610.
https://doi.org/10.1097/HS9.0000000000000610
[25] Borthakur, G., Odenike, O., Aldoss, I., et al. (2021) A Phase 1 Study of the Pan-Bromodomain and Extraterminal Inhibitor Mivebresib (ABBV-075) Alone or in Combination with Venetoclax in Patients with Relapsed/Refractory Acute Myeloid Leukemia. Cancer, 127, 2943-2953.
https://doi.org/10.1002/cncr.33590
[26] Lee, S., Urman, A. and Desai, P. (2019) Emerging Drug Profile: Krebs Cycle and Cancer: IDH Mutations and Therapeutic Implications. Leukemia & Lymphoma, 60, 2635-2645.
https://doi.org/10.1080/10428194.2019.1602260
[27] Stein, E.M., DiNardo, C.D., Fathi, A.T., et al. (2021) Ivo-sidenib or Enasidenib Combined with Intensive Chemotherapy in Patients with Newly Diagnosed AML: A Phase 1 Study. Blood, 137, 1792-1803.
https://doi.org/10.1182/blood.2020007233
[28] DiNardo, C.D., Schuh, A.C., Stein, E.M., et al. (2021) Enasidenib plus Azacitidine versus Azacitidine Alone in Patients with Newly Diagnosed, Mutant-IDH2 Acute Myeloid Leukaemia (AG221-AML-005): A Single-Arm, Phase 1b and Randomised, Phase 2 Trial. The Lancet Oncology, 22, 1597-1608.
https://doi.org/10.1016/S1470-2045(21)00494-0
[29] McMurry, H., Fletcher, L. and Traer, E. (2021) IDH Inhibi-tors in AML-Promise and Pitfalls. Current Hematologic Malignancy Reports, 16, 207-217.
https://doi.org/10.1007/s11899-021-00619-3
[30] Fang, Y., Liao, G. and Yu, B. (2019) LSD1/KDM1A Inhibitors in Clinical Trials: Advances and Prospects. Journal of Hematology & Oncology, 12, Article No. 129.
https://doi.org/10.1186/s13045-019-0811-9
[31] Wass, M., Göllner, S., Besenbeck, B., et al. (2021) A Proof of Concept Phase I/II Pilot Trial of LSD1 Inhibition by Tranylcypromine Combined with ATRA in Refractory/Relapsed AML Patients Not Eligible for Intensive Therapy. Leukemia, 35, 701-711.
https://doi.org/10.1038/s41375-020-0892-z
[32] Zhang, S., Liu, M., Yao, Y., et al. (2021) Targeting LSD1 for Acute Myeloid Leukemia (AML) Treatment. Pharmacological Research, 164, Article ID: 105335.
https://doi.org/10.1016/j.phrs.2020.105335
[33] Grieselhuber, N.R. and Mims, A.S. (2021) Novel Targeted Ther-apeutics in Acute Myeloid Leukemia: an Embarrassment of Riches. Current Hematologic Malignancy Reports, 16, 192-206.
https://doi.org/10.1007/s11899-021-00621-9
[34] Zhang, W., Zhao, C., Zhao, J., et al. (2018) Inactivation of PBX3 and HOXA9 by Down-Regulating H3K79 Methylation Represses NPM1-Mutated Leukemic Cell Survival. Theranostics, 8, 4359-4371.
https://doi.org/10.7150/thno.26900
[35] Lonetti, A., Indio, V., Laginestra, M.A., et al. (2020) Inhibition of Methyl-transferase DOT1L Sensitizes to Sorafenib Treatment AML Cells Irrespective of MLL-Rearrangements: A Novel Thera-peutic Strategy for Pediatric AML. Cancers (Basel), 12, Article No. 1972.
https://doi.org/10.3390/cancers12071972
[36] Eich, M.L., Athar, M., Ferguson, J.E., et al. (2020) EZH2-Targeted Therapies in Cancer: Hype or a Reality. Cancer Research, 80, 5449-5458.
https://doi.org/10.1158/0008-5472.CAN-20-2147
[37] Porazzi, P., Petruk, S., Pagliaroli, L., et al. (2022) Targeting Chemotherapy to Decondensed H3K27me3-Marked Chromatin of AML Cells Enhances Leukemia Suppression. Cancer Research, 82, 458-471.
https://doi.org/10.1158/0008-5472.CAN-21-1297