固态锂金属电池安全性研究进展
Research Progress on Safety of Solid-State Lithium Metal Batteries
DOI: 10.12677/NAT.2022.123023, PDF, HTML, XML, 下载: 669  浏览: 1,041 
作者: 沈晓魏:南通大学电气工程学院,江苏 南通;王震康:苏州大学能源学院,江苏省先进碳材料与可穿戴能源技术重点实验室,江苏 苏州;刘 杰, 钱 涛:南通大学化学化工学院,江苏 南通
关键词: 固态锂金属电池固态电解质安全性锂金属负极 Solid-State Lithium Metal Batteries Sol-id-State Electrolytes Safety Lithium Metal Anode
摘要: 目前,固态锂金属电池(SSLMB)是实现高能量密度的下一代储能设备之一,其中,全固态电解质(SSEs)的使用有望彻底解决锂金属负极带来的安全问题。由于以往对SSEs电池的刻板印象,大部分研究主要集中于提高SSLMBs的电化学性能,而忽略了其安全性问题。然而,在实际研究过程中,SSLMBs潜在安全性问题逐渐暴露。本综述总结了几种可能引发电池安全问题的原因,并简要概述了相应解决方案。最后,对今后超高安全性SSLMBs的研究进行了总结和展望。
Abstract: Nowadays, the solid-state lithium metal battery (SSLMB) has been one of the next-generation energy storage devices that is expected to achieve high energy density. The use of solid-state electrolytes (SSEs) is expected to completely solve the safety problems caused by lithium metal anode. Due to the stereotype of SSEs were always safe in the past, most of the previous studies focused on improving the electrochemical performance of SSLMBs, but ignored the safety issues. However, the potential security problems of SSLMBs are gradually exposed in practical research. This review summarizes several possible causes of battery safety problems and provides a brief overview of corresponding solutions. Finally, the perspectives on ultra-high safety SSLMBs are also summarized and prospected.
文章引用:沈晓魏, 王震康, 刘杰, 钱涛. 固态锂金属电池安全性研究进展[J]. 纳米技术, 2022, 12(3): 210-224. https://doi.org/10.12677/NAT.2022.123023

1. 引言

自锂离子电池(LIB)商业化以来,便主导着储能市场,极大地改变了我们的生活方式。然而,传统LIBs的能量密度已逐渐到达开发极限 [1]。开发安全、高能量密度的储能设备,对能源可持续发展和安全生产具有重要意义 [2]。金属锂具有极高的理论容量(3860 mA∙h∙g−1,是LIBs石墨负极的十倍)和最低的电化学势(−3.04 V vs SHE),以其作为负极材料可有效提高电池的能量密度。然而,锂金属电池的安全性问题仍然十分棘手,主要来自两个方面:1) 在充放电过程中,锂离子沉积不均匀,造成锂电池负极表面枝晶生长,引起电池内部短路 [3];2) 传统的碳酸乙烯基电解质高度易燃且具有毒性,在实际应用中给锂金属电池带来了严重的安全隐患。为了实现锂金属电池的商业化应用,上述安全问题在未来发展中首当其冲。

在过去几十年中,为了克服电池的易燃隐患,研究人员设计了多种策略以对其进行优化改进,如使用水电解质取代有机电解质 [4]、使用特殊隔膜作为自动停机装置 [5] 以及添加电解液阻燃剂 [6] 等。同时,研究人员也为锂金属负极的保护,解决锂负极枝晶生长所带来的问题付出了巨大的努力 [7]。目前,大多数研究主要集中于构建稳定的固体电解质界面或通过不同的方法调控Li+沉积,如控制电场和构建亲脂骨架等。除此之外,通过开发全固态电解质(SSEs)以减少易燃电解质的使用,也可提高电池的安全性。SSEs的强机械性能对抑制枝晶生长起到了重要作用。SSEs的使用可能成为同时实现电池高能量密度和安全性的最佳方式 [8] [9] [10] [11]。

SSEs主要分为三大类:无机SSEs、固态聚合物电解质(SPEs)以及其他混合型SSEs。本文总结了多种SSEs及其锂离子电导率和物理化学性质,如表1所示。其中,无机SSEs主要包括氧化物(如Li7-La3Zr2O12,即LLZO和Li3.3La0.56TiO3)、硫化物(如Li2S-P2S5和Li10GeP2S12)和氢化物(如LiBH4)等。在所有无机SSEs中,氧化物和硫化物电池拥有最高的实际电位,其离子电导率(10−4~10−2 S∙cm−1)已达到或超过了标准非水系电解质电池 [12],如Li6.75La3Zr1.75Te0.25O12 (8.7 × 10−4 S∙cm−1) [13] 和Li10GeP2S12 (LGPS, 1.2 × 10−2 S∙cm−1) [14]。SPEs由一种带有极性基团(-O-、=O以及-N-等)的聚合物组成,如聚氧化乙烯(PEO)、聚甲基丙烯酸甲酯(PMMA)和聚\偏二氟乙烯(PVDF)等。其中,PEO的应用最为广泛。

然而,由于SSEs的引入,LMBs内部反应机理和离子传输机制将变得更加复杂,主要源于以下三个方面(如图1所示):1) 除机械强度高外,枝晶生长与许多因素有关。SSLMBs中的SSEs不能有效抑制锂枝晶的穿透,这不仅降低了电池的性能,而且带来了严重的安全隐患;2) SSEs与电极之间的界面不稳定,导致持续的化学反应,使得整个电池体系的不稳定性增加;3) 在机械力或空气不稳定等外部环境的影响下,SSLMBs难以实现绝对安全。基于上述三个方面的问题,本综述详细分析了导致SSLMBs发生安全隐患的原因,并讨论了近期研究中提高SSLMBs安全性的策略。近年来,SSLMBs的安全性问题受到的关注相对较少,我们相信,本综述对未来发展具有优越安全性能和高能量密度的SSLMBs具有积极意义。

Table 1. Summary of SSEs and their properties

表1. SSEs及其性能总结

Figure 1. Three potentially dangerous aspects of SSLMBs

图1. SSLMBs三种潜在威胁

2. SSEs中的枝晶生长

2.1. 无机SSEs枝晶生长

根据Monroe和Newman提出的理论,当SSEs拥有约为锂(约4.2 GPa)的两倍的剪切模量时,可以有效抑制锂枝晶的形成 [25] [26]。硫化物型和氧化石榴石型SSEs的剪切模量都达到了这一标准。因此,SSEs被看作是一种有希望最终解决电池短路问题并大大提高锂电池安全性的方法。

近期研究中,无机SSEs和锂金属负极固态电池的使用仍然面临短路问题。科学家们已经开展了有关锂枝晶穿透无机SSEs机理的相关研究。如图2所示,Chiang等 [27] 通过原位和非原位光学表征探究了锂枝晶在玻璃态LPS、β-Li3PS4以及多晶和单晶Li6.4-La3Zr1.4Ta0.6O12 (LLZTO)四种类型的SSEs中的穿透机制,建立了描述锂枝晶在SSEs中穿透行为的电化学–力学模型。在他们的研究中,剪切模量并不是抑制以上四种无机SSEs枝晶穿透的决定性因素。通过缩小缺陷尺寸和提高SSEs的密度,可以减少锂渗出。Wang等 [28] 对无机SSEs中枝晶生长机制进行了深入研究。他们通过中子深度探测详细探究了三种不同无机SSEs (LLZO、LPS和LiPON)的枝晶形成过程,并提出电导率是锂负极枝晶生长的另一决定性因素。LLZO和LPS具有较高的电导率,锂离子在充电过程中可以直接捕获SSEs内部的电子,在电极表面沉积为锂枝晶,大大增加了电池短路的风险。此说法极具说服力,其他研究人员也对此进行了进一步的证明。例如,Sun等 [29] 通过实验和理论计算证明了LiBH4中锂枝晶生长的原因主要在于其较高的导电性。基于这一现象,他们在LiBH4中引入了具有间隙填充能力和低电导率的LiF,显著提高了电池的稳定性和循环使用寿命。LiF在SSE中抑制锂穿透的机理如图2(c)所示。改性SSE和TiS2负极组装的锂金属电池在0.4C的电流密度下循环60次后可逆容量仍可达到137 mA∙h∙g−1

Figure 2. (a) A schematic of the apparatus for Li plating on a metal electrodein contact with a solid electrolyte; (b) Li filament in a solid electrolyte matrix [27]; (c) Li dendrite formation ina solid electrolyte before modification and Li dendritesuppression mechanism in a modified electrolyte system [29]

图2. (a) 固体电解质中金属电极镀锂示意图;(b) 固体电解质基质中锂灯丝的简化示意图 [27];(c) 改性前固体电解质中Li枝晶的形成及其改性后电解质中Li枝晶生长的抑制机理 [29]

2.2. SPEs枝晶生长

SPEs型LMBs同样面临严峻的枝晶生长问题。一方面,SPEs的剪切模量较低,如PEO的剪切模量仅约为0.1 MPa,锂枝晶容易刺穿电解质层,造成电池短路。另一方面,研究表示SPEs中Li+的含量影响锂枝晶的生成。传统SPEs如PEO型SPEs,能平衡Li+和其对应阴离子((TFSI PF 6 )关系。在放电过程中,阴离子和阳离子在聚合物基质中向相反的方向移动,离子转移数(t)满足公式(1) [30]。然而,负离子容易在负极堆积,堵塞电极表面,引起严重极化现象,锂沉积不均 [31] [32]。

tLi+ + tanion = 1 (1)

使用无机–高分子复合电解质和高分子–高分子复合电解质是解决固相聚合物低剪切模量问题的有效方式 [33] [34] [35]。在无机–聚合物复合电解质中,无机填料主要分为惰性填料SiO2、TiO2和Al2O3等以及作为Li+导体的活性材料LLZO和LGPS。两种无机填料均能提高SPEs的机械强度,并对锂枝晶生长有一定的抑制作用。Fu等 [36] 制备了一种LLZO纳米粒子,并将其与PEO制成复合材料,得到了具有三维离子传输通道和高剪切模量的SSE。这种SPE型电池循环1000小时以上也不会短路,如图3(a)和图3(b)所示。Cui等 [37] 近期提出了一种用于LMBs的超薄、高性能聚合物–聚合物复合SPE材料。他们将PEO/LiTFSI注入到聚酰亚胺薄膜中,大大提高了SPE的剪切模量(从0.1到850 MPa),可有效阻止锂枝晶的穿透。分子结构设计是改善SPEs性能的另一种方法。Zeng等 [38] 设计了一种聚醚–丙烯酸互穿型SPE,它结合了聚醚的柔韧性和聚丙烯的刚性,拥有较高的离子导电率(0.22 mS∙cm−1)和剪切模量(约12.0 GPa)。这种SPE型的电池具有优异的稳定性和安全性能,经过200次循环后没有形成锂枝晶。

除了通过提高SPEs的机械强度以抑制锂的枝晶穿透外,从源头消除SPEs电池锂枝晶生长更为重要。根据Newman和Monroe的模拟结果显示 [39] [40],当tLi+接近于1时,电解液中将不会出现Li+浓度不均现象,即使在较大的电流密度下也能实现锂的均匀沉积。然而,在传统的SPE体系中,Li+及其对应阴离子可迁移。由于Li+的运动与聚合物基质中的Lewis碱高度耦合,所以tLi+通常小于0.5。单Li+型SPEs是可有效解决这一问题 [30]。在单Li+导电的SPEs中,阴离子以共价的方式附着在聚合物基体上,使tanion被抑制,tLi+趋近于1,SPEs中的Li+浓度分布不均现象减少,枝晶生长的驱动力降低 [39] [41]。大量报道证明这的确是抑制锂枝晶生长的一种行之有效的方法。单离子型SPEs分为多种类型,如共混型聚合物、无规则型共聚物、嵌段型共聚物等。这意味着研究人员可以通过多种方式设计单离子型SPEs。如表2所示,本文列出了一些近期报道的单离子型SPEs,并对它们的阴离子中心、离子电导率和锂离子转移数进行了总结。表中所列SPEs皆能有效抑制锂枝晶的穿透,保护SSLMBs,使其不发生短路。Michel Armand提出了一种通过设计锂盐负离子成分来降低tanion的方式 [42]。他们用氢原子替代了[N(SO2CF3)2](TFSI)中的氟原子,获得了[N(SO2CF2H)(SO2CF3)](DFTFSI)。如图3(c)所示,CF2H部分可以与PEO中的氧形成氢键,强氢键相互作用有利于限制阴离子迁移。这种SPE促进了锂的均匀沉积,大大提高了电池的稳定性(如图3(d))。

Table 2. Physicochemical properties of single Li+ conducting SPEs with various anionic centers

表2. 具有不同阴离子中心的单Li+导电SPEs的物理化学性质

a共混聚合物:具有不同结构的均聚物或共聚物的物理混合物;无规则共聚物:由随机分布的不同重复单元组成的聚合物;嵌段共聚物:一种由不同聚合物组分的交替段组成的聚合物,通过其活性端连接在一起;三嵌段共聚物:由三段均聚物按线性顺序组成的聚合物。

Figure 3. (a) A schematic of the hybrid solid-state composite electrolyteand; (b) The voltage profile of the continued lithium plating/strippingcycling with a current density of 0.5 mA∙cm−2 at 25˚C [36]; (c) The role of LiDFTFSI and LiTFSIin PEO; (d) The performance comparison of lithium symmetricalbatteries with different SPEs [42]

图3. (a) 混合固态复合电解质的示意图;(b) 在25˚C条件下,电流密度为0.5 mA∙cm−2时,持续镀/剥锂循环的电压分布 [36];(c) LiDFTFSI和LiTFSI在PEO中的作用;(d)不同SPEs的锂对称电池性能比较 [42]

理论上,无缺陷的完美SSE可以抑制锂枝晶的形成。然而,无论是无机SSEs还是SPEs都面临着锂枝晶穿透的问题。在不同的电解质中都可以观察到锂枝晶穿透现象,这将导致电池短路。越来越多的研究者开始关注此问题。实际上,我们可以从抑制液态电池枝晶生长的方法中获得灵感,并将其应用到固态电池体系中。例如通过引入电化学和机械稳定性良好的非原位涂层作为人工SEI层 [56],将锂引入导电亲锂骨架中 [57] 或通过控制电流密度和体积容量实现温和的锂沉积 [7] 等。到目前为止,SSEs中枝晶生成的机理尚不明确,但可以肯定的是,对这一基本问题的相关研究所取得的任何进展都将进一步提高SSLMBs的安全性。

3. 界面稳定性问题

在SSLMBs中,由于SSEs与具有超低电化学电位和超高化学反应活性的锂金属负极接触时容易发生副反应,因此锂负极与SSEs的界面很难保持长期稳定 [58]。锂负极与SSEs之间的副反应和反应物的形成将导致下列严重后果:1) 金属锂和SSEs持续消耗,加速电池故障;2) 造成电池内部体积变化,威胁电解液的结构强度;3) 电场的无序性增加,为锂枝晶的初始生长提供足够的空间,从而产生局部应力并导致电池断裂。对于完美的界面,首先需要SSEs于电极完全接触,而后在界面处形成离子导电型而非电子导电型亚稳层,从而阻止进一步的副反应,防止Li+在SSEs中直接捕获电子形成枝晶。

设计和改进SSEs与电极之间的界面无疑是一种很好的策略 [59]。Nan等 [24] 通过系统的实验结合DFT计算发现,PVDF基SSE与锂负极之间原位生成的纳米级界面具有很好的稳定性,可以有效抑制枝晶生长。如图4(a)所示,这种界面可以实现Li||Li对称电池(0.1 mA∙cm−2,2000 h循环使用后保持稳定)和LiCoO2||Li电池(0.15 mA∙cm−2,200次循环使用后几乎没有容量衰减)的高性能。由于离子液体具有优越的安全性,如热稳定性高、Li+电导率高和润湿性强,离子液体可以作为SSEs和电极之间的微量表面修饰剂,可以解决界面问题,从而提高电池的安全性 [60] [61]。Yang等 [62] 提出了一种LiTFSI/PYR13TFSI作为微量润湿剂,极大地促进了锂与LGPS的接触和稳定性(如图4(b)),从而提高了电池的循环稳定性。这种方式实现了在0.15 mA∙cm−2条件下1000小时以上稳定的锂剥离/电镀性能,且界面阻抗降低到了142 Ω∙cm−2。构建对锂稳定和Li+导电的中间缓冲层也是降低界面电阻和稳定锂负极的有效方法 [58] [63]。Yao等 [64] 设计了一种双层LGPS-70Li2S-29P2S5-1P2O5SSE,其中,70Li2S-29P2S5-1P2O5作为缓冲层与锂负极接触,表现出良好的接触和稳定性。如图4(c)所示,Chi的团队在LLZTO中引入了PEO基SPE界面层以更好地解决界面接触和稳定性问题,同时,使用3D锂负极降低局部电流密度,增加Li+沉积位点,抑制枝晶生长。这种巧妙的设计使对称电池在700 h内表现出了良好的循环稳定性 [65]。

除了对SSEs界面进行相应的设计和调控外,设计和调控锂金属负极也是一种很好的策略,比如用锂合金负极代替纯锂金属负极。锂铟合金与硫化型SSEs匹配时,具有稳定界面层和抑制锂枝晶生成的效果 [66] [67]。Adelhelm等 [18] 探究了β-Li3PS4.57固态电池中Li-In合金负极的合金相、氧化还原电位和界面稳定性。结果表明,不同的Li-In比例会形成不同的合金相,当Li-In比例为1:1.26时,200 h内剥离/镀Li+的过电位低至12 mV,且没有发现明显的电位变化。其他一些锂合金也可稳定和湿润SSEs和负极之间的界面,如Li-Mg合金 [68],Li-ZnO合金 [69],Li-Al合金 [70] 和Li-C合金 [71] 等。

此外,SSEs与电极(负极和正极)之间的不相容性也是导致界面不稳定的另一个重要原因,尤其是一些刚性的SSEs,如陶瓷SSEs。固–固接触不良会大大增加电池的内阻抗,这不仅会破坏界面结构,还会导致快速充电过程中出现电池过热问题。除了通过上述方法(构建柔性夹层或使用界面润湿剂)实现良好的界面接触以外,其他方式如使用亲石插层 [72]、降低熔融锂的表面张力 [71] 或构建具有三维结构的电极 [73] [74] 也有一定效果。其中,原位聚合物的应用获得了大量的关注。Archer等 [75] 用三氟化铝作为触发剂引发DOL的开环聚合。原位合成的SPE具有良好的力学和化学稳定性,与电池电极保持良好的界面接触,可最终实现了高的室温离子电导率和低界面阻抗。该技术方便、有效,在解决正极和负极与SSE接触不良的问题方面具有很大潜力。

综上所述,造成SSE和活性锂负极界面问题的原因非常复杂,给SSLMBs的安全性和稳定性带来了巨大隐患。由于不同SSEs皆具有特殊的物理化学性质,许多研究基于复合、多层和非对称型SSEs,结合不同SSEs的优点,以解决界面问题。此外,SSEs和电极之间的界面的原位电化学方法的发展,有助于进一步阐明界面失效的机理,对实现更安全的SSLMBs具有重要意义。

Figure 4. (a) Cycling performance of a LiCoO2-PEO||Li battery with PVDF-LiFSI as the SPE [24]; (b) A schematic diagram ofthe interface regulation of an ionic liquid [62]; (c) A schematicillustration of the fabrication process of the SPE interface layer with a 3D Li anode for SSLMBs [65]

图4. (a) 以PVDF-LiFSI作为SPE的LiCoO2-PEO||Li电池的循环性能 [24];(b) 离子液体的界面调节示意图 [62];(c) 以3D Li为负极的SSLMBs的SPE界面制备过程示意图 [65]

4. 环境耐受性

人们普遍认为,由于SSEs具有更好的热稳定性和环境稳定性,其与传统的液体电解质相比更安全。然而,从实际应用的角度来看,SSLMBs并非十分完美。Mukai等 [76] 用差示扫描量热分析仪探究了以所有LLZNO为电解质的固态LIBs的产热行为。结果表明,即使SSE的产热量降低到液体电解质的30%,也不能保证电池的绝对安全(如图5(a)所示)。而SSLMBs中锂金属负极的活性更高,其安全性可能更差。

无机SSEs的延展性较差,当受到不均匀的外力挤压和撞击时,易破碎甚至被粉碎,造成短路和严重的安全问题。此外,一些无机SSEs在空气中不稳定,一旦电池组被外力破坏,后续反应将会增加电池的使用风险 [77]。例如硫化型SSEs,其具有出色的离子导电性和巨大商业潜力,一旦与空气中的水分子接触,不仅会对电池的性能造成致命的破坏,而且还会释放出有毒的硫化氢气体,提高了电池实际应用的潜在风险。因此,提高电解液的空气稳定性和延展性可以提高电池使用安全性,有利于更好的实现SSLMBs商业化。对于硫化物型SSEs而言,通过调节Li2S和P2S5的比例,可以提高Li2S-P2S5的空气稳定性 [78]。由于 PS 4 3 与水分子的反应速率低于S2− P 2 S 7 4 ,当Li2S和P2S5的比例为3:1时, PS 4 3 含量更高,可以实现最佳的电池空气稳定性。此外,在硫化型SSEs中加入Li2O [79]、P2O5 [80] 等其他氧化物来代替导体也可以提高其的稳定性。Hayashi等 [81] 通过球磨将金属氧化物(MxOy,M = Fe、Zn和Bi)分散到Li2S-P2S5中,不仅提高了电解质的稳定性,且通过自发反应(MxOy + H2S = MxSy + H2O)吸附了硫化氢,进一步提高了电池的安全性。将无机SSEs与聚合物复合也是提高电池柔性行之有效的方法之一 [82] [83]

Figure 5. (a) The procedure of the all-inclusive microcellfollowed for DSC analyses and the test results of the battery with liquidand solid electrolytes [76]; (b) Sequential images as a functionof time for contact of sintered LAGP pellet and melted Li metal at 200˚C in the glovebox [17]; (c) The flammability test of the Celgard separator and PPL90 membrane [89]; (d) The flammability test of theCelgard separator, PEO, and HVTPE [90]

图5. (a) 用于DSC分析de全包型微电池的程序示意图和液体/固体电解质电池的测试结果 [76];(b) 200℃条件下,连续时段内手套箱中烧结LAGP球团与熔化的Li金属接触示意图 [17];(c) Celgard分离器和PPL90膜的可燃性试验 [89];(d) Celgard分离器、PEO和HVTPE的可燃性测试 [90]

[84] [85]。大多数无机SSEs不可燃且具有极佳的热稳定性。然而,有研究表明,一旦发生热失控,无机SSEs并不能保持其良好的热稳定性。Chung的团队在手套箱中操作,直接将烧结的陶瓷Li1.5Al0.5Ge1.5(PO4)3 (LAGP)与熔融锂(约200℃)结合。如图5(b)所示,高温下的快速反应使SSE结构崩塌并在氧气中迅速分解,导致进一步严重的热失控问题 [17]。

SPEs具有较高的延展性和柔性,现有主流的PEO基SPEs比液体电解质的可燃性低,但仍然存在电池发生热失控时燃烧的可能性,不能保证电池的绝对安全。将PEO或其他可燃性的SPEs与阻燃或不燃材料复合是解决这一问题的有效方案 [36] [37] [86] [87] [88]。Song等 [89] 以PVDF-HFP/PEO作为有机基质,LAGP和溶剂化离子液体为载体,研制出了具有优异环境和热稳定性的高性能杂化SSE (PPLS90)。如图5(c)所示,PPLS90可以暴露在火焰中30秒不燃烧,但是Celgard分离器在液体电解质中极易被点燃。Yan等 [90] 以开环聚合物氟乙烯树脂碳酸盐(FEC)为聚合物基质,二氟草酸硼酸锂(LiDFOB)为锂盐,设计了一种高稳定性和安全性的SPE。这种SPE不仅可以在超高压(4.9 V)下保持稳定,而且不会被点燃(如图5(d))。上述方法只有在电池发生热失控后才会起作用,如能从源头上抑制电池的热失控,电池燃烧问题就能得到更好的解决。热响应聚合物具有相变、溶胶–凝胶转变和内部反应等独特的热特性,有望防止热失控,且已被证明能够有效提高液态LIBs的安全性 [91] [92] [93]。热响应聚合物防止热失控的机理如图6(a)所示。Yan等 [94] 报道了一种由1,3-二氧戊环和聚烯丙基硫化锂共聚合成的新型高离子导电热响应SPE (如图6(b)和图6(c))。这种SPE对温度变化表现敏感,将发生自反应。如图6(d)所示,当操作温度骤升到某一阈值(70℃)时,此热响应SPE将切断离子传输通道,并通过强制终止电池运行来结束热失控。

Figure 6. (a) The mechanism of thermal response polymer to preventthermal runaway; (b) The schematic illustration of the composition ofthermal-responsive SPE; (c) its optical image; (d) Photographs ofa small electric fan powered by one SSLMB at different temperatures [94]

图6. (a) 热响应聚合物防止热失控的机理;(b) 热响应SPE的结构示意图;(c) 热响应SPE的光学图像;(d) 不同温度下由SSLMB供电的小电风扇实图 [94]

一体化且独立、简便的制作方法将成为未来电池的发展趋势。近期关于空气稳定的锂负极电池报道中,空气中电池组装以及SSLMBs组装的相关研究取得较好进展 [95]。然而,SSEs遇水或遇氧后出现的自分解问题仍然阻碍了空气稳定SSEs的发展。要克服这一局限性,未来科学家还有大量工作要做。此外,目前有关全固态热响应聚合物电池的研究还很少,但不可否认这是一个非常值得深度探索的领域。

5. 总结与展望

以锂金属为负极是提高电池能量密度的有效方案,但锂枝晶生长所带来的安全问题阻碍了它们的实际应用。SSEs可以减少电池的安全性问题,实现较高的能量密度,在锂金属负极的实际应用方面极具发展潜力。直至目前,大多数研究主要集中于增强室温条件下块状SSEs的离子电导率和SSLMBs的性能(降低界面阻抗,改善循环稳定性等)。实际上,电池的安全性才是整个电池体系发展的重中之重。虽然SSLMBs有很好的发展前景,但对其安全性的研究相对较少。SSEs的研发极大地提高了电池安全性,但想要实现电池的绝对安全,我们还有很长的路要走。

本文从电池的安全性出发,以经典的SSEs为例,简要概述了SSLMBs的潜在的不稳定性和危险因素。在上述讨论的三个问题中,锂枝晶生长仍然是SSLMBs最大的安全隐患。我们需要改变传统理论中通过高剪切模量的SSEs来抑制锂枝晶生长的观点。克服锂枝晶生长需要从多个方面入手,包括界面工程调控、电解液改性以及锂金属负极调控等。现有研究中,几乎没有任何一种SSEs能同时实现高性能和高安全性。不同类型的SSEs仅在某些方面表现出优异性能,但无论是无机SSEs还是SPEs,都无法尽善尽美。因此,设计复合型SSEs可能是实现安全高效的SSLMBs的终极方案。聚合物的引入可以弥补无机电解质与锂匹配时不稳定、电子导电率高以及柔性低等缺点,而无机SSEs可以弥补SPEs离子电导率和机械强度较差的缺陷,降低聚合物电解质燃烧的可能性。此外,目前有关固态热响应SPEs的研究相对较少,它的熔断器效应将使电池的安全性提高到一个新的水平,与此相关的研究应该引起科学家们的重视。最后,SSLMBs安全性的相关测试标准的确立也应该提上议程。我们相信,通过化学、能源、材料、工程和电池管理等各领域的合作,终将获得同时具有高能量密度和极高安全性的SSLMBs。

参考文献

[1] Han, X., Lu, L., Zheng, Y., et al. (2019) A Review on the Key Issues of the Lithium Ion Battery Degradation among the Whole Life Cycle. eTransportation, 1, Article ID: 100005.
https://doi.org/10.1016/j.etran.2019.100005
[2] Goodenough, J.B. and Kim, Y. (2009) Challenges for Rechargea-ble Li Batteries. Chemistry of Materials, 22, 587-603.
https://doi.org/10.1021/cm901452z
[3] Cha, E., Patel, M.D., Park, J., et al. (2018) 2D MoS2 as an Efficient Pro-tective Layer for Lithium Metal Anodes in High-Performance Li-S Batteries. Nature Nanotechnology, 13, 337-344.
https://doi.org/10.1038/s41565-018-0061-y
[4] Sun, L., Borodin, O., Gao, T., et al. (2015) “Water-in-Salt” Elec-trolyte Enables High-Voltage Aqueous Lithium-Ion Chemistries. Science, 350, 938-943.
https://doi.org/10.1126/science.aab1595
[5] Liu, K., Liu, W., Qiu, Y., et al. (2017) Electrospun Core-Shell Micro-fiber Separator with Thermal-Triggered Flame-Retardant Properties for Lithium-Ion Batteries. Science Advances, 3, 1-9.
https://doi.org/10.1126/sciadv.1601978
[6] Chen, S., Zheng, J., Yu, L., et al. (2018) High-Efficiency Lithium Metal Batteries Withfire-Retardant Electrolytes. Joule, 2, 1548-1558.
https://doi.org/10.1016/j.joule.2018.05.002
[7] Cheng, X.B., Zhang, R., Zhao, C.Z., et al. (2017) Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical Reviews, 117, 10403-10473.
https://doi.org/10.1021/acs.chemrev.7b00115
[8] Lopez, J., Mackanic, D.G., Cui, Y., et al. (2019) Designing Polymers for Advanced Battery Chemistries. Nature Reviews Materials, 4, 312-330.
https://doi.org/10.1038/s41578-019-0103-6
[9] Manthiram, A., Yu, X. and Wang, S. (2017) Lithium Battery Chemistries Enabled by Solid-State Electrolytes. Nature Reviews Materials, 2, Article No. 16103.
https://doi.org/10.1038/natrevmats.2016.103
[10] Bachman, J.C., Muy, S., Grimaud, A., et al. (2016) Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chemical Reviews, 116, 140-162.
https://doi.org/10.1021/acs.chemrev.5b00563
[11] Fan, L., Wei, S., Li, S., et al. (2018) Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries. Advanced Energy Materials, 8, Article ID: 1702657.
https://doi.org/10.1002/aenm.201702657
[12] Aurbach, D., Talyosef, Y., Markovsky, B., et al. (2004) Design of Electrolyte Solutions for Li and Li-Ion Batteries: A Review. Electrochimica Acta, 50, 247-254.
https://doi.org/10.1016/j.electacta.2004.01.090
[13] Allen, J.L., Wolfenstine, J., Rangasamy, E., et al. (2012) Effect of Substitution (Ta, Al, Ga) on the Conductivity of Li7La3Zr2O12. Journal of Power Sources, 206, 315-319.
https://doi.org/10.1016/j.jpowsour.2012.01.131
[14] Kamaya, N., Homma, K., Yamakawa, Y., et al. (2011) A Lithium Superionic Conductor. Nature Materials, 10, 682-686.
https://doi.org/10.1038/nmat3066
[15] Geiger, C.A., Alekseev, E., Lazic, B., et al. (2011) Crystal Chemistry and Stability of “Li7La3Zr2O12” Garnet: A Fast Lithium-Ion Conductor. Inorg Chem, 50, 1089-1097.
https://doi.org/10.1021/ic101914e
[16] Yoshiyuki, I., Chen, L., Misuru, I., et al. (1993) High Ionic Conductivity in Lithium Lanthanum Titanate. Solid State Communications, 86, 689-693.
https://doi.org/10.1016/0038-1098(93)90841-A
[17] Chung, H. and Kang, B. (2017) Mechanical and Thermal Failure Induced by Contact between a Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte and Li Metal in an All Solid-State Li Cell. Chemistry of Materials, 29, 8611-8619.
https://doi.org/10.1021/acs.chemmater.7b02301
[18] Santhosha, A.L., Medenbach, L., Buchheim, J.R., et al. (2019) The Indium-Lithium Electrode in Solid-State Lithium-Ion Batteries: Phase Formation, Redox Potentials, and Interface Stability. Batteries & Supercaps, 2, 524-529.
https://doi.org/10.1002/batt.201800149
[19] Bron, P., Johansson, S., Zick, K., et al. (2013) Li10SnP2S12: An Af-fordable Lithium Superionic Conductor. Journal of the American Chemical Society, 135, 15694-15697.
https://doi.org/10.1021/ja407393y
[20] Matsuo, M., Nakamori, Y., Orimo, S.-I., et al. (2007) Lithium Superionic Conduction in Lithium Borohydride Accompanied by Structural Transition. Applied Physics Letters, 91, Article ID: 224103.
https://doi.org/10.1063/1.2817934
[21] Liu, Y., Lee, J.Y. and Hong, L. (2004) In Situ Preparation of Poly(Ethylene Oxide)-SiO2 Composite Polymer Electrolytes. Journal of Power Sources, 129, 303-311.
https://doi.org/10.1016/j.jpowsour.2003.11.026
[22] Chio, N. and Park, J. (2001) New Polymer Electrolytes Based on PVC/PMMA Blend for Plastic Lithium-Ion Batteries. Electrochim. Acta, 46, 1453-1459.
https://doi.org/10.1016/S0013-4686(00)00739-8
[23] Chen-Yang, Y., Chen, H., Lin, F., et al. (2002) Polyacrylo-nitrile Electrolytes1. A Novel High-Conductivity Composite Polymer Electrolyte Based on Pan, LiClO4 and A-Al2O3. Solid State Ionics, 150, 327-335.
https://doi.org/10.1016/S0167-2738(02)00457-5
[24] Zhang, X., Wang, S., Xue, C., et al. (2019) Self-Suppression of Lithium Dendrite in All-Solid-State Lithium Metal Batteries with Poly(vinylidene difluoride)-Based Solid Electrolytes. Advanced Materials, 31, e1806082.
https://doi.org/10.1002/adma.201806082
[25] Monrpe, C. and Newman, J. (2005) The Impact of Elastic Defor-mation on Deposition Kinetics at Lithiumõpolymer Interfaces. Journal of the Electrochemical Society, 152, A396-A404.
https://doi.org/10.1149/1.1850854
[26] Monroe, C. and Newman, J. (2004) The Effect of Interfacial Deformation on Electrodeposition Kinetics. Journal of the Electrochemical Society, 151, A880-A886.
https://doi.org/10.1149/1.1710893
[27] Porz, L., Swamy, T., Sheldon, B.W., et al. (2017) Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes. Advanced Energy Materials, 7, Article ID: 1701003.
https://doi.org/10.1002/aenm.201701003
[28] Han, F., Westover, A.S., Yue, J., et al. (2019) High Electronic Con-ductivity as the Origin of Lithium Dendrite Formation within Solid Electrolytes. Nature Energy, 4, 187-196.
https://doi.org/10.1038/s41560-018-0312-z
[29] Mo, F., Ruan, J., Sun, S., et al. (2019) Inside or Outside: Origin of Lithium Dendrite Formation of All Solid-State Electrolytes. Advanced Energy Materials, 9, Article ID: 1902123.
https://doi.org/10.1002/aenm.201902123
[30] Zhang, H., Li, C., Piszcz, M., et al. (2017) Single Lithium-Ion Con-ducting Solid Polymer Electrolytes: Advances and Perspectives. Chemical Society Reviews, 46, 797-815.
https://doi.org/10.1039/C6CS00491A
[31] Bannister, D., Davies, G. and Ward, I. (1984) Ionic Conductivities for Poly(ethylene oxide) Complexes with Lithium Salts of Monobasic and Dibasic Acids and Blends of Poly(ethylene oxide) with Lithium Salts of Anionic Polymers. Polymer, 25, 1291-1296.
https://doi.org/10.1016/0032-3861(84)90378-1
[32] Sun, X.B. and Kerr, J. (2006) Synthesis and Characterization of Network Single Ion Conductors Based on Comb-Branched Polyepoxide Ethers and Lithium Bis(Allylmalonato)Borate. Macromolecules, 39, 362-372.
https://doi.org/10.1021/ma0507701
[33] Li, Y., Wong, K.W. and Ng, K.M. (2016) Ionic Liquid Decorated Meso-porous Silica Nanoparticles: A New High- Performance Hybrid Electrolyte for Lithium Batteries. Chemical Communica-tions, 52, 4369-4372.
https://doi.org/10.1039/C6CC01236A
[34] Hu, J., Wang, W., Zhou, B., et al. (2019) Poly(Ethylene Oxide)-Based Composite Polymer Electrolytes Embedding with Ionic Bond Modified Nanoparticles for All-Solid-State Lithium-Ion Battery. Journal of Membrane Science, 575, 200-208.
https://doi.org/10.1016/j.memsci.2019.01.025
[35] Sun, Y., Zhan, X., Hu, J., et al. (2019) Improving Ionic Conductivity with Bimodal-Sized Li7La3Zr2O12 Fillers for Composite Polymer Electrolytes. ACS Applied Materials & Interfaces, 11, 12467-12475.
https://doi.org/10.1021/acsami.8b21770
[36] Fu, K.K., Gong, Y., Dai, J., et al. (2016) Flexible, Solid-State, Ion-Conducting Membrane with 3d Garnet Nanofiber Networks for Lithium Batteries. Proceedings of the National Academy of Sciences of the United States of America, 113, 7094-7099.
https://doi.org/10.1073/pnas.1600422113
[37] Wan, J., Xie, J., Kong, X., et al. (2019) Ultrathin, Flexible, Solid Polymer Composite Electrolyte Enabled with Aligned Nanoporous Host for Lithium Batteries. Nature Nanotechnology, 14, 705-711.
https://doi.org/10.1038/s41565-019-0465-3
[38] Zeng, X.X., Yin, Y.X., Li, N.W., et al. (2016) Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries. Journal of the American Chemical Society, 138, 15825-15828.
https://doi.org/10.1021/jacs.6b10088
[39] Toomas, K., Sloop, S.B., Kerr, J., et al. (2000) Comparison of Lithi-um-Polymer Cell Performance with Unity and Nonunity Transference Numbers. J. Powersources, 89, 132-138.
https://doi.org/10.1016/S0378-7753(00)00420-1
[40] Doyle, M. and Newman, J. (1995) The Use of Mathematical Modeling in the Design of Lithium/Polymer Battery Systems. Electrochimica Acta, 40, 2191-2196.
https://doi.org/10.1016/0013-4686(95)00162-8
[41] Brissot, C., Rosso, M., Chazalviel, J., et al. (1999) Dendritic Growth Mechanisms in Lithiumrpolymer Cells. Journal of Power Sources, 81-82, 925-929.
https://doi.org/10.1016/S0378-7753(98)00242-0
[42] Zhang, H., Oteo, U., Judez, X., et al. (2019) Designer Anion Enabling Solid-State Lithium-Sulfur Batteries. Joule, 3, 1689-1702.
https://doi.org/10.1016/j.joule.2019.05.003
[43] Porcarelli, L., Shaplov, A.S., Bella, F., et al. (2016) Single-Ion Conducting Polymer Electrolytes for Lithium Metal Polymer Batteries That Operate at Ambient Temperature. ACS Energy Letters, 1, 678-682.
https://doi.org/10.1021/acsenergylett.6b00216
[44] Yuan, H., Luan, J., Yang, Z., et al. (2020) Single Lithium-Ion Conducting Solid Polymer Electrolyte with Superior Electrochemical Stability and Interfacial Compatibility for Solid-State Lithium Metal Batteries. ACS Applied Materials & Interfaces, 12, 7249-7256.
https://doi.org/10.1021/acsami.9b20436
[45] Cao, C., Li, Y., Feng, Y., et al. (2019) A Solid-State Single-Ion Pol-ymer Electrolyte with Ultrahigh Ionic Conductivity for Dendrite-Free Lithium Metal Batteries. Energy Storage Materials, 19, 401-407.
https://doi.org/10.1016/j.ensm.2019.03.004
[46] Ma, Q., Xia, Y., Feng, W., et al. (2016) Impact of the Functional Group in the Polyanion of Single Lithium-Ion Conducting Polymer Electrolytes on the Stability of Lithium Metal Elec-trodes. RSC Advances, 6, 32454-32461.
https://doi.org/10.1039/C6RA01387B
[47] Ma, Q., Zhang, H., Zhou, C., et al. (2016) Single Lithium-Ion Con-ducting Polymer Electrolytes Based on a Super-Delocalized Polyanion. Angewandte Chemie International Edition, 55, 2521-2525.
https://doi.org/10.1002/anie.201509299
[48] Fei, Y., Liu, S., Long, Y., et al. (2019) New Single Lithium Ion Con-ducting Polymer Electrolyte Derived from Delocalized Tetrazolate Bonding to Polyurethane. Electrochimica Acta, 299, 902-913.
https://doi.org/10.1016/j.electacta.2019.01.071
[49] Luo, G., Yuan, B., Guan, T., et al. (2019) Synthesis of Single Lithium-Ion Conducting Polymer Electrolyte Membrane for Solid-State Lithium Metal Batteries. ACS Applied Energy Materials, 2, 3028-3034.
https://doi.org/10.1021/acsaem.9b00440
[50] Guzman-Gonzalez, G., Avila-Paredes, H.J., Rivera, E., et al. (2018) Electrochemical Characterization of Single Lithium-Ion Conducting Polymer Electrolytes Based on sp3 Boron and Poly(ethylene glycol) Bridges. ACS Applied Materials & Interfaces, 10, 30247-30256.
https://doi.org/10.1021/acsami.8b02519
[51] Deng, K., Wang, S., Ren, S., et al. (2017) Network Type SP3 Bo-ron-Based Single-Ion Conducting Polymer Electrolytes for Lithium Ion Batteries. Journal of Power Sources, 360, 98-105.
https://doi.org/10.1016/j.jpowsour.2017.06.006
[52] Shao, Z. and Jannasch, P. (2017) Single Lithium-Ion Con-ducting Poly(Tetrafluorostyrene Sulfonate)-Polyether Block Copolymer Electrolytes. Polymer Chemistry, 8, 785-94.
https://doi.org/10.1039/C6PY01910B
[53] Liu K-L, Chao C-H, Lee H-C, et al. (2019) A Novel Non-Porous Sep-arator Based on Single-Ion Conducting Triblock Copolymer for Stable Lithium Electrodeposition. Journal of Power Sources, 419, 58-64.
https://doi.org/10.1016/j.jpowsour.2019.02.048
[54] Deng, K., Qin, J., Wang, S., et al. (2018) Effective Suppres-sion of Lithium Dendrite Growth Using a Flexible Single-Ion Conducting Polymer Electrolyte. Small, 14, e1801420.
https://doi.org/10.1002/smll.201801420
[55] Deng, K., Wang, S., Ren, S., et al. (2016) A Novel Sin-gle-Ion-Conducting Polymer Electrolyte Derived from CO2-Based Multifunctional Polycarbonate. ACS Applied Materials & Interfaces, 8, 33642-33648.
https://doi.org/10.1021/acsami.6b11384
[56] Liu, F., Xiao, Q., Wu, H.B., et al. (2018) Fabrication of Hybrid Sili-cate Coatings by a Simple Vapor Deposition Method for Lithium Metal Anodes. Advanced Energy Materials, 8, Article ID: 1701744.
https://doi.org/10.1002/aenm.201701744
[57] Yang, T., Sun, Y., Qian, T., et al. (2020) Lithium Dendrite Inhibition via 3D Porous Lithium Metal Anode Accompanied by Inherent Sei Layer. Energy Storage Materials, 26, 385-390.
https://doi.org/10.1016/j.ensm.2019.11.009
[58] Cheng X-B, Zhao C-Z, Yao Y-X, et al. (2019) Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes. Chem, 5, 74-96.
https://doi.org/10.1016/j.chempr.2018.12.002
[59] Shen, Y., Zhang, Y., Han, S., et al. (2018) Unlocking the Ener-gy Capabilities of Lithium Metal Electrode with Solid-State Electrolytes. Joule, 2, 1674-1689.
https://doi.org/10.1016/j.joule.2018.06.021
[60] Oh, D.Y., Nam, Y.J., Park, K.H., et al. (2015) Excellent Compati-bility of Solvate Ionic Liquids with Sulfide Solid Electrolytes: Toward Favorable Ionic Contacts in Bulk-Type All-Solid-State Lithium-Ion Batteries. Advanced Energy Materials, 5, Article ID: 1500865.
https://doi.org/10.1002/aenm.201500865
[61] Zheng, B., Zhu, J., Wang, H., et al. (2018) Stabilizing Li10SnP2S12/Li Interface via an in Situ Formed Solid Electrolyte Interphase Layer. ACS Applied Materials & Interfaces, 10, 25473-25482.
https://doi.org/10.1021/acsami.8b08860
[62] Umeshbabu, E., Zheng, B., Zhu, J., et al. (2019) Stable Cycling Lith-ium-Sulfur Solid Battery with Enhanced Li/ Li10GeP2S12 Solid Electrolyte Interface Stability. ACS Applied Materials & Interfaces, 11, 18436-18447.
https://doi.org/10.1021/acsami.9b03726
[63] Takada, K. (2013) Progress and Prospective of Solid-State Lithium Batteries. Acta Materialia, 61, 759-770.
https://doi.org/10.1016/j.actamat.2012.10.034
[64] Wan, H., Peng, G., Yao, X., et al. (2016) Cu2ZnSnS4/Graphene Nanocomposites for Ultrafast, Long Life All-Solid-State Lithium Batteries Using Lithium Metal Anode. Energy Storage Materials, 4, 59-65.
https://doi.org/10.1016/j.ensm.2016.02.004
[65] Chi, S.-S., Liu, Y., Zhao, N., et al. (2019) Solid Polymer Electro-lyte Soft Interface Layer with 3D Lithium Anode for All-Solid-State Lithium Batteries. Energy Storage Materials, 17, 309-316.
https://doi.org/10.1016/j.ensm.2018.07.004
[66] Nagao, M., Hayashi, A. and Tatsumisago, M. (2012) Bulk-Type Lithium Metal Secondary Battery with Indium Thin Layer at Interface between Li Electrode and Li2S-P2S5 Solid Electrolyte. Electrochemistry, 80, 734-736.
https://doi.org/10.5796/electrochemistry.80.734
[67] Han, F., Yue, J., Fan, X., et al. (2016) High-Performance All-Solid-State Lithium-Sulfur Battery Enabled by a Mixed-Conductive Li2S Nanocomposite. Nano Letters, 16, 4521-4527.
https://doi.org/10.1021/acs.nanolett.6b01754
[68] Fu, K.K., Gong, Y., Fu, Z., et al. (2017) Transient Behavior of the Metal Interface in Lithium Metal-Garnet Batteries. Angewandte Chemie International Edition, 56, 14942-14947.
https://doi.org/10.1002/anie.201708637
[69] Wang, C., Gong, Y., Liu, B., et al. (2017) Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes. Nano Letters, 17, 565-571.
https://doi.org/10.1021/acs.nanolett.6b04695
[70] Lu, Y., Huang, X., Ruan, Y., et al. (2018) An in Situ Element Permeation Constructed High Endurance Li-Llzo Interface at High Current Densities. Journal of Materials Chemistry A, 6, 18853-18858.
https://doi.org/10.1039/C8TA07241H
[71] Duan, J., Wu, W., Nolan, A.M., et al. (2019) Lithium-Graphite Paste: An Interface Compatible Anode for Solid-State Batteries. Advanced Materials, 31, e1807243.
https://doi.org/10.1002/adma.201807243
[72] Shao, Y., Wang, H., Gong, Z., et al. (2018) Drawing a Soft Interface: An Effective Interfacial Modification Strategy for Garnet-Type Solid-State Li Batteries. ACS Energy Letters, 3, 1212-1218.
https://doi.org/10.1021/acsenergylett.8b00453
[73] Xia, Q., Sun, S., Xu, J., et al. (2018) Self-Standing 3D Cath-odes for All-Solid-State Thin Film Lithium Batteries with Improved Interface Kinetics. Small, 14, Article ID: e1804149.
https://doi.org/10.1002/smll.201804149
[74] Sun, S., Xia, Q., Liu, J., et al. (2019) Self-Standing Oxygen-Deficient α-Moo3-X Nanoflake Arrays as 3D Cathode for Advanced All-Solid-State Thin Film Lithium Batteries. Journal of Mate-riomics, 5, 229-236.
https://doi.org/10.1016/j.jmat.2019.01.001
[75] Zhao, Q., Liu, X., Stalin, S., et al. (2019) Solid-State Polymer Electrolytes with In-Built Fast Interfacial Transport for Secondary Lithium Batteries. Nature Energy, 4, 365-373.
https://doi.org/10.1038/s41560-019-0349-7
[76] Inoue, T. and Mukai, K. (2016) Are All-Solid-State Lithium-Ion Batteries Really Safe? Verification by Differential Scanning Calorimetry with an All-Inclusive Microcell. ACS Applied Materials & Interfaces, 9, 1507-1515.
https://doi.org/10.1021/acsami.6b13224
[77] Janek, J. and Zeier, W.G. (2016) A Solid Future for Battery Devel-opment. Nature Energy, 1, Article No. 16141.
https://doi.org/10.1038/nenergy.2016.141
[78] Muramatsu, H., Hayashi, A., Ohtomo, T., et al. (2011) Structural Change of Li2S-P2S5 Sulfide Solid Electrolytes in the Atmosphere. Solid State Ionics, 182, 116-119.
https://doi.org/10.1016/j.ssi.2010.10.013
[79] Ohtomo, T., Hayashi, A., Tatsumisago, M., et al. (2013) Character-istics of the Li2O-Li2S-P2S5 Glasses Synthesized by the Two-Step Mechanical Milling. Journal of Non-Crystalline Solids, 364, 57-61.
https://doi.org/10.1016/j.jnoncrysol.2012.12.044
[80] Hayashi, A., Muramatsu, H., Ohtomo, T., et al. (2014) Im-proved Chemical Stability and Cyclability in Li2S-P2S5-P2O5-ZnO Composite Electrolytes for All-Solid-State Rechargea-ble Lithium Batteries. Journal of Alloys and Compounds, 591, 247-250.
https://doi.org/10.1016/j.jallcom.2013.12.191
[81] Hayashi, A., Muramatsu, H., Ohtomo, T., et al. (2013) Im-provement of Chemical Stability of Li3PS4 Glass Electrolytes by Adding MxOy (M = Fe, Zn, and Bi) Nanoparticles. Journal of Materials Chemistry A, 1, 6320-6326.
https://doi.org/10.1039/c3ta10247e
[82] Song, S., Wu, Y., Tang, W., et al. (2019) Composite Solid Polymer Elec-trolyte with Garnet Nanosheets in Poly (Ethylene Oxide). ACS Sustainable Chemistry & Engineering, 7, 7163-7170.
https://doi.org/10.1021/acssuschemeng.9b00143
[83] Li, X., Wang, D., Wang, H., et al. (2019) Poly(Ethylene Ox-ide)-Li10snp2s12 Composite Polymer Electrolyte Enables High-Performance All-Solid-State Lithium Sulfur Battery. ACS Applied Materials & Interfaces, 11, 22745-22753.
https://doi.org/10.1021/acsami.9b05212
[84] Zhang, N., He, J., Han, W., et al. (2019) Composite Solid Electrolyte PEO/Sn/Lialo2 for a Solid-State Lithium Battery. Journal of Materials Science, 54, 9603-9612.
https://doi.org/10.1007/s10853-019-03535-3
[85] Zhang, J., Zheng, C., Lou, J., et al. (2019) Poly(Ethylene Oxide) Reinforced Li6PS5Cl Composite Solid Electrolyte for All-Solid-State Lithium Battery: Enhanced Electrochemical Perfor-mance, Mechanical Property and Interfacial Stability. Journal of Power Sources, 412, 78-85.
https://doi.org/10.1016/j.jpowsour.2018.11.036
[86] Liu, X., Zhang, C., Gao, S., et al. (2020) A Novel Polyphos-phonate Flame-Retardant Additive towards Safety-Reinforced All-Solid-State Polymer Electrolyte. Materials Chemistry and Physics, 239, Article ID: 122014.
https://doi.org/10.1016/j.matchemphys.2019.122014
[87] Shibutani, R, and Tsutsumi, H. (2012) Fire-Retardant Solid Polymer Electrolyte Films Prepared from Oxetane Derivative with Dimethyl Phosphate Ester Group. Journal of Power Sources, 202, 369-373.
https://doi.org/10.1016/j.jpowsour.2011.11.046
[88] Zhou, X., Jiang, H., Zheng, H., et al. (2020) Nonflammable Hybrid Solid Electrolyte Membrane for a Solid-State Lithium Battery Compatible with Conventional Porous Electrodes. Journal of Membrane Science, 603, Article ID: 117820.
https://doi.org/10.1016/j.memsci.2020.117820
[89] Liu, Q., Liu, Y., Jiao, X., et al. (2019) Enhanced Ionic Conduc-tivity and Interface Stability of Hybrid Solid-State Polymer Electrolyte for Rechargeable Lithium Metal Batteries. Energy Storage Materials, 23, 105-111.
https://doi.org/10.1016/j.ensm.2019.05.023
[90] Liu, J., Shen, X., Zhou, J., et al. (2019) Nonflammable and High-Voltage-Tolerated Polymer Electrolyte Achieving High Stability and Safety in 4.9 V-Class Lithium Metal Battery. ACS Applied Materials & Interfaces, 11, 45048-45056.
https://doi.org/10.1021/acsami.9b14147
[91] Kelly, J.C., Pepin, M., Huber, D.L., et al. (2012) Reversible Control of Electrochemical Properties Using Thermally-Responsive Polymer Electrolytes. Advanced Materials, 24, 886-889.
https://doi.org/10.1002/adma.201103340
[92] Yang, H., Liu, Z., Chandran, B.K., et al. (2015) Self-Protection of Electrochemical Storage Devices via a Thermal Reversible Sol-Gel Transition. Advanced Materials, 27, 5593-5598.
https://doi.org/10.1002/adma.201502484
[93] Shi, Y., Ha, H., Al-Sudani, A., et al. (2016) Thermoplastic Elasto-mer-Enabled Smart Electrolyte for Thermoresponsive Self-Protection of Electrochemical Energy Storage Devices. Ad-vanced Materials, 28, 7921-7928.
https://doi.org/10.1002/adma.201602239
[94] Zhou, J., Qian, T., Liu, J., et al. (2019) High-Safety All-Solid-State Lithium-Metal Battery with High-Ionic-Conductivity Thermoresponsive Solid Polymer Electrolyte. Nano Letters, 19, 3066-3073.
https://doi.org/10.1021/acs.nanolett.9b00450
[95] Shen, X., Li, Y., Qian, T., et al. (2019) Lithium Anode Stable in Air for Low-Cost Fabrication of a Dendrite-Free Lithium Battery. Nature Communications, 10, Article No. 900.
https://doi.org/10.1038/s41467-019-08767-0