外泌体在胃癌中的研究进展
Research Progress of Exosome in Gastric Cancer
DOI: 10.12677/ACM.2022.12101338, PDF, HTML, XML, 下载: 221  浏览: 399 
作者: 陈 鑫, 李林俞:甘肃中医药大学第一临床医学院,甘肃 兰州;甘肃省人民医院肿瘤内科,甘肃 兰州;郑金平:宁夏石嘴山市第二人民医院神经外科,宁夏 石嘴山;李红玲*:甘肃省人民医院肿瘤内科,甘肃 兰州
关键词: 胃癌外泌体肿瘤微环境MEK-ERK信号通路Gastric Cancer Exosome TME MEK-ERK Signaling Pathway
摘要: 外泌体是直径在30~150 nm的脂质双分子层的小囊泡,携带多种细胞相关特异性活性物质。在胃癌微环境中胃癌细胞分泌的外泌体参与肿瘤的生长,细胞增殖,细胞侵袭转移及血管生成等过程。已有研究表明胃癌细胞外泌体与巨噬细胞增殖、迁移密切相关。但缺氧条件下胃癌细胞外泌体诱导巨噬细胞极化的具体途径和机制尚不明确。本文就胃癌细胞外泌体内容物介导MEK-ERK信号通路对巨噬细胞极化表型的影响及研究进展进行综述,旨在探讨外泌体在胃癌治疗中的潜在价值,为胃癌的治疗提供新的靶点。
Abstract: Exosomes are small vesicles of lipid bilayers with diameters ranging from 30 nm~150 nm, which carry a variety of cell-related specific active substances. Exosomes secreted by gastric cancer cells in the microenvironment of gastric cancer are involved in tumor growth, cell proliferation, cell inva-sion, metastasis, and angiogenesis. Previous studies have shown that gastric cancer exosomes are closely related to macrophage proliferation and migration. However, the specific pathway and mechanism of macrophage polarization induced by exosome in gastric cancer cells under hypoxia are still unclear. This article reviews the effect and research progress of MEK-ERK signaling path-way mediated by exosome contents of gastric cancer cells on the polarization phenotype of macro-phages, aiming to explore the potential value of exosome in the treatment of gastric cancer and provide new targets for the treatment of gastric cancer.
文章引用:陈鑫, 郑金平, 李林俞, 李红玲. 外泌体在胃癌中的研究进展[J]. 临床医学进展, 2022, 12(10): 9255-9260. https://doi.org/10.12677/ACM.2022.12101338

1. 引言

恶性肿瘤成为全球第二大常见的死亡原因,胃癌是全球第五大常见癌症,也是全球第四大癌症死亡原因 [1]。目前尽管治疗方法有了很大的改进和一些创新性治疗方法,但据数据统计,新病例数每年仍在增加。目前手术、化疗和放疗是胃癌的主要治疗方法,晚期胃癌的治疗方法是新辅助放化疗、分子靶向治疗和免疫治疗相结合 [2]。

外泌体是具有脂质双分子层结构的细胞囊泡,所有的细胞均可分泌外泌体。外泌体因其内源性的靶向性与稳定性,作为天然的药物载体在疾病治疗中表现出显著的优势,已被广泛研究为下一代纳米级药物递送系统 [3]。肿瘤细胞来源的外泌体可以促进细胞粘附,增殖,凋亡,侵袭和转移以及新生血管生成,在缺氧环境中外泌体的产生增加。差速离心法是外泌体的提取“金标准” [4],本课题通过提取外泌体后构建缺氧模型,与巨噬细胞共培养后展开机制研究。

肿瘤相关巨噬细胞在肿瘤中的发生和发展中的作用是复杂的,在肿瘤细胞的诱导下,肿瘤相关巨噬细胞分化成不同的极化状态,主要存在两种类型,CD68阳性的M1型巨噬细胞,主要与活化的氮过氧化物相关,具有促炎作用;和CD206阳性的M2型巨噬细胞,与免疫抑制,组织重塑,细胞外基质降解等相关,表达高水平的抗炎因子如IL-10,Arg-1活性,有利于肿瘤细胞生长。在包括胃癌在内的大多数实体肿瘤中,肿瘤微环境主要以M2型为主,微环境的浸润数量、类型等与肿瘤的转移、侵袭、耐药等进程密切相关 [5] [6]。MEK-ERK信号通路可以被一系列的细胞外刺激激活,包括生长和分化因子、细胞因子、激素等,将信号从细胞表面传到细胞核,从而调节正常的细胞存活、增殖和分化,是多种信号的交汇点或共同通路。本综述通过胃癌细胞缺氧外泌体内容物介导的MEK-ERK信号通路对巨噬细胞极化表型的影响,为胃癌的治疗提供新的靶点。

2. 胃癌研究进展

胃癌是世界上五大常见的恶性肿瘤,在中国,胃癌在癌症发病率中居第二位,死亡率居第三位。据相关数据统计分析,中国胃癌的患病率和病死率约占全球病例和死亡人数的一半 [1] [7]。胃癌的发展与多种环境和遗传因素有关,包括幽门螺杆菌感染、年龄、高盐摄入量以及水果和蔬菜摄入量低的饮食等 [8]。大部分胃癌患者在早期阶段并无明显症状,在中晚期发生局部侵袭进展后,才最常被诊断出来 [9]。临床上常用的诊断胃癌的方法有:胃内窥镜检查、影像学诊断、组织病理学检测、血清标志物检测。联合以上几种诊断方法帮助胃癌早期检测,诊断及预后,胃癌的发病率较过去有所下降,但其5年生存率仍然很低。目前,单纯原发胃癌的手术切除仍是治疗胃癌的首选方法,但整体治疗效果不明显,且术后复发率高。临床上用于胃癌早期检测的最常见肿瘤标志物包括癌胚抗原(carcino-embryonic antigen, CEA)、CA125、CA50、胃蛋白酶原以及甲胎蛋白(α-fetoprotein, AFP)等特异性和敏感性较差 [10] [11]。晚期胃癌的主要治疗方法是新辅助放化疗、分子靶向治疗和免疫治疗相结合 [2]。可见,早期发现和诊疗是改善胃癌预后的必要条件,因此,继续寻找新的胃癌治疗靶点,探索胃癌发病机制对临床诊疗具有重要意义。

3. 外泌体与肿瘤研究进展

外泌体是一种起源于胞内多囊体、由细胞主动分泌的大小约30~150 nm的脂质双分子层的小囊泡,外泌体内携带多种细胞相关特异性活性物质(miRNA、mRNA、蛋白质,脂质等),可作为载体与靶细胞进行信息传递及物质交换 [3] [12] [13]。几乎所有类型的正常细胞都可以产生外泌体,如人脐静脉内皮细胞,间充质干细胞(MSC),T细胞,B细胞,巨噬细胞,树突状细胞(DC),自然杀伤(NK)细胞 [14] [15] [16] [17] [18]。蛋白质作为外泌体主要成分之一,可分为两类,一类是外泌体中普遍存在的外泌体标志物蛋白,如膜蛋白(CD9、CD63和CD81)和胞内蛋白(热休克蛋白70和肿瘤敏感基因101)等 [19];另一类是与细胞来源相关的蛋白,如肿瘤细胞和免疫细胞来源的外泌体,它们能够调控肿瘤的发生发展和调节机体的免疫功能等。肿瘤细胞在其发生、发展的过程中不断释放肿瘤特异性的外泌体到胞外,并可通过其携带的肿瘤细胞的DNA,RNA及蛋白质等生物物质调节催化肿瘤微环境 [20]。研究发现,肿瘤细胞来源的外泌体可以促进细胞粘附,增殖,凋亡,侵袭和转移以及新生血管生成 [21] [22]。外泌体在缺氧环境下,细胞释放外泌体的丰度显著提升 [23],肿瘤细胞可以通过激活缺氧诱导因子来适应组织缺氧,增加外泌体的产生,进而介导局部和远处位点的细胞间通讯增加 [24] [25]。缺氧诱导因子上调并介导转录重编程,导致肿瘤血管生成、侵袭转移、治疗耐药等癌症的侵袭性表型 [26]。外泌体在胰腺癌、肝癌、头颈鳞癌、鼻咽癌以及乳腺癌中均有研究,但在胃癌的机制研究中较少。但外泌体在分离和提纯方法上还缺乏标准化,浓度较低,在临床治疗上有所限制 [27]。

4. 巨噬细胞与肿瘤研究进展

巨噬细胞来源于髓细胞系、卵黄囊或造血起源的未成熟的单核细胞,经过血液循环,进入到组织,分化成组织巨噬细胞,具有良好的增殖能力 [28] [29] [30]。肿瘤相关巨噬细胞在肿瘤中的发生和发展中的作用是复杂的,在肿瘤细胞的诱导下,巨噬细胞分化成不同极化状态的肿瘤相关巨噬细胞主要存在两种类型,CD68阳性的M1型巨噬细胞,产生炎症和免疫刺激细胞因子,分泌活性氧和氮中间体,具有抗炎作用,参与宿主先天防御,并对转化细胞具有细胞毒性作用,主要参与Th1型免疫应答,抵御病原体入侵,监视肿瘤病变,因此具有抗肿瘤作用,对宿主较友好 [31] [32]。在白介素(IL-4、IL-10和IL-13)诱导分化的 [33] CD206阳性的M2型巨噬细胞,与免疫抑制,组织重塑,细胞外基质降解等相关,表达高水平的抗炎因子如IL-10、Arg-1活性,有利于肿瘤细胞生长 [34] [35]。胃癌来源的外泌体对巨噬细胞的极化起着重要作用,参与了胃癌细胞的免疫逃避、侵袭转移、增殖、细胞周期的进展以及免疫反应;还可以改变肿瘤微环境,肿瘤微环境在肿瘤进展期的表型是可调节的,M1型巨噬细胞主要处在初期,发展到晚期以M2型为主 [36],并且肿瘤微环境主要通过促进肿瘤的侵袭增加细胞外基质和基底膜的降解,可见肿瘤相关巨噬细胞的浸润程度与肿瘤密切相关 [37];并且能够招募受体细胞来支持肿瘤细胞的生长发育。胃癌来源的外泌体对巨噬细胞作用后,激活巨噬细胞相关信号通路表达,诱导巨噬细胞表型的极化 [38]。研究表明,缺氧条件下胃癌细胞来源的外泌体能够显著促进巨噬细胞的增殖,侵袭和转移等。但是,在缺氧条件下肿瘤细胞来源的外泌体对肿瘤的功能和机制目前未见大量报道。因此,在缺氧微环境中阐明胃癌细胞来源外泌体如何诱导巨噬细胞极化促进肿瘤的生长和转移成为靶向治疗胃癌的关键。

5. MEK-ERK信号通路在肿瘤中的作用机制研究进展

MEK-ERK信号通路的异常改变会引起肿瘤的发生。被激活后的MEK和ERK可导致细胞内某些蛋白的改变,激活多种转录因子,从而影响细胞迁移、周期、增殖乃至细胞凋亡 [39] [40]。已有的证据显示 MEK/ERK信号转导通路参与调控了多种恶性肿瘤的发生、淋巴转移等过程,且也可能与药物治疗的效果密切相关 [41]。有研究表明,1,25-二羟基维生素D3可通过抑制MEK-ERK通路进而调节腺癌的增殖和凋亡 [42];重组蛋白Betacellulin可通过MEK-ERK信号通路向上调节Connexin43来促进卵巢癌细胞的迁移 [43];在结肠癌中敲低重组蛋白FABP7可通过MEK/ERK信号通路降低结肠癌细胞增殖并促进细胞凋亡 [44]。MEK/ERK信号转导通路的主要家庭成员包括ras、raf、MRK、ERK等,其中ERK蛋白包括ERK1和ERK2蛋白 [45]。活化的Raf与MEK结合后使MEK激活,活化的MEK可使丝氨酸、苏氨酸和酪氨酸发生磷酸化,最终激活ERK实现信号的传导 [46]。活化后的ERK进入核内可使相应的转录因子磷酸化,也在多个水平上增加了G1晚期CDK抑制剂的活性,影响细胞周期进展,调控相关基因和蛋白的表达,从而介导细胞增殖和凋亡过程 [47] [48] [49]。有研究发现,巨噬细胞分泌细胞因子TNF-α会增强ERK信号通路的活化程度,抑制剂抑制后也显著抑制该通路的激活情况 [50],表明巨噬细胞分泌细胞因子与MEK-ERK信号通路具有相关性。

6. 总结与展望

综上所述,外泌体介导肿瘤细胞之间的双向信号转导,在肿瘤侵袭性、血管生成、增殖、化疗、免疫逃避、代谢等发挥重要作用。外泌体作为免疫治疗试剂或药物传递平台的潜在应用已经获得了大量的研究,也为肿瘤治疗提供了新的思路。

参考文献

[1] Wang, F.H., Zhang, X.T., Li, Y.F., et al. (2021) The Chinese Society of Clinical Oncology (CSCO): Clinical Guidelines for the Diagnosis and Treatment of Gastric Cancer, 2021. Cancer Communications (London), 41, 747-795.
https://doi.org/10.1002/cac2.12193
[2] Song, Z., Wu, Y., Yang, J., Yang, D. and Fang, X. (2017) Progress in the Treatment of Advanced Gastric Cancer. Tumor Biology, 39.
https://doi.org/10.1177/1010428317714626
[3] 艾晓青, 窦磊. 外泌体优化策略的研究进展[J]. 临床医学研究与践, 2021, 6(16): 190-192.
[4] Tiwari, S., Kumar, V., Randhawa, S., et al. (2021) Preparation and Characterization of Extracellular Vesicles. American Journal of Reproductive Immunology, 85, e13367.
https://doi.org/10.1111/aji.13367
[5] Ruffell, B. and Coussens, L.M. (2015) Macro-phages and Therapeutic Resistance in Cancer. Cancer Cell, 27, 462-472.
https://doi.org/10.1016/j.ccell.2015.02.015
[6] Cardoso, A.P., Pinto, M.L., Pinto, A.T., et al. (2014) Macrophages Stimulate Gastric and Colorectal Cancer Invasion through EGFR Y (1086), c-Src, Erk1/2 and Akt Phosphorylation and Small GTPase Activity. Oncogene, 33, 2123-2133.
https://doi.org/10.1038/onc.2013.154
[7] Chen, W., Zheng, R., Baade, P.D., Zhang, S., Zeng, H., Bray, F., Jemal, A., Yu, X.Q. and He, J. (2016) Cancer Statistics in China, 2015. CA: A Cancer Journal for Clinicians, 66, 115-132.
https://doi.org/10.3322/caac.21338
[8] Yusefi, A.R., Bagheri Lan-karani, K., Bastani, P., Radinmanesh, M. and Kavosi, Z. (2018) Risk Factors for Gastric Cancer: A Systematic Review. Asian Pacific Journal of Cancer Prevention, 19, 591-603.
[9] Chung, C.S., Lee, Y.C. and Wu, M.S. (2015) Prevention Strategies for Esophageal Cancer: Perspectives of the East vs. West. Best Practice & Research. Clinical Gastroenterology, 29, 869-883.
https://doi.org/10.1016/j.bpg.2015.09.010
[10] Tsai, M.M., Wang, C.S., Tsai, C.Y., Huang, H.W., Chi, H.C., Lin, Y.H., Lu, P.H. and Lin, K.H. (2016) Potential Diagnostic, Prognostic and Therapeutic Targets of Mi-croRNAs in Human Gastric Cancer. International Journal of Molecular Sciences, 17, Article No. 945.
https://doi.org/10.3390/ijms17060945
[11] Emoto, S., Ishigami, H., Yamashita, H., Yamaguchi, H., Kaisaki, S. and Kitayama, J. (2012) Clinical Significance of CA125 and CA72-4 in Gastric Cancer with Peritoneal Dissemination. Gas-tric Cancer, 15, 154-161.
https://doi.org/10.1007/s10120-011-0091-8
[12] 陈德义, 苏刚, 刘骥飞, 吴琼慧, 陈玮, 张振昶. 外泌体载体治疗在中枢神经系统疾病中的研究进展[J]. 中国细胞生物学学报, 2021, 43(8): 1650-1657.
[13] Zhou, Y.Y., et al. (2017) Exosome Transfer among Different Species Cells and Mediating miRNAs Delivery. Journal of Cellular Bio-chemistry, 118, 4267-4274.
https://doi.org/10.1002/jcb.26077
[14] Zhang, Y., Bi, J., Huang, J., Tang, Y., Du, S. and Li, P. (2020) Exosome: A Review of Its Classification, Isolation Techniques, Storage, Diagnostic and Targeted Therapy Applications. International Journal of Nanomedicine, 15, 6917-6934.
https://doi.org/10.2147/IJN.S264498
[15] Cheng, L., Zhang, K., Wu, S.Y., Cui, M.H. and Xu, T.M. (2017) Focus on Mesenchymal Stem Cell-Derived Exosome: Opportunities and Challenges in Cell-Free Therapy. Stem Cells Interna-tional, 2017, Article ID: 6305295.
https://doi.org/10.1155/2017/6305295
[16] He, C.Q., Hua, W., Liu, J.T., Fan, L.L., Wang, H. and Sun, G.P. (2020) Exosome Derived from Endoplasmic Reticulum-Stressed Liver Cancer Cells Enhance the Expression of Cytokines in Macrophages via the STAT3 Signaling Pathway. Oncology Letters, 20, 589-600.
https://doi.org/10.3892/ol.2020.11609
[17] Li, D.P., Wang, Y., Jin, X.R., et al. (2020) NK Cell-Derived Exosome Carry miR-207 and Alleviate Depression-Like Symptoms in Mice. Journal of Neuroinflammation, 17, Article No. 126.
https://doi.org/10.1186/s12974-020-01787-4
[18] Zhao, D.Y., Yu, Z.C., Li, Y., Wang, Y., Li, Q.F. and Han, D. (2020) GelMA Combined with Sustained Release of HUVECs Derived Exosome for Promoting Cutaneous Wound Healing and Facilitating Skin Regeneration. Journal of Molecular Histology, 51, 251-263.
https://doi.org/10.1007/s10735-020-09877-6
[19] Thery, C., Witwer, K., Aikawa, E., et al. (2018) Minimal Infor-mation for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. Journal of Extracellular Vesicles, 7, Article ID: 1535750.
https://doi.org/10.1080/20013078.2018.1535750
[20] 黄哲. 缺氧大肠癌细胞来源的外泌体通过Wnt4介导的β-catenin信号通路促进肿瘤血管新生及转移的机制研究[D]: [博士学位论文]. 沈阳: 中国医科大学, 2019.
[21] 苏刚. 分泌蛋白及外泌体对肝癌细胞影响的蛋白质组学研究[D]: [博士学位论文]. 兰州: 兰州大学, 2018.
[22] Abdelnaby, K., et al. (2016) Circulating Exosome Potentiate Tumor Malignant Properties in a Mouse Model of Chronic Sleep Fragmentation. Oncotarget, 7, 54676-54690.
https://doi.org/10.18632/oncotarget.10578
[23] 张佳佳, 苏刚, 陈丽霞, 王满侠, 周娟平, 高娟, 张振昶. 缺氧条件下中枢神经系统外泌体作用机制[J]. 中国细胞生物学学报, 2021, 43(1): 103-109.
[24] 王琳琳, 朱桂全, 李灵. 缺氧肿瘤微环境中外泌体参与免疫调控的研究进展[J]. 细胞与分子免疫学杂志, 2021, 37(7): 651-656.
[25] Walbrecq, G., et al. (2020) Distinct Cargos of Small Extracellular Vesicles Derived from Hypoxic Cells and Their Effect on Cancer Cells. International Journal of Molecular Sciences, 21, Article No. 5071.
https://doi.org/10.3390/ijms21145071
[26] Kuo, T.C., Kung, H.J. and Shih, J.W. (2020) Signaling in and out: Long-Noncoding RNAs in Tumor Hypoxia. Journal of Biomedical Science, 27, Article No. 59.
https://doi.org/10.1186/s12929-020-00654-x
[27] Doyle, L.M. and Wang, M.Z. (2019) Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells, 8, Article No. 727.
https://doi.org/10.3390/cells8070727
[28] Taheri, B., Soleimani, M., Aval, S.F., Memari, F. and Zarghami, N. (2018) C6 Glioma-Derived Microvesicles Stimulate the Proliferative and Metastatic Gene Expression of Normal Astro-cytes. Neuroscience Letters, 685, 173-178.
https://doi.org/10.1016/j.neulet.2018.08.034
[29] Laviron, M. and Boissonnas, A. (2019) Ontogeny of Tu-mor-Associated Macrophages. Frontiers in Immunology, 10, Article No. 1799.
https://doi.org/10.3389/fimmu.2019.01799
[30] Isidro, R.A. and Appleyard, C.B. (2016) Colonic Macrophage Po-larization in Homeostasis, Inflammation, and Cancer. The American Journal of Physiology-Gastrointestinal and Liver Physiology, 311, G59-G73.
https://doi.org/10.1152/ajpgi.00123.2016
[31] 谢玙玙, 段昕所. 肿瘤微环境下巨噬细胞的极化和靶向治疗意义[J]. 华西医学, 2021, 36(5): 679-685.
[32] Singh, S., Mehta, N., Jiang, L.L., et al. (2017) Initiative Action of Tumor Associated Macrophage during Tumor Metastasis. Biochimie Open, 4, 8-18.
https://doi.org/10.1016/j.biopen.2016.11.002
[33] 王一晨, 杨文山, 董宪喆, 胡园. 肿瘤相关巨噬细胞的作用综述[J]. 解放军医学院学报, 2021, 42(12): 1315-1321.
[34] Vitale, I., Manic, G., Coussens, L.M., Kroemer, G. and Galluzzi, L. (2019) Macrophages and Metabolism in the Tumor Microenvironment. Cell Metabolism, 30, 36-50.
https://doi.org/10.1016/j.cmet.2019.06.001
[35] Oya, Y., Hayakawa, Y. and Koike, K. (2020) Tumor Microenvi-ronment in Gastric Cancers. Cancer Science, 111, 2696-2707.
https://doi.org/10.1111/cas.14521
[36] Netea-Maier, R.T., Smit, J.W.A. and Netea, M.G. (2018) Metabolic Changes in Tumor Cells and Tumor-Associated Macrophages: A Mutual Relationship. Cancer Letters, 413, 102-109.
https://doi.org/10.1016/j.canlet.2017.10.037
[37] Lewis, C.E. and Pollard, J.W. (2006) Distinct Role of Macrophages in Different Tumor Microenvironments. Cancer Research, 66, 605-612.
https://doi.org/10.1158/0008-5472.CAN-05-4005
[38] 李丽伟. 胃癌中PTEN低表达通过上调P-AURKA调节AURKA是维持胃癌恶性表型的本质[D]: [硕士学位论文]. 天津: 天津医科大学, 2018.
[39] Wang, D., Boerner, S.A., Winkler, J.D., et al. (2007) Clinical Experience of MEK Inhibitors in Cancer Therapy. Biochimicaet Biophysica Acta, 1773, 1248-1255.
https://doi.org/10.1016/j.bbamcr.2006.11.009
[40] Martin-Liberal, J., Lagares-Tena, L. and Larkin, J. (2014) Pro-spects for MEK Inhibitors for Treating Cancer. Expert Opinion Drug Safety, 13, 483-495.
https://doi.org/10.1517/14740338.2014.892578
[41] Chen, H., Jin, Z.L. and Xu, H. (2016) MEK/ERK Signaling Pathway in Apoptosis of SW620 Cell Line and Inhibition Effect of Resveratrol. Asian Pacific Journal of Tropical Medi-cine, 9, 49-53.
https://doi.org/10.1016/j.apjtm.2015.12.010
[42] Li, B., Lv, L. and Li, W. (2020) 1,25-Dihydroxy Vitamin D3 In-hibits the Ras-MEK-ERK Pathway and Regulates Proliferation and Apoptosis of Papillary Thyroid Carcinoma. Steroids, 159, Article ID: 108585.
https://doi.org/10.1016/j.steroids.2020.108585
[43] Zhao, J., Klausen, C., Yi, Y., et al. (2020) Betacellulin En-hances Ovarian Cancer Cell Migration by Up-Regulating Connexin43 via MEK-ERK Signaling. Cell Signal, 65, Article ID: 109439.
https://doi.org/10.1016/j.cellsig.2019.109439
[44] Ma, R., Wang, L., Yuan, F., et al. (2018) FABP7 Promotes Cell Proliferation and Survival in Colon Cancer through MEK/ERK Signaling Pathway. Biomedicine & Pharmacotherapy, 108, 119-129.
https://doi.org/10.1016/j.biopha.2018.08.038
[45] Buscà, R., Christen, R., Lovern, M., et al. (2015) ERK1 and ERK2 Present Functional Redundancy in Tetrapods Despite Higher Evolution Rate of ERK1. BMC Evolutionary Biology, 15, Article No. 179.
https://doi.org/10.1186/s12862-015-0450-x
[46] Reddy, K.B., Nabha, S.M. and Atanaskova, N. (2003) Role of MAP Kinase in Tumor Progression and Invasion. Cancer and Metastasis Reviews, 22, 395-403.
https://doi.org/10.1023/A:1023781114568
[47] Sun, Y., Liu, W.Z., Liu, T., et al. (2015) Signaling Pathway of MAPK/ERK in Cell Proliferation, Differentiation, Migration, Senescence and Apoptosis. Journal of Receptor and Signal Transduction Research, 35, 600-604.
https://doi.org/10.3109/10799893.2015.1030412
[48] Calvo, N., Martín, M.J., De Boland, A.R., et al. (2014) In-volvement of ERK1/2, p38 MAPK, and PI3K/Akt Signaling Pathways in the Regulation of Cell Cycle Progression by PTHrP in Colon Adenocarcinoma Cells. Biochemistry and Cell Biology, 92, 305-315.
https://doi.org/10.1139/bcb-2013-0106
[49] Chambard, J.C., Lefloch, R., Pouysségur, J. and Lenormand, P. (2007) ERK Implication in Cell Cycle Regulation. Biochimica et Biophysica Acta, 1773, 1299-1310.
https://doi.org/10.1016/j.bbamcr.2006.11.010
[50] 陆紫媛, 肖扬, 李力, 王耀春. TNF-α通过ERK信号通路刺激骨髓间充质干细胞表达VCAM-1 [J]. 中国实验血液学杂志, 2013, 21(6): 1568-1571.