四阶非线性Schro¨dinger方程几乎质量守恒的低正则算法
A Low-Regularity Integrator for the Fourth-Order Nonlinear Schro¨dinger Equation with Almost Mass Conservation
DOI: 10.12677/PM.2022.1210177, PDF, HTML, 下载: 161  浏览: 247  国家自然科学基金支持
作者: 宁 翠:广东金融学院金融数学与统计学院, 广东 广州
关键词: 四阶非线性Schro¨dinger方程低正则一阶收敛质量守恒Fourth-Order Nonlinear Schro¨dinger Equation Low-Regularity Integrator First-Order Convergent Mass Conversation
摘要: 本文研究了四阶非线性Schro¨dinger方程的具有几乎质量守恒的一种低正则算法.该算法不仅保持一阶收敛, 并且还具有几乎质量守恒性. 我们通过严格的误差分析,证明了当初值属于Hγ+3(Td)时, 对固定的T > 0和γ > d/2, 存在常C=C(||u||L∞ (0,T;Hγ+3))> 0,使得其中un是四阶非线性Schro¨dinger方程在tn=nτ时的数值解. 此外, 数值解的质量M(un)满足
Abstract: In this paper, we introduce a low-regularity integrator for the fourth-order nonlinear Schro¨dinger equation with almost mass conservation. The algorithm can not only achieve first-order convergence, but also obey almost mass conservation law. By rigorous error analysis, for rough initial data in Hγ+3(Td) with γ > d/2, up to some fixed time of T , there exists C=C(||u||L∞ (0,T;Hγ+3))> 0, such that where un denotes the numerical solution at tn=nτ. Moreover, the mass of the numerical solution M(un) verifies
文章引用:宁翠. 四阶非线性Schro¨dinger方程几乎质量守恒的低正则算法[J]. 理论数学, 2022, 12(10): 1636-1648. https://doi.org/10.12677/PM.2022.1210177

参考文献

[1] Zhu, S., Zhang, J. and Yang, H. (2010) Limiting Profile of the Blow-Up Solutions for the Fourth-Order Nonlinear Schro¨dinger Equation. Dynamics of Partial Differential Equations, 7, 187-205.
https://doi.org/10.4310/DPDE.2010.v7.n2.a4
[2] Guo, Q. (2016) Scattering for the Focusing L2-Supercritical and H˙ 2-Subcritical Biharmonic NLS Equations. Communications in Partial Differential Equations, 41, 185-207.
https://doi.org/10.1080/03605302.2015.1116556
[3] Li, Y., Wu, Y. and Xu, G. (2011) Global Well-Posedness for the Mass-Critical Nonlinear Schro¨dinger Equation on T. Journal of Differential Equations, 250, 2715-2736.
https://doi.org/10.1016/j.jde.2011.01.025
[4] Li, Y., Wu, Y. and Xu, G. (2011) Low Regularity Global Solutions for the Focusing Mass-Critical NLS in R∗. SIAM Journal on Mathematical Analysis, 43, 322-340.
https://doi.org/10.1137/090774537
[5] Wu, Y. (2013) Global Well-Posedness of the Derivative Nonlinear Schro¨dinger Equations in Energy Space. Analysis & PDE, 6, 1989-2002.
https://doi.org/10.2140/apde.2013.6.1989
[6] Wu, Y. (2015) Global Well-Posedness on the Derivative Nonlinear Schro¨dinger Equation. Analysis & PDE, 8, 1101-1113.
https://doi.org/10.2140/apde.2015.8.1101
[7] Liu, X., Simpson, G. and Sulem, C. (2013) Stability of Solitary Waves for a Generalized Derivative Nonlinear Schro¨dinger Equation. Journal of Nonlinear Science, 23, 557-583.
https://doi.org/10.1007/s00332-012-9161-2
[8] Ning, C. (2020) Instability of Solitary Wave Solutions for Derivative Nonlinear Schr¨odinger Equation in Borderline Case. Nonlinear Analysis, 192, Article ID: 111665.
https://doi.org/10.1016/j.na.2019.111665
[9] Feng, B. and Zhu, S. (2021) Stability and Instability of Standing Waves for the Fractional Nonlinear Schro¨dinger Equations. Journal of Differential Equations, 292, 287-324.
https://doi.org/10.1016/j.jde.2021.05.007
[10] Zhu, S. (2016) Existence and Uniqueness of Global Weak Solutions of the Camassa-Holm Equation with a Forcing. Discrete and Continuous Dynamical Systems, 36, 5201-5221.
https://doi.org/10.3934/dcds.2016026
[11] Holden, H., Karlsen, K.H., Risebro, N.H. and Tang, T. (2011) Operator Splitting for the KdV Equation. Mathematics of Computation, 80, 821-846.
https://doi.org/10.1090/S0025-5718-2010-02402-0
[12] Holden, H., Lubich, C. and Risebro, N.H. (2012) Operator Splitting for Partial Differential Equations with Burgers Nonlinearity. Mathematics of Computation, 82, 173-185.
https://doi.org/10.1090/S0025-5718-2012-02624-X
[13] Court´es, C., Lagouti`ere, F. and Rousset, F. (2020) Error Estimates of Finite Difference Schemes for the Korteweg-de Vries Equation. IMA Journal of Numerical Analysis, 40, 628-685.
https://doi.org/10.1093/imanum/dry082
[14] Holden, H., Koley, U. and Risebro, N. (2014) Convergence of a Fully Discrete Finite Difference Scheme for the Korteweg-de Vries Equation. IMA Journal of Numerical Analysis, 35, 1047- 1077.
https://doi.org/10.1093/imanum/dru040
[15] Aksan, E. and O¨ zde¸s, A. (2006) Numerical Solution of Korteweg-de Vries Equation by Galerkin B-Spline Finite Element Method. Applied Mathematics and Computation, 175, 1256-1265.
https://doi.org/10.1016/j.amc.2005.08.038
[16] Dutta, R., Koley, U. and Risebro, N.H. (2015) Convergence of a Higher Order Scheme for the Korteweg-de Vries Equation. SIAM Journal on Numerical Analysis, 53, 1963-1983.
https://doi.org/10.1137/140982532
[17] Ma, H. and Sun, W. (2001) Optimal Error Estimates of the Legendre-Petrov-Galerkin Method for the Korteweg-de Vries Equation. SIAM Journal on Numerical Analysis, 39, 1380-1394.
https://doi.org/10.1137/S0036142900378327
[18] Shen, J. (2003) A New Dual-Petrov-Galerkin Method for Third and Higher Odd-Order Differential Equations: Application to the KdV Equation. SIAM Journal on Numerical Analysis, 41, 1595-1619.
https://doi.org/10.1137/S0036142902410271
[19] Yan, J. and Shu, C.W. (2002) A Local Discontinuous Galerkin Method for KdV Type Equations. SIAM Journal on Numerical Analysis, 40, 769-791.
https://doi.org/10.1137/S0036142901390378
[20] Liu, H. and Yan, J. (2006) A Local Discontinuous Galerkin Method for the Kortewegde Vries Equation with Boundary Effect. Journal of Computational Physics, 215, 197-218.
https://doi.org/10.1016/j.jcp.2005.10.016
[21] Hochbruck, M. and Ostermann, A. (2010) Exponential Integrators. Acta Numerica, 19, 209- 286.
https://doi.org/10.1017/S0962492910000048
[22] Hofmanov´a, M. and Schratz, K. (2017) An Exponential-Type Integrator for the KdV Equation. Numerische Mathematik, 136, 1117-1137.
https://doi.org/10.1007/s00211-016-0859-1
[23] Lubich, C. (2008) On Splitting Methods for Schro¨dinger-Poisson and Cubic Nonlinear Schro¨dinger Equations. Mathematics of Computation, 77, 2141-2153.
https://doi.org/10.1090/S0025-5718-08-02101-7
[24] Ostermann, A. and Schratz, K. (2018) Low Regularity Exponential-Type Integrators for Semi- linear Schr¨odinger Equations. Foundations of Computational Mathematics, 18, 731-755.
https://doi.org/10.1007/s10208-017-9352-1
[25] Wu, Y. and Yao, F. (2022) A First-Order Fourier Integrator for the Nonlinear Schro¨dinger Equation on T without Loss of Regularity. Mathematics of Computation, 91, 1213-1235.
https://doi.org/10.1090/mcom/3705
[26] Ning, C. (2022) Low-Regularity Integrator for the Biharmonic NLS Equation. Preprint.
[27] Kato, T. and Ponce, G. (1988) Commutator Estimates and the Euler and Navier-Stokes Equations. Communications on Pure and Applied Mathematics, 41, 891-907.
https://doi.org/10.1002/cpa.3160410704