|
[1]
|
Scallan, E., Hoekstra, R.M., Angulo, F.J., Tauxe, R.V., Widdowson, M.A., Roy, S.L., Jones, J.L. and Griffin, P.M. (2011) Foodborne Illness Acquired in the United States—Major Pathogens. Emerging Infectious Diseases, 17, 7-15.
[Google Scholar] [CrossRef]
|
|
[2]
|
Low, N. and Broutet, N.J. (2017) Sexually Transmitted Infections—Research Priorities for New Challenges. PLOS Medicine, 14, e1002481. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wi, T.E., Lahra, M., Ndowa, F.J., Bala, M., Dillon, J.R., Ramón-Pardo, P., Eremin, S.R., Bolan, G.A. and Unemo, M. (2017) Antimicrobial Resistance in Neisseria gonorrhoeae: Global Surveillance and a Call for International Collaborative Action. PLoS Medicine, 14, e1002344. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Lazcka, O., Del Campo, F.J. and Muñoz, F.X. (2007) Pathogen Detection: A Perspective of Traditional Methods and Biosensors. Biosensors & Bioelectronics, 22, 1205-1217. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Swaminathan, B. and Feng, P. (1994) Rapid Detection of Food-Borne Pathogenic Bacteria. Annual Review of Microbiology, 48, 401-426. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Paniel, N., Baudart, J., Hayat, A. and Barthelmebs, L. (2013) Aptasensor and Genosensor Methods for Detection of Microbes in Real World Samples. Methods (San Diego, Calif.), 64, 229-240.
[Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
McEachern, F., Harvey, E. and Merle, G. (2020) Emerging Technologies for the Electrochemical Detection of Bacteria. Biotechnology Journal, 15, e2000140. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Simoska, O. and Stevenson, K.J. (2019) Electrochemical Sensors for Rapid Diagnosis of Pathogens in Real Time. The Analyst, 144, 6461-6478. [Google Scholar] [CrossRef]
|
|
[9]
|
Amiri, M., Bezaatpour, A., Jafari, H., Boukherroub, R. and Szunerits, S. (2018) Electrochemical Methodologies for the Detection of Pathogens. ACS Sensors, 3, 1069-1086. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ivnitski, D., Abdel-Hamid, I., Atanasov, P., Wilkins, E. and Stricker, S. (2000) Application of Electrochemical Biosensors for Detection of Food Pathogenic Bacteria. Electroanalysis, 12, 317-325.
[Google Scholar] [CrossRef]
|
|
[11]
|
Monzó, J., Insua, I., Fernandez-Trillo, F. and Rodriguez, P. (2015) Fundamentals, Achievements and Challenges in the Electrochemical Sensing of Pathogens. The Analyst, 140, 7116-7128. [Google Scholar] [CrossRef]
|
|
[12]
|
Ronkainen, N.J., Halsall, H.B. and Heineman, W.R. (2010) Electrochemical Biosensors. Chemical Society Reviews, 39, 1747-1763. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Nakamura, H. and Karube, I. (2003) Current Research Activity in Biosensors. Analytical and Bioanalytical Chemistry, 377, 446-468. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Farooq, U., Ullah, M.W., Yang, Q., Aziz, A., Xu, J., Zhou, L. and Wang, S. (2020) High-Density Phage Particles Immobilization in Surface-Modified Bacterial Cellulose for Ultra-Sensitive and Selective Electrochemical Detection of Staphylococcus aureus. Biosensors & Bioelectronics, 157, Article ID: 112163.
[Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Neufeld, T., Schwartz-Mittelmann, A., Biran, D., Ron, E.Z. and Rishpon, J. (2003) Combined Phage Typing and Amperometric Detection of Released Enzymatic Activity for the Specific Identification and Quantification of Bacteria. Analytical Chemistry, 75, 580-585. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Yang, L. and Bashir, R. (2008) Electrical/Electrochemical Impedance for Rapid Detection of Foodborne Pathogenic Bacteria. Biotechnology Advances, 26, 135-150. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Naresh, V. and Lee, N. (2021) A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors (Basel, Switzerland), 21, Article No. 1109. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Samanta, N., Kundu, O. and Chaudhuri, C.R. (2013) A Simple Low Power Electronic Readout for Rapid Bacteria Detection with Impedance Biosensor. IEEE Sensors Journal, 13, 4716-4724. [Google Scholar] [CrossRef]
|
|
[19]
|
Wang, Y., Ye, Z. and Ying, Y. (2012) New Trends in Impedimetric Biosensors for the Detection of Foodborne Pathogenic Bacteria. Sensors (Basel, Switzerland), 12, 3449-3471. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wan, Y., Zhang, D. and Hou, B. (2009) Monitoring Microbial Populations of Sulfate-Reducing Bacteria Using an Impedimetric Immunosensor Based on Agglutination Assay. Talanta, 80, 218-223.
[Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Furst, A.L. and Francis, M.B. (2019) Impedance-Based Detection of Bacteria. Chemical Reviews, 119, 700-726.
[Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
NorouzDizaji, A., Ali, Z., Ghorbanpoor, H., Ozturk, Y., Akcakoca, I., Avci, H. and Dogan Guzel, F. (2021) Electrochemical-Based “Antibiot Sensor” for the Whole-Cell Detection of the Vancomycin-Susceptible Bacteria. Talanta, 234, Article ID: 122695. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Huang, J., Yang, G., Meng, W., Wu, L., Zhu, A. and Jiao, X. (2010) An Electrochemical Impedimetric Immunosensor for Label-Free Detection of Campylobacter jejuni in Diarrhea Patients’ Stool Based on O-carboxymethylchitosan Surface Modified Fe3O4 Nanoparticles. Biosensors & Bioelectronics, 25, 1204-1211.
[Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
McEachern, F., Harvey, E. and Merle, G. (2020) Emerging Technologies for the Electrochemical Detection of Bacteria. Biotechnology Journal, 15, e2000140. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Chaubey, A. and Malhotra, B.D. (2002) Mediated Biosensors. Biosensors & Bioelectronics, 17, 441-456.
[Google Scholar] [CrossRef]
|
|
[26]
|
Grieshaber, D., MacKenzie, R., Vörös, J. and Reimhult, E. (2008) Electrochemical Biosensors—Sensor Principles and Architectures. Sensors (Basel, Switzerland), 8, 1400-1458. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Kuss, S., Amin, H. and Compton, R.G. (2018) Electrochemical Detection of Pathogenic Bacteria-Recent Strategies, Advances and Challenges. Chemistry, an Asian Journal, 13, 2758-2769. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Jiang, H., Yang, J., Wan, K., Jiang, D. and Jin, C. (2020) Miniaturized Paper-Supported 3D Cell-Based Electrochemical Sensor for Bacterial Lipopolysaccharide Detection. ACS Sensors, 5, 1325-1335.
[Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Isildak, Ö. and Özbek, O. (2020) Silver(I)-Selective PVC Membrane Potentiometric Sensor Based on 5,10,15,20-tetra (4-pyridyl)-21H, 23H-porphine and Potentiometric Applications. Journal of Chemical Sciences, 132, Article No. 29. [Google Scholar] [CrossRef]
|
|
[30]
|
Isildak, Ö., Özbek, O. and Gürdere, M.B. (2020) Development of Chromium(III)-Selective Potentiometric Sensor by Using Synthesized Pyrazole Derivative as an Ionophore in PVC Matrix and Its Applications. Journal of Analysis and Testing, 4, 273-280. [Google Scholar] [CrossRef]
|
|
[31]
|
Singh, A.K., Mehtab, S. and Saxena, P. (2006) A Bromide Selective Polymeric Membrane Electrode Based on Zn(II) Macrocyclic Complex. Talanta, 69, 1143-1148. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Lv, E., Li, Y., Ding, J. and Qin, W. (2021) Magnetic-Field-Driven Extraction of Bioreceptors into Polymeric Membranes for Label-Free Potentiometric Biosensing. Angewandte Chemie (International ed.), 60, 2609-2613. (In English)
[Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zhao, X., Li, M. and Liu, Y. (2019) Microfluidic-Based Approaches for Foodborne Pathogen Detection. Micro-Organisms, 7, Article No. 381. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zhou, L., Chen, Y., Fang, X., Liu, Y., Du, M., Lu, X., Li, Q., Sun, Y., Ma, J. and Lan, T. (2020) Microfluidic-RT-LAMP Chip for the Point-of-Care Detection of Emerging and Re-Emerging Enteric Coronaviruses in Swine. Analytica Chimica Acta, 1125, 57-65. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Gao, Y.F., Pan, X.X., Xu, S., Liu, Z.J., Wang, J.S., Yu, K.Z., Wang, C.F., Yuan, H.C. and Wu, S. (2020) Fluorescence-Enhanced Microfluidic Sensor for Highly Sensitive In-Situ Detection of Copper Ions in Lubricating Oil. Materials & Design, 191, Article ID: 108693. [Google Scholar] [CrossRef]
|
|
[36]
|
Nasseri, B., Soleimani, N., Rabiee, N., Kalbasi, A., Karimi, M. and Hamblin, M.R. (2018) Point-of-Care Microfluidic Devices for Pathogen Detection. Biosensors & Bioelectronics, 117, 112-128.
[Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Chen, Q., Wang, D., Cai, G., Xiong, Y., Li, Y., Wang, M., Huo, H. and Lin, J. (2016) Fast and Sensitive Detection of Foodborne Pathogen Using Electrochemical Impedance Analysis, Urease Catalysis and Microfluidics. Biosensors & Bioelectronics, 86, 770-776. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Mašková, T., Hárendarčíková, L. and Petr, J. (2017) Determination of Escherichia coli in Urine Using a Low-Cost Foil-Based Microfluidic Device. Talanta, 170, 36-40. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Savas, S., Ersoy, A., Gulmez, Y., Kilic, S., Levent, B. and Altintas, Z. (2018) Nanoparticle Enhanced Antibody and DNA Biosensors for Sensitive Detection of Salmonella. Materials (Basel, Switzerland), 11, Article No. 1541.
[Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Yao, L., Wang, L., Huang, F., Cai, G., Xinge, X. and Lin, J. (2018) A Microfluidic Impedance Biosensor Based on Immunomagnetic Separation and Urease Catalysis for Continuous-Flow Detection of E. coli O157:H7. Sensors and Actuators B—Chemical, 259, 1013-1021. [Google Scholar] [CrossRef]
|
|
[41]
|
Liu, J., Jasim, I., Shen, Z., Zhao, L., Dweik, M., Zhang, S. and Almasri, M. (2019) A Microfluidic Based Biosensor for Rapid Detection of Salmonella in Food Products. PLOS ONE, 14, e0216873.
[Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Hou, Y., Cai, G., Zheng, L. and Lin, J. (2019) A Microfluidic Signal-Off Biosensor for Rapid and Sensitive Detection of Salmonella Using Magnetic Separation and Enzymatic Catalysis. Food Control, 103, 186-193.
[Google Scholar] [CrossRef]
|
|
[43]
|
Dastider, S.G., Barizuddin, S., Yuksek, N.S., Dweik, M. and Almasri, M.F. (2015) Efficient and Rapid Detection of Salmonella Using Microfluidic Impedance Based Sensing. Journal of Sensors, 2015, Article ID: 293461.
[Google Scholar] [CrossRef]
|
|
[44]
|
Zhang, D., Bi, H., Liu, B. and Qiao, L. (2018) Detection of Pathogenic Microorganisms by Microfluidics Based Analytical Methods. Analytical Chemistry, 90, 5512-5520. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Foudeh, A.M., FatanatDidar, T., Veres, T. and Tabrizian, M. (2012) Microfluidic Designs and Techniques Using Lab-on-a-Chip Devices for Pathogen Detection for Point-of-Care Diagnostics. Lab on a Chip, 12, 3249-3266.
[Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Jiang, Y., Zou, S. and Cao, X. (2016) Rapid and Ultra-Sensitive Detection of Foodborne Pathogens by Using Miniaturized Microfluidic Devices: A Review. Analytical Methods, 8, 6668-6681. [Google Scholar] [CrossRef]
|
|
[47]
|
Ding, D., Gao, P., Ma, Q., Wang, D. and Xia, F. (2019) Biomolecule-Functionalized Solid-State Ion Nanochannels/Nanopores: Features and Techniques. Small (Weinheim an der Bergstrasse, Germany), 15, e1804878.
[Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Ali, M., Yameen, B., Cervera, J., Ramírez, P., Neumann, R., Ensinger, W., Knoll, W. and Azzaroni, O. (2010) Layer-by-Layer Assembly of Polyelectrolytes into Ionic Current Rectifying Solid-State Nanopores: Insights from Theory and Experiment. Journal of the American Chemical Society, 132, 8338-8348.
[Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Li, X., Zhai, T., Gao, P., Cheng, H., Hou, R., Lou, X. and Xia, F. (2018) Role of Outer Surface Probes for Regulating Ion Gating of Nanochannels. Nature Communications, 9, Article No. 40. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Escosura-Muñiz, A., Ivanova, K. and Tzanov, T. (2019) Electrical Evaluation of Bacterial Virulence Factors Using Nanopores. ACS Applied Materials & Interfaces, 11, 13140-13146. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Yi, C., Luo, Z., Lu, Y., Belwal, T., Pan, X. and Lin, X. (2021) Nanoporous Hydrogel for Direct Digital Nucleic Acid Amplification in Untreated Complex Matrices for Single Bacteria Counting. Biosensors & Bioelectronics, 184, Article ID: 113199. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Pla, L., Santiago-Felipe, S., Tormo-Más, M.Á., Pemán, J., Sancenón, F., Aznar, E. and Martínez-Máñez, R. (2020) Aptamer-Capped Nanoporous Anodic Alumina for Staphylococcus aureus Detection. Sensors and Actuators B— Chemical, 320, Article ID: 128281. [Google Scholar] [CrossRef]
|
|
[53]
|
Charalampous, T., Kay, G.L., Richardson, H., Aydin, A., Baldan, R., Jeanes, C., Rae, D., Grundy, S., Turner, D.J., Wain, J., Leggett, R.M., Livermore, D.M. and O’Grady, J. (2019) Nanopore Metagenomics Enables Rapid Clinical Diagnosis of Bacterial Lower Respiratory Infection. Nature Biotechnology, 37, 783-792.
[Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Heikema, A.P., Horst-Kreft, D., Boers, S.A., Jansen, R., Hiltemann, S.D., de Koning, W., Kraaij, R., de Ridder, M., van Houten, C.B., Bont, L.J., Stubbs, A.P. and Hays, J.P. (2020) Comparison of Illumina versus Nanopore 16S rRNA Gene Sequencing of the Human Nasal Microbiota. Genes, 11, Article No. 1105.
[Google Scholar] [CrossRef] [PubMed]
|