非酒精性脂肪性肝病与慢性乙型肝炎的相互影响及可能机制
Interaction and Possible Mechanism between Non-Alcoholic Fatty Liver Disease and Chronic Hepatitis B
DOI: 10.12677/ACM.2022.12111506, PDF, HTML, XML, 下载: 205  浏览: 310 
作者: 陈博诗, 俞慧宏*:重庆医科大学附属第二医院消化内科,重庆
关键词: 非酒精性脂肪性肝病慢性乙型肝炎脂质代谢Non-Alcoholic Fatty Liver Disease Chronic Hepatitis B Lipid Metabolism
摘要: 随着生活水平改善及方式转变,全球非酒精脂肪性肝病发病率逐年上升,未来可能成为肝移植首要原因;同时我国罹患慢性乙型肝炎人口多,其中共病患者数量不容忽视。本文就二者相互影响及可能机制作一概述。
Abstract: With the improvement of living standards and the change of lifestyle, the incidence of non-alcoholic fatty liver disease is increasing year by year worldwide, which may become the leading cause of liv-er transplantation in the future. At the same time, the population suffering from Chronic B virus liver disease is large in China, and the number of comorbidity patients cannot be ignored. This pa-per gives an overview of the interaction and possible mechanism between them.
文章引用:陈博诗, 俞慧宏. 非酒精性脂肪性肝病与慢性乙型肝炎的相互影响及可能机制[J]. 临床医学进展, 2022, 12(11): 10453-10458. https://doi.org/10.12677/ACM.2022.12111506

1. 引言

过去40年中,非酒精性脂肪性肝病(Non-alcoholic Fatty Liver Disease, NAFLD)在全球的流行率达到25%,成为最常见的慢性肝病,其可能导致肝纤维化、肝硬化,甚至肝细胞癌,造成严重的社会经济负担 [1];近20年,其在中国的流行率也达到29.6% [2]。同时,中国是慢性乙型肝炎(Chronic Hepatitis B, CHB)的高发国家,其2016年流行率为6.1% [3],乙肝进展也可导致肝硬化和肝癌。随着NAFLD患病率逐年升高,我国CHB合并NAFLD患病人数不可小觑。本文探讨NAFLD与CHB的相互影响及可能机制,并对NAFLD合并CHB的临床管理提出一些建议。

2. 非酒精性脂肪性肝病发病机制

非酒精性脂肪性肝病是肝脂肪变引起的一组连续疾病谱,包括非酒精性脂肪肝(Non-alcoholic Fatty Liver)、非酒精性脂肪性肝炎(Nonalcoholic Steatohepatitis),及其相关的肝纤维化、肝硬化、肝细胞癌(Hepatocellular Carcinoma)。其中非酒精性脂肪肝以伴或不伴有轻度炎症为主要特征;非酒精性脂肪性肝炎以坏死性炎症和纤维化进展为主要特征。C P Day等提出“二次打击”,为NASH发病机制的经典学说,即NASH形成第一步需要脂肪变性,第二步需要脂质过氧化。随着研究深入,学术界发现NAFLD的发病机制较为复杂,其发生发展涉及多种途径及不同器官之间的相互作用,故“多重打击”学说逐渐代替“二次打击”并成为目前主流观点。在遗传易感和生活水平日益提高的背景下,营养过剩等因素驱动脂肪异位堆积。营养素及其代谢产物通过诱导内脏脂肪细胞、巨噬细胞等多种细胞分泌脂肪因子、炎症因子,触发慢性系统性低峰度炎症。炎症促进肝脏选择性和/或全身性胰岛素抵抗,从而导致游离脂肪酸增多、肝脏从头合成脂肪增多。合成脂肪途中多生成的甘油二脂及神经酰胺,造成线粒体氧化应激、胰岛素敏感性下降及血糖升高。而血糖过高,葡萄糖可

直接进入细胞内合成脂肪 [4] [5] [6]。总效应为增加炎症,脂肪生成增加,胰岛素和血糖水平升高。此外,多种研究表明肠道菌群、肠肝轴也参与到NAFLD的发生发展。

3. HBV病毒结构特点

慢性乙型肝炎是由乙型肝炎病毒(hepatitis B virus, HBV)感染引起的全球性疾病,2016年调查显示全球感染总人数为2.57亿,我国乙肝感染人数为8600万 [2],是我国引起肝硬化和肝细胞癌(HCC)的首要病因。1963年Blumberg等在澳大利亚土著人血液中提取出澳大利亚抗原即HBsAg,从此逐渐揭开乙型肝炎神秘的面纱。乙肝病毒是可感染人畜的最小嗜肝DNA包膜病毒,呈部分环状。乙肝病毒由直径42 nm的Dane颗粒和其内直径27 nm的核心颗粒组成。Dane颗粒具有感染性,主要成分是脂质双层和镶嵌其上的3种大、中、小表面抗原(L-HBsAg, M-HBsAg, S-HBsAg)。核心颗粒由作为核衣壳的核心蛋白二聚体(HBcAg)、3.2 kb松弛环状DNA (rcDNA)和聚合酶组成。乙肝病毒通过L-HBsAg与人肝表面的牛磺胆酸钠转运多肽(NTCP)结合进入肝细胞内,基因组通过核孔进入细胞核内,转变为共价环状闭合DNA (cccDNA),cccDNA招募人组蛋白、非组蛋白、调控因子、转录因子等成为cccDNA微染色体结构,该结构较为稳定,且不易被人体免疫组织识别,难以清除。cccDNA利用宿主聚合酶进行转录和复制,在肝细胞内病毒生活周期占有关键地位 [7]。

4. NAFLD对CHB的影响

4.1. NAFLD与乙肝病毒学指标下降相关

高脂饮食建立NAFLD合并HBV的转基因小鼠研究结果显示:合并脂肪肝小鼠的血清HBeAg、HBsAg 及HBV DNA水平均出现明显下降 [8] [9]。许多临床研究也发现脂肪变性对乙肝血清病毒学指标呈负相关。与单纯乙肝患者相比,合并症患者血清中HBeAg阳性率和HBV DNA阳性率,肝内HBsAg和HBcAg染色阳性率均减少(P < 0.001) [10]。一项回顾性研究发现,合并肝脂肪变性患者易更早实现HBsAg清除(49 vs. 53 岁,P = 0.001)。这可能是肝细胞内脂肪的存在及相关脂质代谢异常改变HBsAg的胞质分布,诱导肝细胞凋亡,从而抑制病毒复制,导致HBsAg丢失有关 [11]。一项前瞻性研究中,发生HBsAg清除的患者,经FibroScan诊断的轻中度脂肪变性的比例较高,而重度脂肪肝更易发生纤维化进展 [12]。这可能与炎症严重程度相关,即轻度炎症反应具有肝保护作用,有助于组织修复和促进内稳态重建,而重度炎症反应可能导致肝细胞大量丢失,从而加剧各种肝脏疾病的严重程度,实际上与不可逆的肝损伤、纤维化和致癌有关。

多项研究表明,不符合治疗指征的乙肝患者,即使处于免疫耐受期,也可发生炎症和纤维化进展风险,远期发生肝细胞癌风险大于治疗患者 [13] [14]。近年来,全球多地学者甚至提出“全治”治疗策略(“Treat All”)。上文已提到CHB合并NAFLD患者血清病毒载量、血清HBeAg阳性率更低,但实际上有可能病毒在肝内肝细胞损害是持续存在的,因此采用现行指南中抗病毒治疗标准,可能延误这部分患者的治疗。

4.2. NAFLD对慢乙肝抗病毒疗效无明显影响

大多研究表明NAFLD对抗病毒疗效无明显影响。一项中国台湾的研究回顾性分析了,196名HBeAg阳性患者抗病毒5年后HBeAg清除率,根据肝穿病理分为脂肪肝及对照组,两组5年后HBeAg清除率无差异 [15]。土耳其的一项研究前瞻性随访乙肝病人使用1年干扰素后持续抗病毒反应,结果显示持续抗病毒反应在非脂肪肝患者比例更高,但无统计学差异 [16]。泰国设计了一项前瞻性研究,未启动抗病毒治疗的乙肝患者治疗前完成肝穿检查,根据病理结果分为无脂肪变性、脂肪变性组、脂肪性肝炎三组,核苷类似物单药治疗48周后,生化应答及完全应答均无明显差异 [17]。我国一项多中心临床试验的事后分析,通过肝脏病理诊断将慢乙肝患者分为NASH组和非NASH组,恩替卡韦治疗72周后血清HBeAg转阴率、HBV DNA转阴率和ALT复常率无显著差异 [18]。来自韩国的一项研究却得出相反的结论,通过瞬时弹性成像评估334名乙肝抗病毒患者肝脂肪含量,结果提示5年后发生HBeAg血清学转换组有更低的CAP值,即非脂肪肝组HBeAg血清转换率高于脂肪肝组 [19]。笔者认为这可能与纳入人群种族差异、定义的脂肪肝诊断标准、治疗措施不统一等有关。

5. 乙肝病毒对NAFLD的影响

5.1. HBV基因表达诱发脂肪变性

HBV基因表达和复制依赖肝代谢核受体,部分核受体在肝细胞内作为关键成分参与肝脏内糖异生、脂质代谢和胆固醇稳态。HBV DNA四个重叠开放阅读框分别编码C、X、P、S蛋白,其中X蛋白在病毒生活周期中发挥重要作用,刺激代谢途径中基因或信号分子,增强脂质合成,为HBV转录复制提供能量。HBx蛋白过表达可上调代谢相关基因如LXRα/β、SREBP1、C/EBPα和PPARγ的表达和转录激活,增强脂质合成 [20] [21]。HBx还通过诱导脂肪酸结合蛋白1 (FABP1)的表达增加细胞内脂肪酸的转运。HBx可刺激线粒体功能,增加线粒体活性氧水平(ROS)和氧化应激导致肝内脂质蓄积增加。HBV诱导胆固醇合成基因表达,比如HMG-CoA和LDL受体,从而导致脂肪变性。HBV通过结合NTCP,促进胆汁酸和胆固醇升高,上调SREBP-2和HMG-CoA还原酶的表达 [22]。在Hep2.2.15细胞培养液中使用洛伐他汀(Lovastatin),来抑制胆固醇合成,结果显示培养上清中HBsAg水平降低,而HBV DNA水平未见明显变化 [23],使用脂肪酸合酶抑制剂(Fatty acid synthase inhibitors)处理,在有效降低胞内长链脂肪酸水平的同时,培养上清HBV DNA水平降低至对照组的50%,HBsAg降低至80% [24]。这些结果表明,HBV转录复制可从多种途径增强脂质合成,导致脂肪变性,使用脂质合成抑制剂,可有效抑制HBsAg水平。

5.2. HBV感染可能是降低脂肪肝发生的有利因素

有研究认为病毒感染可诱导肝脂肪变性,例如临床观察到丙型肝炎患者脂肪变性率较一般人群更高,乙肝病毒基础研究亦提示HBV感染可诱导肝内脂肪变性。相悖的是,更多乙肝临床研究观察到HBV感染与脂肪肝发病率呈负相关,倾向于HBV感染是降低脂肪肝发生的有利因素,这可能与HBV感染影响多种脂肪因子分泌并改变脂质谱有关。多项大规模人口研究显示现症HBV感染是低脂肪肝风险的独立因素 [25] [26],且高甘油三酯血症、缺血性中风、心肌梗死、代谢综合征风险更低,进一步将这部分患者病毒学指标行亚组分析,结果显示HBV DNA水平、病毒基因类型、HBeAg状态与NAFLD发生率无关 [27] [28] [29] [30] [31]。基于实验室与人群观察结论相悖之处,进一步研究脂质代谢与HBV复制周期之间的联系,可能会为新的治疗靶点提供线索。

6. 代谢紊乱是CHB风险分层的主要因素

多项临床研究表明,肝脂肪变性是慢乙肝患者肝严重纤维化、肝细胞癌等肝脏相关不良事件发生的危险因素,部分研究纠正代谢因素后,发现单纯脂肪变性与肝相关不良结局不相关,2型糖尿病、超重/肥胖或其他代谢功能障碍等是远期不良结局的有害因素,即代谢紊乱与慢乙肝患者严重纤维化、肝硬化和肝细胞癌的风险增加密切相关 [32] [33] [34]。而临床研究观察到NAFLD常与其他代谢性疾病伴发,如在一项多中心回顾性研究中,CHB合并NAFLD患者中患有代谢紊乱占85.6% [35]。上述现象或许可解释基础与临床观察相悖之处,即其中存在代谢紊乱等重要中间变量。因此使用代谢紊乱对CHB进行危险分层,及时做好生活方式干预、体重和腰围控制,可有效控制肝脏炎症和纤维化 [36],减轻胰岛素抵抗、改善远期预后。

7. 总结

我国HBV感染患者多,且仍处于高流行阶段,在NAFLD患病率日益增高情况下,探讨CHB合并NAFLD发病机制、相互影响,指导临床管理,改善不良预后,减轻因此带来严重社会经济负担具有重要意义。

就目前的研究来看,轻中度NAFLD可能是乙肝患者病毒学指标的保护因素,HBsAg转阴实现可能性稍大。重度脂肪肝则提示可能炎症反应重,加剧肝内损伤、纤维化、癌变,若同时合并代谢紊乱或NASH,则是肝病进展的危险因素,需要及时临床干预。

HBV复制转录高度依赖肝内代谢核受体,通过多种通路诱导肝内脂肪变性,矛盾的是,大规模人群研究提示乙肝是降低NAFLD患病率的保护因素。明确HBV复制周期与脂质代谢的关系,可为优化治疗方式提供新方向。

NOTES

*通讯作者。

参考文献

[1] Cotter, T.G. and Rinella, M. (2020) Nonalcoholic Fatty Liver Disease 2020: The State of the Disease. Gastroenterology, 158, 1851-1864.
https://doi.org/10.1053/j.gastro.2020.01.052
[2] Zhou, J., Zhou, F., Wang, W., et al. (2020) Ep-idemiological Features of NAFLD from 1999 to 2018 in China. Hepatology, 71, 1851-1864.
https://doi.org/10.1002/hep.31150
[3] (2018) Global Prevalence, Treatment, and Prevention of Hepatitis B Virus Infection in 2016: A Modelling Study. The Lancet Gastroenterology and Hepatology, 3, 383-403.
https://doi.org/10.1016/S2468-1253(18)30056-6
[4] Jelenik, T., Kaul, K., Séquaris, G., et al. (2017) Mechanisms of Insulin Resistance in Primary and Secondary Nonalcoholic Fatty Liver. Diabetes, 66, 2241-2253.
https://doi.org/10.2337/db16-1147
[5] Tilg, H. and Moschen, A.R. (2010) Evolution of Inflammation in Nonal-coholic Fatty Liver Disease: The Multiple Parallel Hits Hypothesis. Hepatology, 52, 1836-1846.
https://doi.org/10.1002/hep.24001
[6] Powell, E.E., Wong, V.W. and Rinella, M. (2021) Non-Alcoholic Fatty Liver Disease. The Lancet, 397, 2212-2224.
https://doi.org/10.1016/S0140-6736(20)32511-3
[7] Nassal, M. (2015) HBV cccDNA: Viral Persistence Reser-voir and Key Obstacle for a Cure of Chronic Hepatitis B. Gut, 64, 1972-1984.
https://doi.org/10.1136/gutjnl-2015-309809
[8] Zhang, Z., Pan, Q., Duan, X.Y., et al. (2012) Fatty Liver Reduces Hepatitis B Virus Replication in a Genotype B Hepatitis B Virus Transgenic Mice Model. Journal of Gastroenterology and Hepatology, 27, 1858-1864.
https://doi.org/10.1111/j.1440-1746.2012.07268.x
[9] Hu, D., Wang, H., Wang, H., et al. (2018) Non-Alcoholic Hepatic Steatosis Attenuates Hepatitis B Virus Replication in an HBV-Immunocompetent Mouse Model. Hepatology In-ternational, 12, 438-446.
https://doi.org/10.1007/s12072-018-9877-7
[10] Wang, M.M., Wang, G.S., Shen, F., et al. (2014) Hepatic Steato-sis is Highly Prevalent in Hepatitis B Patients and Negatively Associated with Virological Factors. Digestive Diseases and Sciences, 59, 2571-2579.
https://doi.org/10.1007/s10620-014-3180-9
[11] Chu, C.M., Lin, D.Y. and Liaw, Y.F. (2013) Clinical and Viro-logical Characteristics Post HBsAg Seroclearance in Hepatitis B Virus Carriers with Hepatic Steatosisversus Those without. Digestive Diseases and Sciences, 58, 275-281.
https://doi.org/10.1007/s10620-012-2343-9
[12] Mak, L.Y., Hui, R.W., Fung, J., et al. (2020) Diverse Effects of Hepatic Steatosis on Fibrosis Progression and Functional Cure in Virologically Quiescent Chronic Hepatitis B. Journal of Hepatology, 73, 800-806.
https://doi.org/10.1016/j.jhep.2020.05.040
[13] Kim, G.A., Lim, Y.S., Han, S., et al. (2018) High Risk of Hepato-cellular Carcinoma and Death in Patients with Immune-Tolerant-Phase Chronic Hepatitis B. Gut, 67, 945-952.
https://doi.org/10.1136/gutjnl-2017-314904
[14] Sinn, D.H., Kim, S.E., Kim, B.K., et al. (2019) The Risk of Hepatocellular Carcinoma among Chronic Hepatitis B Virus-Infected Patients outside Current Treatment Criteria. Journal of Viral Hepatitis, 26, 1465-1472.
https://doi.org/10.1111/jvh.13185
[15] Chen, Y.C., Jeng, W.J., Hsu, C.W., et al. (2020) Impact of Hepatic Steato-sis on Treatment Response in Nuclesos(t)ide Analogue-Treated HBeAg-Positive Chronic Hepatitis B: A Retrospective Study. BMC Gastroenterology, 20, Article No. 146.
https://doi.org/10.1186/s12876-020-01289-w
[16] Ate, F., Yaln, Z.M. and Alan, S. (2011) Impact of Liver Steatosis on Response to Pegylated Interferon Therapy in Patients with Chronic Hepatitis B. World Journal of Gastroenterology, 17, 4517-4522.
https://doi.org/10.3748/wjg.v17.i40.4517
[17] Charatcharoenwitthaya, P., Pongpaibul, A., Kaosombatwattana, U., et al. (2017) The Prevalence of Steatohepatitis in Chronic Hepatitis B Patients and Its Impact on Disease Severity and Treatment Response. Liver International, 37, 542-551.
https://doi.org/10.1111/liv.13271
[18] Chang, X.J., Shi, Y.W., Wang, J., et al. (2021) Influence of Weight Management on the Prognosis of Steatohepatitis in Chronic Hepatitis B Patients during Antiviral Treatment. Hepatobiliary & Pancreatic Diseases International, 20, 416-425.
https://doi.org/10.1016/j.hbpd.2021.06.009
[19] Kim, D.S., Jeon, M.Y., Lee, H.W., et al. (2019) Influence of He-patic Steatosis on the Outcomes of Patients with Chronic Hepatitis B Treated with Entecavir and Tenofovir. Clinical and Molecular Hepatology, 25, 283-293.
https://doi.org/10.3350/cmh.2018.0054
[20] Kim, K.H., Shin, H.J., Kim, K., et al. (2007) Hepatitis B Virus X Pro-tein Induces Hepatic Steatosis via Transcriptional Activation of SREBP1 and PPARgamma. Gastroenterology, 132, 1955-1967.
https://doi.org/10.1053/j.gastro.2007.03.039
[21] Kim, J.Y., Song, E.H., Lee, H.J., et al. (2010) HBx-Induced He-patic Steatosis and Apoptosis Are Regulated by TNFR1- and NF-kappaB-Dependent Pathways. Journal of Molecular Biology, 397, 917-931.
https://doi.org/10.1016/j.jmb.2010.02.016
[22] Oehler, N., Volz, T., Bhadra, O.D., et al. (2014) Binding of Hepati-tis B Virus to Its Cellular Receptor Alters the Expression Profile of Genes of Bile Acid Metabolism. Hepatology, 60, 1483-1493.
https://doi.org/10.1002/hep.27159
[23] Lin, Y.L., Shiao, M.S., Mettling, C., et al. (2003) Cholesterol Requirement of Hepatitis B Surface Antigen (HBsAg) Secretion. Virology, 314, 253-260.
https://doi.org/10.1016/S0042-6822(03)00403-3
[24] Okamura, H., Nio, Y., Akahori, Y., et al. (2016) Fatty Acid Biosynthesis Is Involved in the Production of Hepatitis B Virus Particles. Biochemical and Biophysical Research Com-munications, 475, 87-92.
https://doi.org/10.1016/j.bbrc.2016.05.043
[25] Joo, E.J., Chang, Y., Yeom, J.S. and Ryu, S. (2017) Hepatitis B Virus Infection and Decreased Risk of Nonalcoholic Fatty Liver Disease: A Cohort Study. Hepatology, 65, 828-835.
https://doi.org/10.1002/hep.28917
[26] Zhong, G.C., Wu, Y.L., Hao, F.B., et al. (2018) Current but Not Past Hep-atitis B Virus Infection Is Associated with a Decreased Risk of Nonalcoholic Fatty Liver Disease in the Chinese Popula-tion: A Case-Control Study with Propensity Score Analysis. Journal of Viral Hepatitis, 25, 842-852.
https://doi.org/10.1111/jvh.12878
[27] Razi, B., Alizadeh, S., Omidkhoda, A., et al. (2017) Association of Chronic Hepatitis B Infection with Metabolic Syndrome and Its Components: Meta-Analysis of Observational Studies. Diabetol-ogy & Metabolic Syndrome, 11, S939-S947.
https://doi.org/10.1016/j.dsx.2017.07.020
[28] Tseng, C.H., Muo, C.H., Hsu, C., et al. (2016) Association of Hep-atitis B Virus Infection with Decreased Ischemic Stroke. Acta Neurologica Scandinavica, 134, 339-345.
https://doi.org/10.1111/ane.12548
[29] Sung, J., Song, Y.M., Choi, Y.H., et al. (2007) Hepatitis B Virus Seroposi-tivity and the Risk of Stroke and Myocardial Infarction. Stroke, 38, 1436-1441.
https://doi.org/10.1161/STROKEAHA.106.466268
[30] Liu, P.T., Hwang, A.C. and Chen, J.D. (2013) Combined Effects of Hepatitis B Virus Infection and Elevated Alanine Aminotransferase Levels on Dyslipidemia. Metabolism, 62, 220-225.
https://doi.org/10.1016/j.metabol.2012.07.022
[31] Wong, V.W., Wong, G.L., Chu, W.C., et al. (2012) Hepatitis B Virus Infection and Fatty Liver in the General Population. Journal of Hepatology, 56, 533-540.
https://doi.org/10.1016/j.jhep.2011.09.013
[32] Peleg, N., Issachar, A., Sneh Arbib, O., et al. (2019) Liver Steato-sis Is a Strong Predictor of Mortality and Cancer in Chronic Hepatitis B Regardless of Viral Load. JHEP Reports, 1, 9-16.
https://doi.org/10.1016/j.jhepr.2019.02.002
[33] Chan, A.W., Wong, G.L., Chan, H.Y., et al. (2017) Concurrent Fatty Liver Increases Risk of Hepatocellular Carcinoma among Patients with Chronic Hepatitis B. Journal of Gastroen-terology and Hepatology, 32, 667-676.
https://doi.org/10.1111/jgh.13536
[34] Lee, Y.B., Ha, Y., Chon, Y.E., et al. (2019) Association between Hepatic Steatosis and the Development of Hepatocellular Carcinoma in Patients with Chronic Hepatitis B. Clinical and Molecular Hepatology, 25, 52-64.
https://doi.org/10.3350/cmh.2018.0040
[35] van Kleef, L.A., Choi, H., Brouwer, W.P., et al. (2021) Metabolic Dysfunction-Associated Fatty Liver Disease Increases Risk of Adverse Outcomes in Patients with Chronic Hepatitis B. JHEP Reports, 3, Article ID: 100350.
https://doi.org/10.1016/j.jhepr.2021.100350
[36] Vilar-Gomez, E., Martinez-Perez, Y., Calzadilla-Bertot, L., et al. (2015) Weight Loss through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis. Gas-troenterology, 149, 367-378.e5.
https://doi.org/10.1053/j.gastro.2015.04.005