氮沉降影响土壤磷与ECM和SAP真菌关系研究进展
The Effect of Nitrogen Deposition on the Relationship between Soil Phosphorus and ECM and SAP Fungi: A Review
DOI: 10.12677/AEP.2022.126146, PDF, HTML, XML, 下载: 378  浏览: 474  国家自然科学基金支持
作者: 薛 伟:黑龙江大学现代农业与生态环境学院,黑龙江 哈尔滨;王庆贵, 闫国永:曲阜师范大学生命科学学院,山东 曲阜;邢亚娟*:黑龙江大学现代农业与生态环境学院,黑龙江 哈尔滨;曲阜师范大学生命科学学院,山东 曲阜
关键词: 氮沉降土壤磷ECM真菌SAP真菌Nitrogen Deposition Soil Phosphorus ECM Fungi SAP Fungi
摘要: 氮沉降深刻影响生态系统养分和物质循环,提升生态系统生产力,最终将会影响全球气候变化。随着氮沉降增加,土壤养分尤其是土壤磷将会受到显著影响。土壤微生物在驱动土壤与植物之间养分循环、养分供给方面具有重要作用,逐渐成为氮沉降变化背景下的重点研究对象。本文通过综述近年来的相关研究论文,重点分析了ECM和SAP真菌及其功能,探讨了氮沉降背景下土壤磷变化及其对ECM、SAP真菌的影响,揭示了氮沉降如何影响土壤磷与ECM和SAP真菌关系。该文可为氮沉降背景下土壤磷与真菌群落互作关系的深入研究提供基础数据。
Abstract: Nitrogen deposition profoundly affects the nutrient and material cycle of ecosystems, and ulti-mately enhances ecosystem productivity and affects global climate change. With the increase of N deposition, soil nutrients, especially soil phosphorus, will be significantly affected. Soil microor-ganisms play an important role in driving nutrient cycling and nutrient supply between soil and plants, and have gradually become the focus of research under the background of N deposition. In this study, we reviewed the related research papers in recent years and analyzed the ECM and SAP fungi and their functions, discussed the changes of soil phosphorus and its effects on ECM and SAP fungi under the background of N deposition, and revealed the effect of N deposition on the rela-tionship between soil phosphorus and ECM and SAP fungi. This research can provide basic data for further study on the interaction between soil phosphorus and fungal community under the back-ground of N deposition.
文章引用:薛伟, 王庆贵, 闫国永, 邢亚娟. 氮沉降影响土壤磷与ECM和SAP真菌关系研究进展[J]. 环境保护前沿, 2022, 12(6): 1179-1188. https://doi.org/10.12677/AEP.2022.126146

1. 引言

人类活动导致了一系列气候变化,诸如气候变暖、降水格局改变、极端天气现象频发、酸雨、氮沉降等,给社会经济发展带来了严重威胁 [1]。活性氮排放速率从20世纪60年代开始持续增加,工业活动的密集化导致大量的氮排放至生态系统。氮沉降长期干扰生态系统状态,一方面增加了系统生产力,另一方面也造成土壤酸化,导致生物多样性的丧失 [2] [3]。先前有研究表明,氮添加能够提高土壤养分有效性,促使土壤养分发生改变,尤其是磷的改变 [4]。正如陈等人汇总相关研究证明,氮沉降能够影响土壤磷循环,主要表现在凋落物的养分循环上 [5]。Magill对哈佛森林生态系统研究发现,氮沉降会降低凋落物的产量 [6];周等人对于天然常绿阔叶林进行氮添加对照试验也发现,增氮会抑制凋落物产量,从而导致回归土壤的磷含量减少 [7]。但也有学者发现了相反结果,Block等人研究发现氮沉降量高的森林磷含量显著高于氮沉降量低的林地 [8];Magill在其早期生态研究中表明,氮沉降增加了森林凋落物产量 [6]。土壤磷作为重要的养分在生态系统中发挥着重要作用,同时也是影响植物生长和土壤真菌群落的关键影响因子 [9] [10]。因此,在氮沉降增加背景下,加强对土壤磷元素的研究,将有助于进一步了解土壤养分与土壤微生物功能的互作关系。

土壤微生物是生态系统中不可或缺的重要组分,土壤有机质的转化与土壤养分循环都离不开土壤微生物。例如,一些土壤微生物能够与植物互作,影响土壤养分尤其是磷的吸收与转化 [11];土壤微生物还能够参与生物的扰动裂解过程,驱动土壤碳氮循环。菌根真菌与植物共生得到了广泛的证据支持,能够发挥出叠加的生态价值。ECM共生真菌(Ectomycorrhizal fungi, ECM)与SAP腐生真菌(Saprotrophic fungi, SAP)同处于一个生态位,存在激烈的竞争关系,且具有相似的养分转化功能。近年来研究发现,ECM真菌与SAP真菌对于环境变化响应敏感,并与土壤环境息息相关 [12]。因此,二者成为真菌体系中专家学者进行对比研究的重要对象。大量研究表明,氮沉降对ECM真菌存在显著负效应,正如GrmanE等人研究发现,氮沉降会导致真菌多样性和丰富度的降低 [13];Verlinden等人研究也发现,氮沉降的增加会导致ECM真菌生物量和产量减少 [14]。同时,李等人研究还发现氮沉降会导致ECM真菌菌丝量减少,降低真菌生产力 [15]。但也存在相反的结果报道:Hendricks等人在2016年的模拟氮沉降实验中发现,氮添加下ECM真菌生物量显著增加 [16]。相较于ECM真菌研究,SAP研究较有不足,更多倾向于氮添加对SAP真菌的正向效应。例如,Zhou等人研究和She等人研究都表明氮沉降会增加土壤中SAP真菌比例 [17] [18];Zhao等人最新研究也发现,氮添加能够增加SAP真菌的丰富度与相对丰度 [19]。有证据表明,氮沉降下ECM与SAP真菌群落丰度存在显著的负相关关系 [20]。但也有人发现,ECM真菌与SAP真菌在调节磷限制转化功能方面存在相似性 [21]。ECM真菌与SAP真菌都会受到外源氮的调控,揭示氮沉降增加背景下土壤磷含量变化同ECM真菌与SAP真菌之间的关系具有重要意义。

2. ECM真菌与SAP真菌简介

ECM真菌能够与植物根系共生形成外生菌根,ECM真菌的菌丝不能伸入植物细胞,只能着生在细根表面形成菌套,其菌丝能替代根毛的作用,帮助根系吸收养分和水分 [22]。

SAP真菌为腐生真菌,是一系列营腐生活的真菌,需要在土壤中从死亡的动植物残体中获取自身需要的养分,属于异养生物。SAP真菌是生态系统中不可缺少的分解者 [23],能够促进土壤中动植物养分归还,维持生态系统养分平衡。

3. ECM真菌与SAP真菌功能

3.1. ECM真菌功能

ECM真菌能够与超过90%的ECM树种共生,利用树木光合作用产生的碳作为吸收土壤氮元素的驱动力,促进植物根系养分吸收,提升根系代谢能力 [24]。它还可以通过转化不能被根系直接吸收的多肽和蛋白质中的氮来供给植物宿主,促进植物养分吸收,维持宿主养分平衡,从而促进植物生长 [25]。因此,ECM真菌能有效缓解土壤氮限制,提升土壤养分的有效性,促进土壤碳氮循环 [24] [26] [27] [28] [29]。ECM真菌存活过程中能够分泌多种天然激素,增强宿主的抗逆性与免疫力。同时,ECM真菌还可以直接产生磷酸酶以及扩大根系吸收更多的磷 [29] [30],在磷限制的土壤条件下,ECM真菌发挥着关键的作用。

3.2. SAP真菌功能

SAP真菌在土壤的碳氮循环中发挥着重要作用。它们具有分泌大量氧化酶和广泛降解富碳凋落物的能力,是森林中木质纤维素的主要分解者 [22]。它们可以分解复杂的有机物,促进生态系统的碳氮循环 [20],以维持土壤稳定 [31]。

4. 氮沉降的影响

4.1. 氮沉降对土壤磷的影响

土壤磷是植物生长必不可少的营养元素,植物吸收土壤磷促进细胞分裂以及能量合成,参与植物各项生命活动 [22]。自然界的磷以有机磷和无机磷两种形式存在,植物可吸收利用的磷被称之为有效磷,其中最重要的是储存在土壤有机物中容易分解和矿物中容易随土壤移动分解的磷。人类活动导致的氮沉降,通过改变生物对于土壤磷的需求而影响生态系统的磷循环 [22]。

工业革命以来,人为活动增加了全球氮沉降速率,导致大量的氮输入生态系统 [32] [33]。更多的学者综述多年氮沉降实验结果,发现氮添加促进了植物对于土壤磷的吸收 [34],降低了土壤磷的有效性;氮沉降也可能造成土壤酸化,促使土壤磷离子与Al3+结合,抑制根系对磷的吸收,导致土壤磷的有效性降低 [35] [36]。如Yang等人通过不同梯度氮添加实验研究发现,土壤有效无机磷和有机磷含量都随着氮添加的增加而减少 [37]。也有证据表明,增加氮的输入会导致植物对磷的需求增加 [37] [38] [39],刺激植物对磷的利用,导致植物磷浓度下降 [25]。生态系统中磷的主要来源是依靠岩石风化以及少量的大气沉积 [40],氮沉降的急剧增加,磷输入相对较少,导致生态系统氮磷输入不平衡 [39] [41] [42] [43],最终导致磷限制。

氮富集使生态系统养分限制模式从氮限制转变为磷限制,这在不同陆地生态系统中已得到证实 [34] [38] [42]。氮沉降下能够显著增加地上生物量,这将促进生态系统对于磷的需求 [44]。地上生物量增加的同时最终会导致凋落物的质量增加,凋落物氮磷比增加 [42] [45]。正如Zhang等人研究发现,地上地下生物都趋向于吸收稳态比例的养分,当凋落物氮磷比增加,土壤氮元素归还远远超过磷元素归还,这可能会降低依赖于氮有效性的相关磷元素有效性,降低净磷矿化率,增加生态系统尺度的磷限制 [38] [46]。

4.2. 氮沉降对ECM真菌的影响

ECM真菌能够与植物形成共生体,相互依存。ECM菌根真菌在根系生长过程中占有重要地位 [47] [48] [49]。ECM真菌与植物形成共生体,最重要的功能就是帮助植物获取土壤中的氮。有研究表明,ECM真菌能够在氮限制的条件下保持增长 [50] [51]。同时,ECM真菌能够吸收土壤中的 NH 4 + NO 3 供给植物生长,并利用土壤中的有机氮促进土壤氮循环 [49]。因此,ECM真菌必将会受到氮沉降的影响。

在氮限制条件下,ECM真菌可以通过转化不能被根系直接吸收的多肽和蛋白质中的氮来供给宿主,有效缓解土壤氮限制 [25] [28] [51]。氮沉降增加了土壤氮养分有效性,植物细根能够获取足够氮源,则会降低细根对于ECM真菌的依赖 [13],从而降低ECM真菌的多样性与丰富度。氮沉降会导致真菌子实体减少,降低ECM真菌的生产力。但也有学者发现,在其他子实体减少的同时,有一种菌种:管形鸡油菌 (Cantharellus tubaeformis) 在氮沉降下却提高了自身生产力 [52],这可能与特定真菌对环境的适应有关。

氮添加增加了土壤氮有效性,同时也影响了ECM真菌根尖生物量与菌丝的产生,用来调节植物对于ECM真菌碳供给和碳分配之间的平衡 [53] [54]。有研究表明,随着氮沉降的增加,根尖生物量将会减少 [55]。正如Verlinden等人对于氮沉积下ECM真菌的研究中发现,氮沉降的增加会导致ECM真菌生物量和产量减少,这可能是氮沉降能够增加土壤氮利用效率,植物供给ECM真菌碳的比例减少所致 [14]。

尽管对于氮沉降影响ECM真菌的相关研究中,消极影响的报道占据主动,但也有报道显示一定量的氮输入可以对ECM真菌产生积极影响。Hendricks等人在2016年的模拟氮沉降实验中发现,氮添加能够导致ECM真菌生物量的增加 [16],出现了与前人研究相反的结果。相似的,Kalliokoski等人在2010年的研究中发现ECM菌丝体的产生与土壤氮肥力息息相关,越肥沃的土壤ECM菌丝体的产量反而越高 [56]。这就说明氮添加导致ECM真菌的变化不仅仅只依靠氮氮素含量,还与其本身生存环境有关,与初始土壤养分密切相关。

4.3. 氮沉降对SAP真菌的影响

SAP腐生真菌承担着土壤养分分解的重要角色,与ECM真菌同处一个生态位,共同参与土壤碳循环 [57]。同时,SAP真菌与ECM真菌存在一定的竞争关系,称之为“Gadgil效应”,他们通过对于土壤养分的竞争,促进土壤碳的积累 [58] [59]。这将会导致SAP真菌活性的降低,减少土壤有机质的分解 [27] [60]。

SAP真菌与ECM真菌相互竞争,ECM真菌能够受到氮沉降的调控,SAP真菌也必将受到氮沉降的影响。Maaroufi等研究发现高氮添加量能影响SAP真菌的群落组成 [54]。近些年的研究也表明,子囊菌对于氮添加存在积极响应,这间接证明氮沉降会导致土壤中SAP真菌比例增加 [17] [18]。Zhao等最新研究中发现,氮添加能够增加SAP真菌的丰富度与相对丰度,远远大于降水的影响 [19]。SAP真菌群落主要受到土壤肥力的影响,尤其是土壤有机碳的影响 [61] [62] [63] [64]。氮含量也是影响SAP腐生真菌的关键影响因素 [61] [62],SAP真菌的组成与C:N和N:P显著相关。有机肥的添加也可以提高SAP真菌的活性、多样性和生物量 [65] [66],土壤SAP真菌群落也会随着土壤肥力梯度变化而变化 [20] [67]。

5. 氮添加对土壤磷与ECM和SAP真菌关系的影响

自然界中有很多有机磷不能直接被生物吸收利用,需要依赖微生物的分解。植物各种生命活动都需要磷的参与,但研究一致显现出氮沉降导致生态系统磷含量降低的趋势 [35] - [43]。微生物在磷转化的过程中起到关键作用,例如微生物能参与磷的矿化以及菌根真菌促进磷有效性吸收等 [68]。Khalid等对不同磷梯度下土壤微生物属性进行研究时发现,低磷位点的ECM真菌多样性和丰富度显著高于高磷位点,SAP真菌却没有显著变化。低磷状态下,子囊菌门(Ascomycota)显著增加,高磷状态下担子菌门(Basidiomycota)显著增加,这也间接反映出ECM真菌对低磷状态的亲和性和SAP真菌高磷状态的亲和性 [69]。Khalid等选择的研究地点位于昆明市和楚雄市的交接处,是典型的富磷地域。因此,高磷状态抑制了ECM真菌多样性,也导致SAP腐生菌群落结构发生变化。

微生物群落与磷含量变化之间的关系已经被很多证据证实 [70] [71]。长期氮沉降下,生态系统将会向磷限制转变。根据资源优化理论,ECM真菌将通过调节土壤磷形态缓解植物磷限制 [72],SAP真菌能够促进凋落物分解,促进土壤磷循环。因此,ECM真菌与SAP真菌必将受到磷限制的影响。正如Zheng等最新的研究发现,ECM真菌Shannon多样性指数与土壤有效磷显著正相关,ECM真菌群落会受到磷限制的强烈影响 [73]。因此,氮沉降降低土壤有效磷可能间接影响ECM真菌多样性。SAP真菌通过分解复杂有机物获取碳素已被广泛研究,但最新研究发现,ECM真菌基因表达中也具有分泌降解有机物各种酶的能力 [74]。这说明ECM真菌本身也具有降解有机质的能力,即使ECM真菌对于有机质分解能力存在明显差异 [75],但这一能力却被忽视了很久。

ECM真菌还可以直接产生磷酸酶,扩大根系吸收更多的磷 [22]。最近研究表明,ECM和SAP真菌的磷酸盐转化功能极为相似,SAP真菌和ECM真菌都通过分泌有机酸和产生水解及氧化外酶来促进氮和磷的活化 [21] [76] [77]。在氮沉降下,土壤磷含量发生变化,ECM和SAP真菌可能缓解磷限制这一现象。此外,ECM和SAP真菌对磷的响应不仅依赖于土壤提供的磷,同时可能还依赖于磷和氮的相互作用 [21] [77]。

6. 总结与展望

6.1. 总结

我们综述了氮沉降对于土壤磷含量、ECM和SAP真菌群落影响的相关研究,系统地梳理了氮沉降下土壤磷含量与真菌群落的关系,虽然相关研究广泛开展,但仍存在较大的局限性。氮沉降对于磷含量产生负面影响的研究已经被大多数学者认同,但大多数研究都关注氮沉降对磷含量的直接作用,并没有探究更深层次的机制影响。

前人研究更多关注的是单一层面的影响,例如:氮沉降对于磷的影响,对于ECM真菌、SAP真菌的影响。并没有系统考虑多元素之间的关系,也没有考虑真菌之间的协作与竞争是否影响最终结果,缺乏对于氮沉降(环境变化)、磷(养分)、真菌(微生物)之间相关关系的系统解释,这将成为未来的重点研究领域。

虽然ECM真菌与SAP真菌之间存在生态位重叠,但氮沉降对于ECM真菌的研究与对SAP真菌的研究数量严重失衡,氮沉降如何影响SAP真菌群落的研究仍有空缺。

6.2. 展望

在以后氮沉降如何影响土壤磷含量的研究中,需要关注土壤因子之间的相互作用,地上地下的协作功能等。例如,氮沉降是否影响土壤微生物并导致磷含量的变化,微生物是否为承担这一过程的媒介等,亟需加强。

土壤磷对真菌群落的影响存在不同的结论,这可能是由原始土壤环境的不同所决定。因此,需要加强对原始土壤条件如何影响氮添加机制的对比研究。

虽然氮沉降与ECM真菌存在显著负效应已被报道,但相对立的研究结果依然存在。同时,氮沉降如何影响SAP真菌群落的研究仍有很大不足,因此需要更系统、全面地探索出现相反结果的原因,探寻真菌群落对氮沉降响应的普适性规律。

基金项目

国家自然科学基金资助(42230703)。

参考文献

NOTES

*通讯作者。

参考文献

[1] IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth As-sessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
[2] van Groenigen, J.W., van Kessel, C., Hungate, B.A., Oenema, O., Powlson, D.S. and van Groenigen, K.J. (2017) Se-questering Soil Organic Carbon: A Nitrogen Dilemma. Environmental Science & Technology, 51, 4738-4739.
https://doi.org/10.1021/acs.est.7b01427
[3] Maskell, L.C., Smart, S.M., Bullock, J.M., Thompson, K. and Stevens, C.J. (2010) Nitrogen Deposition Causes Widespread Loss of Species Richness in British Habitats. Global Change Biology, 16, 671-679.
https://doi.org/10.1111/j.1365-2486.2009.02022.x
[4] Gao, W.L., Zhao, W., Yang, H., et al. (2015) Effects of Nitrogen Addition on Soil Inorganic N Content and Soil N Mineralization of a Cold-Temperate Coniferous Forest in Great Xing’an Mountains. Acta Ecologica Sinica, 35, 130-136.
https://doi.org/10.1016/j.chnaes.2015.07.003
[5] 陈美领, 陈浩, 毛庆功, 朱晓敏, 莫江明. 氮沉降对森林土壤磷循环的影响[J]. 生态学报, 2016, 36(16): 4965-4976.
[6] Magill, A.H., Aber, J.D., Currie, W.S., Nadelhoffer, K.J., Martin, M.E., Mc Dowell, W.H., Melillo, J.M. and Steudler, P. (2004) Ecosystem Response to 15 Years of Chronic Nitrogen Additions at the Harvard Forest LTER, Massachusetts, USA. Forest Ecology and Management, 196, 7-28.
https://doi.org/10.1016/j.foreco.2004.03.033
[7] 周佳佳. 常绿阔叶林凋落物对模拟大气氮沉降的响应[D]: [硕士学位论文]. 合肥: 安徽农业大学, 2013.
[8] Block, C.E., Knoepp, J.D. and Fraterrigo, J.M. (2013) Interactive Effects of Disturbance and Nitrogen Availability on Phosphorus Dynamics of Southern Appalachian Forests. Biogeo-chemistry, 112, 329-342.
https://doi.org/10.1007/s10533-012-9727-y
[9] Zhou, K., Lu, X., Mori, T., Mao, Q., Wang, C., Zheng, M., Mo, H., Hou, E. and Mo, J. (2018) Effects of Long-Term Nitrogen Deposition on Phosphorus Leaching Dynamics in a Ma-ture Tropical Forest. Biogeochemistry, 138, 215-224.
https://doi.org/10.1007/s10533-018-0442-1
[10] Liu, X., Burslem, D.F.R.P., Taylor, J.D., Taylor, A.F.S., Khoo, E., Majalaplee, N., Helgason, T. and Johnson, D.W. (2018) Partitioning of Soil Phosphorus among Arbuscular and Ectomycorrhizal Trees in Tropical and Subtropical Forests. Ecology Letters, 21, 713-723.
https://doi.org/10.1111/ele.12939
[11] Čapek, P., Manzoni, S., Kaštovská, E., Wild, B., Diáková, K., Bárta, J., Schnecker, J., Biasi, C., Martikainen, P., Alves, R., Guggenberger, G., Gentsch, N., Hugelius, G., Palmtag, J., Mikutta, R., Shibistova, O., Urich, T., Schleper, C., Richter, A. and Šantrůčková, H.A. (2018) Plant-Microbe Interaction Framework Explaining Nutrient Effects on Primary Production. Nature Ecology and Evolution, 2, 1588-1596.
https://doi.org/10.1038/s41559-018-0662-8
[12] Chen, W., Xu, R., Chen, J., Yuan, X., Zhou, L., Tan, T. and Hu, T. (2018) Consistent Responses of Surface- and Subsurface Soil Fungal Diversity to N Enrichment Are Mediated Dif-ferently by Acidification and Plant Community in a Semi-Arid Grassland. Soil Biology and Biochemistry, 127, 110-119.
https://doi.org/10.1016/j.soilbio.2018.09.020
[13] Grman, E. and Robinson, T.M.P. (2013) Resource Availability and Imbalance Affect Plant-Mycorrhizal Interactions: Afield Test of Three Hypotheses. Ecology, 94, 62-71.
https://doi.org/10.1890/12-0385.1
[14] Verlinden, M.S., Ven, A., Verbruggen, E., Janssens, I.A., Wallander, H. and Vicca, S. (2018) Favorable Effect of Mycorrhizae on Biomass Production Efficiency Exceeds Their Carbon Cost in a Fertilization Experiment. Ecology, 99, 2525-2534.
https://doi.org/10.1002/ecy.2502
[15] 李月蛟, 朱利英, 尹华军, 等. 连续3年夜间增温和施氮对云杉外生菌根及菌根真菌多样性的影响[J]. 生态学报, 2015, 35(9): 2967-2977.
[16] Hendricks, J.J., Mitchell, R.J., Kuehn, K.A. and Pecot, S.D. (2016) Ectomycorrhizal Fungal Mycelia Turnover in a Longleaf Pine Forest. New Phytologist, 209, 1693-1704.
https://doi.org/10.1111/nph.13729
[17] Zhou, J., Jiang, X., Zhou, B., Zhao, B., Ma, M., Guan, D., Li, J., Chen, S., Cao, F., Shen, D. and Qin, J. (2016) Thirty Four Years of Nitrogen Fertilization Decreases Fungal Diversity and Alters Fungal Community Composition in Black Soil in Northeast China. Soil Biology and Biochemistry, 95, 135-143.
https://doi.org/10.1016/j.soilbio.2015.12.012
[18] She, W., Bai, Y., Zhang, Y., Qin, S., Feng, W., Sun, Y., Zheng, J. and Wu, B. (2018) Resource Availability Drives Responses of Soil Microbial Communities to Short-Term Precipitation and Nitrogen Addition in a Desert Shrubland. Frontiers in Microbiology, 9, Article No. 186.
https://doi.org/10.3389/fmicb.2018.00186
[19] Zhao, A., Liu, L., Chen, B., et al. (2020) Soil Fungal Community Is More Sensitive to Nitrogen Deposition than Increased Rainfall in A Mixed Deciduous Forest of China. Soil Ecology Letters, 2, 20-32.
https://doi.org/10.1007/s42832-020-0026-6
[20] Chen, W., Wang, J., Meng, Z., Xu, R., Chen, J., Zhang, Y. and Hu, T. (2020) Fertility-Related Interplay between Fungal Guilds Underlies Plant Richness-Productivity Relationships in Natural Grasslands. New Phytologist, 226, 1129-1143.
https://doi.org/10.1111/nph.16390
[21] Bödeker, I.T.M., Lindahl, B.D., Olson, Å., Clemmensen, K.E. and Treseder, K. (2016) Mycorrhizal and Saprotrophic Fungal Guilds Compete for the Sameorganic Substrates but Affect Decomposition Differently. Function Ecology, 30, 1967-1978.
https://doi.org/10.1111/1365-2435.12677
[22] 闫国永, 卢洁, 邱露瑶, 黄梦娣, 邢亚娟, 王庆贵. AM和EcM菌根特征及其对环境变化的响应[J]. 曲阜师范大学学报(自然科学版), 2022, 48(2): 106-112.
[23] Godin, A., Brooks, D., Grayston, S.J. and Jones, M.D. (2019) Ectomycorrhizal and Saprotrophic Fungal Communities Vary across mm-Scale Soil Microsites Differing in Phosphatase Activity. Pedosphere, 29, 344-359.
https://doi.org/10.1016/S1002-0160(19)60808-8
[24] Näsholm, T., Högberg, P., Franklin, O., Metcalfe, D., Keel, S.G., Campbell, C., Hurry, V., Linder, S. and Högberg, M.N. (2013) Are Ectomycorrhizal Fungi Alleviating or Aggravating Nitrogen Limitation of Tree Growth in Boreal Forests? New Phytologist, 198, 214-221.
https://doi.org/10.1111/nph.12139
[25] Karst, J., Wasyliw, J., Birch, J.D., Franklin, J., Chang, S.X. and Erbilgin, N. (2021) Long-Term Nitrogen Addition Does Not Sustain Host Tree Stem Radial Growth but Doubles the Abundance of High-Biomass Ectomycorrhizal Fungi. Glob Chang Biology, 27, 4125-4138.
https://doi.org/10.1111/gcb.15713
[26] Gadgil, R.L. and Gadgil, P.D. (1971) Mycorrhiza and Litter Decomposition. Nature, 233, 133.
https://doi.org/10.1038/233133a0
[27] Averill, C., Turner, B.L. and Finzi, A.C. (2014) Mycorrhiza-Mediated Competition between Plants and Decomposers Drives Soil Carbon Storage. Nature, 505, 543-545.
https://doi.org/10.1038/nature12901
[28] Smith, J.M., Whiteside, M.D. and Jones, M.D. (2020) Rapid Nitrogen Loss from Ectomycorrhizal Pine Germinates Signaled by Their Fungal Symbiont. Mycorrhiza, 30, 407-417.
https://doi.org/10.1007/s00572-020-00959-7
[29] Smith, S.E. and Read, D.J. (2010) Mycorrhizal Symbiosis. Academic Press, London.
[30] Clemmensen, K.E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A., Wallander, H., Stenlid, J., Finlay, R.D., Wardle, D.A. and Lindahl, B.D. (2013) Root Sand Associated Fungi Drive Long-Term Carbon Sequestration in Boreal Forest. Science, 339, 1615-1618.
https://doi.org/10.1126/science.1231923
[31] Abiven, S., Menasseri, S., Angers, D.A. and Leterme, P. (2007) Dynamics of Aggregate Stability and Biological Binding Agents during Decomposition of Organic Materials. European Journal of Soil Science, 58, 239-247.
https://doi.org/10.1111/j.1365-2389.2006.00833.x
[32] Galloway, J.N., Aber, J.D., Erisman, J.W., Seitzinger, S.P., Howarth, R.W., Cowling, E.B. and Cosby, B.J. (2003) The Nitrogen Cascade. BioScience, 53, 341-356.
https://doi.org/10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2
[33] Matson, P., Lohse, K.A. and Hall, S.J. (2002) The Globalization of Nitrogen Deposition: Consequences for Terrestrial Ecosystems. AMBIO: A Journal of the Human Environment, 31, 113-119.
https://doi.org/10.1579/0044-7447-31.2.113
[34] Deng, Q., Hui, D., Dennis, S., Reddy, K.C. and Xu, X. (2017) Responses of Terrestrial Ecosystem Phosphorus Cycling to Nitrogen Addition: A Meta-Analysis. Global Ecology and Biogeography, 26, 713-728.
https://doi.org/10.1111/geb.12576
[35] Deforest, J.L. and Scott, L.G. (2010) Available Organic Soil Phosphorus Has an Important Influence on Microbial Community Composition. Soil Science Society of America Journal, 74, 2059-2066.
https://doi.org/10.2136/sssaj2009.0426
[36] Holzmann, S., Missong, A., Puhlmann, H., Siemens, J., Bol, R., Klumpp, E. and Von Wilpert, K. (2016) Impact of Anthropogenic Induced Nitrogen Input and Liming on Phosphorus Leaching in Forest Soils. Journal of Plant Nutrition and Soil Science, 179, 443-453.
https://doi.org/10.1002/jpln.201500552
[37] Yang, K., Zhu, J., Gu, J.C., Yu, L.Z. and Wang, Z.Q. (2015) Changes in Soil Phosphorus Fractions after 9 Years of Continuous Nitrogen Addition in a Larix gmelinii Plantation. Annals of Forest Science, 72, 435-442.
https://doi.org/10.1007/s13595-014-0444-7
[38] Yuan, Z.Y. and Chen, H.Y.H. (2015) Decoupling of Nitrogen and Phosphorus in Terrestrial Plants Associated with Global Changes. Nature Climate Change, 5, 465-469.
https://doi.org/10.1038/nclimate2549
[39] Li, Y., et al. (2016) Aggravated Phosphorus Limitation on Biomass Production under Increasing Nitrogen Loading: A Meta-Analysis. Global Chang Biology, 22, 934-943.
https://doi.org/10.1111/gcb.13125
[40] Zhu, S., Vivanco, J.M. and Manter, D.K. (2016) Nitrogen Fertilizer Rate Affects Root Exudation, the Rhizosphere Microbiome and Nitrogen-Use-Efficiency of Maize. Applied Soil Ecology, 107, 324-333.
https://doi.org/10.1016/j.apsoil.2016.07.009
[41] Ding, W., Cong, W.F. and Lambers, H. (2021) Plant Phosphorus-Acquisition and -Use Strategies Affect Soil Carbon Cycling. Trends in Ecology and Evolution, 36, 899-906.
https://doi.org/10.1016/j.tree.2021.06.005
[42] Hou, E., Wen, D., Jiang, L., Luo, X., Kuang, Y., Lu, X., Chen, C., Allen, K. T., He, X., Huang, X. and Luo, Y. (2021) Latitudinal Patterns of Terrestrial Phosphorus Limitation over the Globe. Ecology Letters, 24, 1420-1431.
https://doi.org/10.1111/ele.13761
[43] Vitousek, P.M., Porder, S., Houlton, B.Z. and Chadwick, O.A. (2010) Terrestrial Phosphorus Limitation: Mechanisms, Implications, and Nitrogen-Phosphorus Interactions. Ecological Applications, 20, 5-15.
https://doi.org/10.1890/08-0127.1
[44] Luo, M., et al. (2022) Nitrogen Loading Enhances Phosphorus Limitation in Terrestrial Ecosystems with Implications for Soil Carbon Cycling. Functional Ecology, 36, 2845-2858.
https://doi.org/10.1111/1365-2435.14178
[45] Fan, Y.X., Lin, F., Yang, L.M., Zhong, X.J., Wang, M.H., Zhou, J.C., Chen, Y.M. and Yang, Y.S. (2018) Decreased Soil Organic P Fraction Associated with Ectomycorrhizal Fungal Activity to Meet Increased P Demand under N Application in a Subtropical Forest Ecosystem. Biology and Fertility of Soils, 54, 149-161.
https://doi.org/10.1007/s00374-017-1251-8
[46] Fleischer, K., Rammig, A., De Kauwe, M.G., Walker, A.P., Domingues, T.F., Fuchslueger, L., Garcia, S., Goll, D.S., Grandis, A., Jiang, M., Haverd, V., Hofhansl, F., Holm, J.A., Kruijt, B., Leung, F., Medlyn, B.E., Mercado, L.M., Norby, R.J., Pak, B. and Lapola, D.M. (2019) Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition. Nature Geoscience, 12, 736-741.
https://doi.org/10.1038/s41561-019-0404-9
[47] Ye, W.-Q., et al. (1983) Translated, Soil Microbe Seminar (Jap.) Compiled, Soil Microbe Experimentation. Science Press, Beijing.
[48] Cai, L., Lui, Y.J. and Zhang, K.Q. (2001) The Behavior and Application of Mycorrhiza. Shandong Forestry Science and Technology, 4, 52-54.
[49] Read, D.J. (1991) Mycorrhizas in Ecosystems. Experientia, 47, 376-391.
https://doi.org/10.1007/BF01972080
[50] Finlay, R.D., Ek, H., Odham, G., et al. (1989) Uptake, Translocation and Assimilation of 15N-Labelled Ammonium and Nitrate Sources by Intact Ectomycorrhizal Systems of Fagus sylvatica Infected with Paxillin Involutes. New Phytologist, 113, 47-55.
https://doi.org/10.1111/j.1469-8137.1989.tb02394.x
[51] Franklin, O., Näsholm, T., Högberg, P. and Högberg, M.N. (2014) Forests Trapped in Nitrogen Limitation—An Ecological Market Perspective on Ectomycorrhizal Symbiosis. New Phytologist, 203, 657-666.
https://doi.org/10.1111/nph.12840
[52] Brandrud, T.E. (1998) Ectomycorrhizal Fungi in the NITREX Site at Gardsjn, Sweden; Below and Above-Ground Responses to Experimentally-Changed Nitrogen Inputs 1990-1995. Forest Ecology and Management, 101, 207-214.
https://doi.org/10.1016/S0378-1127(97)00138-2
[53] Lilleskov, E.A., Hobbie, E.A. and Horton, T.R. (2011) Conservation of Ectomycorrhizal Fungi: Exploring the Linkages between Functional and Taxonomic Responses to Anthropogenic N Deposition. Fungal Ecology, 4, 174-183.
https://doi.org/10.1016/j.funeco.2010.09.008
[54] Lilleskov, E.A., Kuyper, T.W., Bidartondo, M.I. and Hobbie, E.A. (2019) Atmospheric Nitrogen Deposition Impacts on the Structure and Function of Forest Mycorrhizal Communities: A Review. Environmental Pollution, 246, 148-162.
https://doi.org/10.1016/j.envpol.2018.11.074
[55] Clemmensen, K.E., Sørensen, P.L., Michelsen, A., Jonasson, S. and Strom, L. (2008) Site-Dependent N Uptake from N-Form Mixtures by Arctic Plants, Soil Microbes and Ectomycorrhizal Fungi. Oecologia, 155, 771-783.
https://doi.org/10.1007/s00442-008-0962-9
[56] Kalliokoski, T., Pennanen, T., Nygren, P., Sievanen, R. and Helmisaari, H.S. (2010) Belowground Interspecific Competition in Mixed Boreal Forests: Fine Root and Ectomycorrhiza Characteristics along Stand Developmental Stage and Soil Fertility Gradients. Plant and Soil, 330, 73-89.
https://doi.org/10.1007/s11104-009-0177-9
[57] Fernandez, C.W. and Kennedy, P.G. (2015) Revisiting the “Gadgil Effect”: Do Interguild Fungal Interactions Control Carbon Cycling in Forest Soils? New Phytologist, 209, 1382-1394.
https://doi.org/10.1111/nph.13648
[58] Gadgil, P.D. and Gadgil, R.L. (1975) Suppression of Litter Decomposition by Mycorrhizal Roots of Pinus radiata. New Zealand Journal of Forensic Science, 5, 33-41
[59] Averill, C. and Hawkes, C.V. (2016) Ectomycorrhizal Fungi Slow Carbon Cycling. Ecology Letters, 53, 1689-1699.
[60] Sterkenburg, E., Clemmensen, K.E., Ekblad, A., Finlay, R.D. and Lindahl, B.D. (2018) Contrasting Effects of Ectomycorrhizal Fungi on Early and Late Stage Decomposition in a Boreal Forest. The ISME Journal, 12, 2187-2197.
https://doi.org/10.1038/s41396-018-0181-2
[61] Maaroufi, N.I., et al. (2019) Anthropogenic Nitrogen Enrichment Enhances Soil Carbon Accumulation by Impacting Saprotrophs Rather than Ectomycorrhizal Fungal Activity. Global Change Biology, 25, 2900-2914.
https://doi.org/10.1111/gcb.14722
[62] Ning, Q., Chen, L., Zhang, C., Ma, D., Li, D., Han, X. and Zhang, J. (2021) Saprotrophic Fungal Communities in Arable Soils Are Strongly Associated with Soil Fertility and Stoichiometry. Applied Soil Ecology, 159, Article ID: 103843.
https://doi.org/10.1016/j.apsoil.2020.103843
[63] Zhong, W., Gu, T., Wang, W., Zhang, B., Lin, X., Huang, Q. and Shen, W. (2010) The Effects of Mineral Fertilizer and Organic Manure on Soil Microbial Community and Diversity. Plant and Soil, 326, 511-522.
https://doi.org/10.1007/s11104-009-9988-y
[64] Prévost-Bouré, N.C., Christen, R., Dequiedt, S., Mougel, C., Leliévre, M., Jolivet, C., Shahbazkia, H.R., Guillou, L., Arrouays, D. and Ranjard, L. (2011) Validation and Application of a PCR Primer Set to Quantify Fungal Communities in the Soil Environment by Real-Time Quantitative PCR. PLOS ONE, 6, e24166.
https://doi.org/10.1371/journal.pone.0024166
[65] van der Wal, A., Geydan, T.D., Kuyper, T.W. and de Boer, W. (2013) A Thready Affair: Linking Fungal Diversity and Community Dynamics to Terrestrial Decomposition Processes. FEMS Microbiology Reviews, 37, 477-494.
https://doi.org/10.1111/1574-6976.12001
[66] Song, G., Chen, R., Xiang, W., Yang, F., Zheng, S., Zhang, J., Zhang, J. and Lin, X. (2015) Contrasting Effects of Long-Term Fertilization on the Community of Saprotrophic Fungi and Arbuscular Mycorrhizal Fungi in a Sandy Loam Soil. Plant Soil Environment, 61, 127-136.
https://doi.org/10.17221/999/2014-PSE
[67] Kyaschenko, J., Clemmensen, K.E., Karltun, E. and Lindahl, B.D. (2017) Below-Ground Organic Matter Accumulation along a Boreal Forest Fertility Gradient Relates to Guild Interaction within Fungal Communities. Ecology Letters, 20, 1546-1555.
https://doi.org/10.1111/ele.12862
[68] Richardson, A.E. and Simpson, R.J. (2011) Soil Microorganisms Mediating Phosphorus Availability: Phosphorus Plant Physiology. Plant Physiology (Bethesda), 156, 989-996.
https://doi.org/10.1104/pp.111.175448
[69] Khalid, M., Du, B., Tan, H., Liu, X., Su, L., Saeed-ur-Rahman and Hui, N. (2021) Phosphorus Elevation Erodes Ectomycorrhizal Community Diversity and Induces Divergence of Saprophytic Community Composition between Vegetation Types. Science of the Total Environment, 793, Article ID: 148502.
https://doi.org/10.1016/j.scitotenv.2021.148502
[70] Hu, Y., Duan, C., Fu, D., Wu, X., Yan, K., Fernando, E., Karunarathna, S.C., Promputtha, I., Mortimer, P.E. and Xu, J. (2020) Structure of Bacterial Communities in Phosphorus-Enriched Rhizosphere Soils. Applied Sciences, 10, Article No. 6387.
https://doi.org/10.3390/app10186387
[71] Liu, J., Wang, G., Jin, J., Liu, J. and Liu, X. (2011) Effects of Different Concentrations of Phosphorus on Microbial Communities in Soybean Rhizosphere Grown in Two Types of Soils. Annals of Microbiology, 61, 525-534.
https://doi.org/10.1007/s13213-010-0168-3
[72] Baldrian, P. (2017) Forest Microbiome: Diversity, Complexity and Dynamics. FEMS Microbiology Reviews, 41, 109-130.
https://doi.org/10.1093/femsre/fuw040
[73] Zheng, L. and Song, W. (2022) Phosphorus Limitation of Trees Influences Forest Soil Fungal Diversity in China. Forests, 13, 223.
https://doi.org/10.3390/f13020223
[74] Tibbett, M., Sanders, F.E. and Cairney, J.W.G. (1998) The Effect of Temperature and Inorganic Phosphorus Supply on Growth and Acid Phosphatase Production in Arctic and Temperate Strains of Ectomycorrhizal Hebeloma spp. in Axenic Culture. Mycological Research, 102, 129-135.
https://doi.org/10.1017/S0953756297004681
[75] Zak, D.R., Pellitier, P.T., Argiroff, W., Castillo, B., James, T.Y., Nave, L.E., et al. (2019) Exploring the Role of Ectomycorrhizal Fungi in Soil Carbon Dynamics. New Phytologist, 223, 33-39.
https://doi.org/10.1111/nph.15679
[76] Burke, D.J., Smemo, K.A. and Hewins, C.R. (2014) Ectomycorrhizal Fungi Isolated from Old-Growth Northern Hardwood Forest Display Variability in Extracellular Enzyme Activity in the Presence of Plant Litter. Soil Biology and Biochemistry, 68, 219-222.
https://doi.org/10.1016/j.soilbio.2013.10.013
[77] de Witte, L.C., Rosenstock, N.P., van der Linde, S. and Braun, S. (2017) Nitrogen Deposition Changes Ectomycorrhizal Communities in Swiss Beech Forests. Science of the Total Environment, 605, 1083-1096.
https://doi.org/10.1016/j.scitotenv.2017.06.142