铁死亡在糖尿病及其相关并发症中的研究进展
Research Progress of Ferroptosis in Diabetes Mellitus and Related Complications
DOI: 10.12677/ACM.2022.12121688, PDF, HTML, XML, 下载: 291  浏览: 651  科研立项经费支持
作者: 郭 巧*, 彭 冉, 高 韬, 柯大智#:重庆医科大学附属第二医院全科医学科,重庆
关键词: 铁死亡糖尿病糖尿病相关并发症 Ferroptosis Diabetes Mellitus Diabetes-Related Complications
摘要: 铁死亡作为一种近年新发现的细胞死亡形式,以铁积累和脂质过氧化为基本特征,被大量研究证实参与肿瘤、动脉粥样硬化、神经退行性疾病、组织缺血再灌注损伤等多种疾病的病理过程。糖尿病及其相关并发症的发生发展涉及脂质氧化应激、炎症激活等多种病理过程,因此近年来铁死亡与糖尿病及其相关并发症的关系被不断探索。本文综述了近年铁死亡在糖尿病及其相关并发症中的研究,以期为糖尿病及其相关并发症发病机制的进一步探索和治疗提供新的方向。
Abstract: Ferroptosis, a newly discovered form of cell death in recent years, is characterized by iron accu-mulation and lipid peroxidation, and has been confirmed by numerous studies to be involved in the pathological processes of various diseases such as tumors, atherosclerosis, neurodegenerative diseases, and tissue ischemia-reperfusion injury. The occurrence and development of diabetes mellitus and its related complications involves various pathological processes such as lipid oxida-tive stress and inflammatory activation, therefore the relationship between ferroptosis and dia-betes mellitus and its related complications has been continuously explored in recent years. This paper reviews the recent studies on ferroptosis in diabetes and its related complications, with the aim of providing new directions for further exploration of the pathogenesis and treatment of dia-betes and its related complications.
文章引用:郭巧, 彭冉, 高韬, 柯大智. 铁死亡在糖尿病及其相关并发症中的研究进展[J]. 临床医学进展, 2022, 12(12): 11720-11726. https://doi.org/10.12677/ACM.2022.12121688

1. 铁死亡、糖尿病及其相关并发症概述

铁死亡是近年新发现的一种新型程序性细胞死亡形式,在基因、生化、和形态学等方面与细胞凋亡、坏死性凋亡、自噬和其他类型的细胞死亡不同。铁死亡不表现出典型的坏死形态特征,例如细胞质和细胞器肿胀以及细胞膜破裂 [1]。铁死亡以铁依赖和细胞内磷脂过氧化为特征,受铁、脂质、氨基酸、谷胱甘肽等代谢的紧密调控,参与肿瘤、心血管疾病、神经退行性疾病、组织缺血再灌注损伤等多种疾病的病理过程 [2] [3] [4] [5]。作为全球流行性疾病之一的糖尿病是一种慢性代谢性疾病,其危害在于随着病程的发展会导致肾脏、心血管系统、视网膜、神经系统等多个系统的功能损害,其中肝纤维化和肺纤维化以及认知功能障碍也正在成为继发于糖尿病的新型疾病 [6] [7] [8] [9] [10]。铁死亡作为一种细胞调节性死亡方式,因其涉及多种疾病的脂质过氧化、炎症激活等病理过程,近年来不断被研究发现参与了糖尿病及其相关并发症的发生发展,如糖尿病视网膜病变(Diabetic Retinopathy, DR)、糖尿病肾病(Diabetic Nephropathy, DN or DKD)、糖尿病性心肌病(Diabetic cardiomyopathy, DCM)及糖尿病神经退行性疾病等 [11] [12] [13]。本文将对铁死亡在糖尿病及其相关并发症中的最新研究进展进行综述,以帮助我们进一步认识铁死亡在糖尿病及其相关并发症中所扮演的角色,并为探索疾病治疗的新策略提供方向。

2. 铁死亡对糖尿病及相关并发症的影响及分子机制

铁死亡已被证实参与多种疾病的病理过程,近年来其在糖尿病及其相关并发症中的作用也不断被探索发现。如Gautam等 [14] 的研究发现铁过载与2型糖尿病的发展有关,体现在他们的研究中患者体内的铁蛋白水平升高。Stancic A等研究证实糖尿病条件下的β细胞死亡也与铁死亡有关 [15]。另外,基于以往有研究证明慢性坤暴露是糖尿病的高危因素 [16]。后续有研究在动物模型中发现,坤诱导胰腺功能障碍从而引起糖尿病的过程中有铁死亡的参与 [17]。此外,还有研究发现在小鼠胰腺β细胞MIN6细胞(MIN6鼠胰岛瘤细胞)中,丙烯醛通过内质网应激(ER)相关的蛋白激酶R样内质网(ER)激酶(Protein kinase R-like ER kinase, PERK)通路诱导铁死亡从而促进胰腺分泌功能障碍 [18]。弗里德赖希共济失调(FRDA)是一种神经退行性疾病,由线粒体共济蛋白(FXN)缺陷引起,患该病的患者易患糖尿病,而FXN是铁死亡的关键调节因子 [19]。在小鼠模型中敲除FXN,小鼠出现高脂血症、能量代谢和胰岛素敏感性降低 [20]。以上研究提示铁死亡及其相关蛋白通过不同途径参与了糖尿病中的糖脂代谢紊乱,从而影响糖尿病的发生发展。不过目前对于铁代谢异常与体内代谢表型改变的关系还知之甚少,需要进一步研究探索。

2.1. 铁死亡和糖尿病肾病

糖尿病肾病(DKD)是糖尿病主要的并发症,以蛋白尿和肾小球滤过率降低为主要表现 [21]。基于铁死亡参与多种疾病的炎症和氧化等病理过程的背景,目前已有不少研究将目光放在了铁死亡在包括DKD在内的糖尿病并发症中的作用,发现肾细胞内的铁代谢平衡对于维持正常肾功能的也至关重要 [22]。长链酰基辅酶A合成酶4 (ACSL4)、前列腺素内过氧化物合成酶2 (PTGS2)、NADPH氧化酶1 (NOX1)和谷胱甘肽过氧化物酶4 (GPX4)均为铁死亡相关蛋白,其中ACSL4、PTGS2、NOX1为促铁死亡分子,GPX4为抑铁死亡分子 [13] [23]。Wu等 [23] 研究发现,铁死亡在DKD的发病机制中增强,表现为ACSL4、PTGS2、NOX1表达升高,GPX4表达水平降低。Kim等 [24] 用转化生长因子-β1诱导产生的DKD肾小管细胞模型进行体外实验,测得谷胱甘肽浓度降低,脂质过氧化作用增强,而这两者都与铁死亡相关的细胞死亡有关;用小鼠模型进行体内实验得到与细胞实验一致的结果,并且这些变化在铁死亡抑制Fer-1治疗后得到改善,从而得出铁死亡与糖尿病条件下的肾小管细胞死亡有关的结论,并提出了抑制铁死亡可以治疗糖尿病肾病的设想。另外,在Wang等 [13] 的研究中,是用链脲佐菌素(STZ)和db/db小鼠(2型糖尿病小鼠)构建的DKD模型作为研究对象。他们的研究也发现DKD小鼠模型的肾小管组织ACSL4表达水平增加和GPX4的表达水平降低,而这种变化在ACSL4抑制剂罗格列酮治疗后得到逆转,并且改善了DKD小鼠的肾功能及提高了存活率。Wu等 [23] 和Zhang等 [25] 的研究还对DKD模型中肾系膜细胞和足细胞内铁死亡相关蛋白表达水平进行了测定,得到与肾小管细胞一致的结果。综上所述,铁死亡与DKD的发病机制密切相关,且主要是对足细胞、系膜细胞和肾小管细胞等组织产生病理损伤。可知深入研究铁死亡的病理机制,可能有助于开发靶向铁死亡从而防治DKD的策略。

2.2. 铁死亡和糖尿病视网膜病变

糖尿病视网膜病变(DR)作为糖尿病最具破坏性的并发症之一,严重威胁糖尿病患者的视力健康。引起DR的主要原因包括视网膜微血管病变、炎症、视网膜神经变性 [26]。在Zhang等 [27] 的研究中,慢病毒介导的TRIM46 (一种泛素连接酶)过表达促进了高糖诱导产生的视网膜毛细血管内皮细胞(RCEC)铁死亡,而慢病毒介导的GPX4过表达可以改善这种变化。在体外实验中,以高糖处理的人视网膜色素上皮细胞系19 (ARPE19)作为DR模型,细胞中环状RNA-PSEN1 (circ-PSEN1)表达上调,谷胱甘肽浓度下降伴亚铁离子浓度升高。而在si-circ-PSEN1转染模型细胞后谷胱甘肽浓度升高,亚铁离子浓度降低 [27]。总之,这些研究表明在高血糖条件下,铁死亡在RCEC和视网膜色素上皮细胞的损伤中起重要作用。然而,这方面的研究尚少,还需要更多的研究来进一步探索具体机制。

2.3. 铁死亡和糖尿病性心肌病

糖尿病性心肌病(DCM)是糖尿病人群心力衰竭的主要原因,以舒张和收缩功能障碍、左心室肥大、肌细胞肥大和纤维化为特征 [28]。已有研究证明铁死亡参与心肌细胞的损伤过程 [12] [29]。其中Wang等 [29] 的研究首次发现糖尿病可通过促进心肌细胞中的铁死亡以及其他两种形式的程序性细胞死亡(包括细胞凋亡和细胞焦亡)导致更严重的心肌缺血再灌注损伤(I/RI)。他们观察到糖尿病心肌I/RI大鼠的心肌细胞损伤伴有铁死亡水平升高,而且抑制铁死亡可以减轻心肌损伤。不过,尚不清楚哪种类型的细胞死亡在DCM中具有主导功能。在Li等 [12] 的研究中,通过构建糖尿病小鼠心肌缺血/再灌注(I/RI)模型,模型构建后检测组织中的炎症因子及铁死亡相关蛋白水平,然后给予铁死亡抑制剂,一定时间后再次检测模型组织中的炎症因子及铁死亡相关蛋白表达水平,最终发现铁死亡是通过加重内质网氧化应激从而参与糖尿病心肌细胞的I/RI。此外,在Wang等 [30] 的研究中,动物实验观察到暴露于PA的小鼠心肌细胞发生更严重的铁死亡现象,体外实验发现铁死亡抑制剂显着降低暴露于PA的H9c2心肌细胞模型的细胞死亡。总之,这些发现表明铁死亡参与了DCM的发病机制。但是,目前DCM中铁死亡的机制仍知之甚少,铁死亡和心肌细胞功能相关的领域有待进一步探索。

2.4. 铁死亡和糖尿病神经退行性疾病

糖尿病是包括阿尔兹海默病(AD)、PD、FRDA等神经退行性疾病的危险因素 [31] [32]。铁死亡也被发现与神经退行性疾病的发展有关 [33]。例如在AD患者的下丘脑和PD患者黑质的多巴胺能神经元中发现铁含量明显增加 [34] [35]。在动物实验中,db/db小鼠的海马组织中观察到铁死亡现象,而治疗糖尿病的药物利拉鲁肽通过抑制氧化应激和铁超负荷从而降低了铁死亡,进而改善了模型小鼠的认知功能 [36]。另外,Abdul等 [37] 在糖尿病大鼠中发现,铁螯合剂、去铁胺治疗后的大脑动脉闭塞大鼠的感觉运动和认知功能得到改善。这些结果表明,抑制铁死亡可以预防脑损伤,并为预防糖尿病认知障碍提供一种新的疾病改善治疗策略。

2.5. 铁死亡和其他糖尿病相关并发症

糖尿病的长远并发症是多系统性的,对于铁死亡在其并发症中的作用的研究也是多方面的。除了对心肌、神经、肾脏、视网膜等产生不利影响,近年来的研究还发现铁死亡参与了糖尿病患者动脉粥样硬化、皮肤溃疡、骨质疏松等并发症的病理过程 [38] [39] [40]。Yang等 [38] 通过给予高脂饮食(HFD)和注射低剂量链脲佐菌素(STZ)建立DOP小鼠模型,在试验中他们发现用经典的细胞死亡抑制剂,如Z-VAD-FMK和Nec-1,对HGHF (高糖和棕榈酸处理)诱导的骨细胞死亡没有影响,而铁死亡抑制剂Fer-1对死亡骨细胞显示出了挽救作用。Meng等 [39] 首先利用综合生物信息学分析发现铁死亡是糖尿病动脉粥样硬化的重要因素,进一步通过试验发现Fer-1可以减轻糖尿病动脉粥样硬化,从而证明铁死亡在糖尿病动脉粥样硬化发展中的致病作用。皮肤溃疡迁延不愈是糖尿病的主要并发症之一,受损伤口涉及持续炎症和氧化应激,Li等 [40] 在糖尿病伤口模型中测到铁死亡相关蛋白、ROS、脂质过氧化产物水平较对照组升高,而在给予Fer-1治疗后其水平均降低,并且促进了伤口愈合,从而表明铁死亡参与了糖尿病患者皮肤溃疡迁延不愈,但其具体机制仍有待进一步深入探究。

3. 糖尿病和糖尿病相关并发症中铁死亡抑制剂的研究现状

随着对铁死亡机制及其对疾病所产生影响的深入认识,铁死亡特异性抑制剂也不断被开发且部分已经被尝试应用于临床疾病的治疗中,如Fer-1,去铁胺,利普罗他汀-1,米托醌,维生素E和齐留通 [1] [41]。基于铁死亡参与了糖尿病及其多种并发症的病理过程,铁死亡抑制剂在糖尿病及其并发症治疗中的研究应运而生。罗格列酮被证实为ACSL4的强效抑制剂 [42]。在Wang等 [13] 的研究中,DKD模型中铁死亡生物标志物ACSL4表达水平升高的同时GPX4表达水平降低,而在予以罗格列酮治疗后,DKD模型中的上述铁死亡标志物的表达水平发生反转,且DKD模型小鼠的存活率及肾功能均得以提高。非诺贝特作为调脂药目前在临床中已经得到了很好的应用。Cheng等 [43] 研究发现非诺贝特还可以通过调节铁死亡来延缓糖尿病肾病的进展。此外,很多中药成分也被发现可以通过调节机体内铁死亡来降低患糖尿病及其并发症的风险。如Li等 [44] 对槲皮素预防2型糖尿病的机制进行了探索,发现槲皮素是通过抑制胰腺铁积累和胰腺β细胞的铁死亡实现降低患2型糖尿病风险的。另外,在Zhang等 [18] 的研究中,天然抗氧化物白藜芦醇可以缓解ER应激并上调糖脂代谢必需基因PPARγ的表达,从而抑制丙烯醛诱导的铁死亡,而丙烯醛以往已被证实为糖尿病危险因素。这些研究表明部分中药天然成分具有潜在的抗铁死亡能力,深入探索中药活性成分的功能也许能为中药在糖尿病及其并发症治疗中的应用拓宽前景。

4. 结论与展望

本文综述了铁死亡在糖尿病及其多种并发症中的可能致病机制,以及铁死亡抑制剂在治疗中的潜在机制。糖尿病及其并发症中的铁死亡主要通过与脂质过氧化、炎症激活等病理过程相互作用,从而实现其在疾病发生发展中的病理作用,对其具体机制进行更多更深入的研究探索,将有助于为疾病治疗策略的创新及改进提供可能方向。部分天然中药成分在糖尿病及其并发症的预防及治疗中显示抗铁死亡潜能,但其具体活性成分及确切作用靶点需要进一步验证。最后,糖尿病并发症远不止本文中所提及到的,进一步探索铁死亡是否参与其他并发症的病理过程及其具体机制,也许能为糖尿病及其并发症的全面治疗提供潜在的新方向。

基金项目

熊果酸下调S100A8/A9-AA抑制NF-κB依赖的巨噬细胞释放炎症因子改善NAFLD (cstc2020jcyj-msxmX0466);重庆市全科住培医师毕业后职业现状及影响因素研究(2022WSJK093)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Li, J., Cao, F., Yin, H.L., et al. (2020) Ferroptosis: Past, Present and Future. Cell Death & Disease, 11, Article No. 88.
https://doi.org/10.1038/s41419-020-2298-2
https://journals.sagepub.com/home/APH
[2] Wu, X., Li, Y., Zhang, S. and Zhou, X. (2021) Ferroptosis as a Novel Therapeutic Target for Cardiovascular Disease. Theranostics, 11, 3052-3059.
https://doi.org/10.7150/thno.54113
[3] Mahoney-Sánchez, L., Bouchaoui, H., Ayton, S., et al. (2021) Ferroptosis and Its Potential Role in the Physiopathology of Parkinson’s Disease. Progress in Neurobiology, 196, Article ID: 101890.
https://doi.org/10.1016/j.pneurobio.2020.101890
[4] Chen, X., Kang, R., Kroemer, G. and Tang, D. (2021) Broadening Horizons: The Role of Ferroptosis in Cancer. Nature Reviews Clinical Oncology, 18, 280-296.
https://doi.org/10.1038/s41571-020-00462-0
[5] Li, Y., Feng, D., Wang, Z., et al. (2019) Ischemia-Induced ACSL4 Activation Contributes to Ferroptosis-Mediated Tissue Injury in Intestinal Ischemia/Reperfusion. Cell Death & Differentiation, 26, 2284-2299.
https://doi.org/10.1038/s41418-019-0299-4
[6] Mishriky, B.M., Cummings, D.M. and Powell, J.R. (2022) Dia-betes-Related Microvascular Complications—A Practical Approach. Primary Care: Clinics in Office Practice, 49, 239-254.
https://doi.org/10.1016/j.pop.2021.11.008
[7] Ofanoa, M., Tekeraoi, R., Dalmia, P., et al. (2021) Patient Perspectives of Diabetes and Diabetic Retinopathy Services in Kiribati: A Qualitative Study. Asia Pacific Journal of Public Health, 33, 740-746.
https://doi.org/10.1177/1010539520977313
[8] Li, C., Xiao, Y., Hu, J., et al. (2021) Associations between Dia-betes and Idiopathic Pulmonary Fibrosis: A Study-Level Pooled Analysis of 26 Million People. Journal of Clinical Endocrinology & Metabolism, 106, 3367-3380.
[9] Kopf, S., Kumar, V., Kender, Z., et al. (2021) Diabetic Pneumopathy—A New Diabetes-Associated Complication: Mechanisms, Consequences and Treatment Considerations. Frontiers in Endocrinology, 12, Article ID: 765201.
https://doi.org/10.3389/fendo.2021.765201
[10] Kumar, V., Xin, X., Ma, J., et al. (2021) Therapeutic Targets, Novel Drugs, and Delivery Systems for Diabetes Associated NAFLD and Liver Fibrosis. Advanced Drug Delivery Re-views, 176, Article ID: 113888.
https://doi.org/10.1016/j.addr.2021.113888
[11] Bruni, A., Pepper, A.R., Pawlick, R.L., et al. (2018) Ferroptosis-Inducing Agents Compromise in Vitro Human Islet Viability and Function. Cell Death & Disease, 9, Article No. 595.
https://doi.org/10.1038/s41419-018-0506-0
[12] Li, W., Li, W., Leng, Y., et al. (2020) Ferroptosis Is Involved in Diabetes Myocardial Ischemia/Reperfusion Injury through Endoplasmic Reticulum Stress. DNA and Cell Biology, 39, 210-225.
https://doi.org/10.1089/dna.2019.5097
[13] Wang, Y., Bi, R., Quan, F., et al. (2020) Ferroptosis Involves in Renal Tubular Cell Death in Diabetic Nephropathy. European Journal of Pharmacology, 888, Article ID: 173574.
https://doi.org/10.1016/j.ejphar.2020.173574
[14] Gautam, S., Alam, F., Moin, S., Noor, N. and Arif, S.H. (2021) Role of Ferritin and Oxidative Stress Index in Gestational Diabetes Mellitus. Journal of Diabetes & Metabolic Disorders, 20, 1615-1619.
https://doi.org/10.1007/s40200-021-00911-2
[15] Stancic, A., Saksida, T., Markelic, M., et al. (2022) Ferroptosis as a Novel Determinant of β-Cell Death in Diabetic Conditions. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 3873420.
https://doi.org/10.1155/2022/3873420
[16] Eick, S.M., Ferreccio, C., Acevedo, J., et al. (2019) Socioeconomic Status and the Association between Arsenic Exposure and Type 2 Diabetes. Environmental Research, 172, 578-585.
https://doi.org/10.1016/j.envres.2019.03.013
[17] Wei, S., Qiu, T., Yao, X., et al. (2020) Arsenic Induces Pancre-atic Dysfunction and Ferroptosis via Mitochondrial ROS-Autophagy-Lysosomal Pathway. Journal of Hazardous Ma-terials, 384, Article ID: 121390.
https://doi.org/10.1016/j.jhazmat.2019.121390
[18] Zhang, X., Jiang, L., Chen, H., et al. (2022) Resveratrol Pro-tected Acrolein-Induced Ferroptosis and Insulin Secretion Dysfunction via ER-Stress-Related PERK Pathway in MIN6 Cells. Toxicology, 465, Article ID: 153048.
https://doi.org/10.1016/j.tox.2021.153048
[19] Du, J., Zhou, Y., Li, Y., et al. (2020) Identification of Frataxin as a Regulator of Ferroptosis. Redox Biology, 32, Article ID: 101483.
https://doi.org/10.1016/j.redox.2020.101483
[20] Turchi, R., Tortolici, F., Guidobaldi, G., et al. (2020) Frataxin Deficiency Induces Lipid Accumulation and Affects Thermogenesis in Brown Adipose Tissue. Cell Death & Disease, 11, Article No. 51.
https://doi.org/10.1038/s41419-020-2253-2
[21] Alicic, R.Z., Rooney, M.T. and Tuttle, K.R. (2017) Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clinical Journal of the American Society of Nephrology, 12, 2032-2045.
https://doi.org/10.2215/CJN.11491116
[22] van Swelm, R.P.L., Wetzels, J.F.M. and Swinkels, D.W. (2020) The Multifaceted Role of Iron in Renal Health and Disease. Nature Reviews Nephrology, 16, 77-98.
https://doi.org/10.1038/s41581-019-0197-5
[23] Wu, Y., Zhao, Y., Yang, H.-Z., Wang, Y.-J. and Chen, Y. (2021) HMGB1 Regulates Ferroptosis through Nrf2 Pathway in Mesangial Cells in Response to High Glucose. Bioscience Reports, 41, Article ID: BSR20202924.
https://doi.org/10.1042/BSR20202924
[24] Kim, S., Kang, S.W., Joo, J., et al. (2021) Characterization of Ferroptosis in Kidney Tubular Cell Death under Diabetic Conditions. Cell Death & Disease, 12, Article No. 160.
https://doi.org/10.1038/s41419-021-03452-x
[25] Zhang, Q., Hu, Y., Hu, J.E., et al. (2021) Sp1-Mediated Upregulation of Prdx6 Expression Prevents Podocyte Injury in Diabetic Nephropathy via Mitigation of Oxidative Stress and Ferroptosis. Life Sciences, 278, Article ID: 119529.
https://doi.org/10.1016/j.lfs.2021.119529
[26] Wang, W. and Lo, A.C.Y. (2018) Diabetic Retinopathy: Patho-physiology and Treatments. International Journal of Molecular Sciences, 19, Article No. 1816.
https://doi.org/10.3390/ijms19061816
[27] Zhang, J., Qiu, Q., Wang, H., Chen, C. and Luo, D. (2021) TRIM46 Contributes to High Glucose-Induced Ferroptosis and Cell Growth Inhibition in Human Retinal Capillary Endothelial Cells by Facilitating GPX4 Ubiquitination. Experimental Cell Research, 407, Article ID: 112800.
https://doi.org/10.1016/j.yexcr.2021.112800
[28] Wang, J., Song, Y., Wang, Q., Kralik, P.M. and Epstein, P.N. (2006) Causes and Characteristics of Diabetic Cardiomyopathy. The Review of Diabetic Studies, 3, 108-117.
https://doi.org/10.1900/RDS.2006.3.108
[29] Wang, C., Zhu, L., Yuan, W., et al. (2020) Diabetes Aggravates Myocardial Ischaemia Reperfusion Injury via Activating Nox2-Related Programmed Cell Death in an AMPK-Dependent Manner. Journal of Cellular and Molecular Medicine, 24, 6670-6679.
https://doi.org/10.1111/jcmm.15318
[30] Wang, N., Ma, H., Li, J., et al. (2021) HSF1 Functions as a Key De-fender against Palmitic Acid-Induced Ferroptosis in Cardiomyocytes. Journal of Molecular and Cellular Cardiology, 150, 65-76.
https://doi.org/10.1016/j.yjmcc.2020.10.010
[31] Morsi, M., Maher, A., Aboelmagd, O., Johar, D. and Bernstein, L. (2018) A Shared Comparison of Diabetes Mellitus and Neurodegenerative Disorders. Journal of Cellular Biochem-istry, 119, 1249-1256.
https://doi.org/10.1002/jcb.26261
[32] Hao, L., Mi, J., Song, L., et al. (2021) SLC40A1 Mediates Ferroptosis and Cognitive Dysfunction in Type 1 Diabetes. Neuroscience, 463, 216-226.
https://doi.org/10.1016/j.neuroscience.2021.03.009
[33] Devos, D., Moreau, C., Devedjian, J.C., et al. (2014) Targeting Chelatable Iron as a Therapeutic Modality in Parkinson’s Disease. Antioxidants & Redox Signaling, 21, 195-210.
https://doi.org/10.1089/ars.2013.5593
[34] Ayton, S. and Lei, P. (2014) Nigral Iron Elevation Is an In-variable Feature of Parkinson’s Disease and Is a Sufficient Cause of Neurodegeneration. BioMed Research International, 2014, Article ID: 581256.
https://doi.org/10.1155/2014/581256
[35] Raven, E.P., Lu, P.H., Tishler, T.A., Heydari, P. and Bartzokis, G. (2013) Increased Iron Levels and Decreased Tissue Integrity in Hippocampus of Alzheimer’s Disease Detected in Vivo with Magnetic Resonance Imaging. Journal of Alzheimer’s Disease, 37, 127-136.
https://doi.org/10.3233/JAD-130209
[36] An, J.-R., Su, J.-N., Sun, G.-Y., et al. (2022) Liraglutide Alleviates Cognitive Deficit in db/db Mice: Involvement in Oxidative Stress, Iron Overload, and Ferroptosis. Neurochemical Re-search, 47, 279-294.
https://doi.org/10.1007/s11064-021-03442-7
[37] Abdul, Y., Li, W., Ward, R., et al. (2021) Deferoxamine Treatment Prevents Post-Stroke Vasoregression and Neurovascular Unit Remodeling Leading to Improved Functional Outcomes in Type 2 Male Diabetic Rats: Role of Endothelial Ferroptosis. Translational Stroke Research, 12, 615-630.
https://doi.org/10.1007/s12975-020-00844-7
[38] Yang, Y., Lin, Y., Wang, M., et al. (2022) Targeting Ferroptosis Suppresses Osteocyte Glucolipotoxicity and Alleviates Diabetic Osteoporosis. Bone Research, 10, Article No. 26.
https://doi.org/10.1038/s41413-022-00198-w
[39] Meng, Z., Liang, H., Zhao, J., et al. (2021) HMOX1 Upregulation Promotes Ferroptosis in Diabetic Atherosclerosis. Life Sciences, 284, Article ID: 119935.
https://doi.org/10.1016/j.lfs.2021.119935
[40] Li, S., Li, Y., Wu, Z., Wu, Z. and Fang, H. (2021) Diabetic Ferroptosis Plays an Important Role in Triggering on Inflammation in Diabetic Wound. American Journal of Physiol-ogy-Endocrinology and Metabolism, 321, e509-e520.
https://doi.org/10.1152/ajpendo.00042.2021
[41] Ju, J., Song, Y.N. and Wang, K. (2021) Mechanism of Ferroptosis: A Potential Target for Cardiovascular Diseases Treatment. Aging and Disease, 12, 261-276.
https://doi.org/10.14336/AD.2020.0323
[42] Kim, J.H., Lewin, T.M. and Coleman, R.A. (2001) Expression and Characterization of Recombinant Rat Acyl-CoA Synthetases 1, 4, and 5. Selective Inhibition by Triacsin C and Thiazolidinediones. Journal of Biological Chemistry, 276, 24667-24673.
https://doi.org/10.1074/jbc.M010793200
[43] Cheng, Y., Zhang, X., Ma, F., et al. (2020) The Role of Akt2 in the Protective Effect of Fenofibrate against Diabetic Nephropathy. International Journal of Biological Sciences, 16, 553-567.
https://doi.org/10.7150/ijbs.40643
[44] Li, D., Jiang, C., Mei, G., et al. (2020) Quercetin Alleviates Ferroptosis of Pancreatic β Cells in Type 2 Diabetes. Nutrients, 12, Article No. 2954.
https://doi.org/10.3390/nu12102954