γδT细胞在脓毒症免疫功能紊乱的研究进展
Research Progress of γδT Cells in Immune Dysfunction of Sepsis
DOI: 10.12677/ACM.2022.12121700, PDF, HTML, XML, 下载: 272  浏览: 369 
作者: 金 笾, 许 峰*:重庆医科大学附属儿童医院,重庆
关键词: γδT细胞脓毒症免疫功能紊乱γδT Cells Sepsis Immune Dysfunction
摘要: 近年来对脓毒症患者免疫功能紊乱机制的研究日渐受到重视,机体的免疫系统状态与脓毒症的发生、发展及其预后有着密切的利害关系。γδT细胞具备先天性免疫和获得性免疫的双重特点,逐步发现其参与脓毒症的病理生理的整个过程。因此,本文综述γδT细胞在脓毒症中的研究进展,以期探讨γδT细胞在脓毒症病理状态下的免疫反应机制,为以γδT细胞为靶点的免疫支持治疗提供方向。
Abstract: In recent years, the research on the mechanism of immune dysfunction in sepsis patients has been paid more and more attention seriously. The state of immune system is closely related to the de-velopment and prognosis of sepsis. γδT cells have the dual characteristics of innate-immunity and acquired-immunity, and are gradually found to be closely bound up with the pathophysiological whole process of sepsis. Therefore, this article is mainly focused on the immunologic mechanism of γδT cells in the pathological state of sepsis, aiming at providing theoretical directions for γδT cells-targeted supportive immunotherapy.
文章引用:金笾, 许峰. γδT细胞在脓毒症免疫功能紊乱的研究进展[J]. 临床医学进展, 2022, 12(12): 11806-11811. https://doi.org/10.12677/ACM.2022.12121700

1. 引言

脓毒症本质上是机体对病原体免疫应答所产生的失调反应。在脓毒症病理生理过程中同时存在着炎症因子风暴和免疫功能障碍的矛盾,表现为促炎和抗炎反应早期激活,随后众多免疫细胞亚群发生数量水平与自身功能紊乱 [1]。导致脓毒症的病原体大多数来源于呼吸道、消化道和皮肤,而γδT细胞在黏膜和上皮组织中含量丰富,是阻止脓毒症爆发的首要防线 [2] [3]。γδT细胞作为衔接先天性免疫反应和获得性免疫反应的重要中介,在病原体清除、炎症调节、维持免疫平衡方面具有独特作用,与脓毒症的发病机制和脓毒症诱导的免疫麻痹密切相关 [4]。此文综述γδT细胞的免疫参与机制及其在脓毒症病理过程中细胞亚群和自身功能的改变,以期进一步揭示脓毒症病理生理机制和探讨γδT细胞免疫治疗在脓毒症中的应用前景。

2. γδT细胞的定义、分类

T细胞受体(T cell receptor, TCR)主要由αβ或γδ异二聚复合体构成,将T淋巴细胞分为经典的αβT细胞和γδT细胞两大类。两者共同起源于胸腺中的双阴(CD4−CD8−) T细胞,在经历TCR相关基因座重排和TCR基因信号强度诱导的谱系分化后 [5],最终确定了T淋巴细胞的分化类型。γδT细胞仅占外周血T细胞的0.5%~10%,其亚群众多,分布广泛,具有先天性免疫的特征和适应性免疫的特点 [6],使之能够在脓毒症的所有病理阶段发挥作用。根据γδT细胞TCR可变区δ链的表达主要分为三类:Vδ1+ T细胞、Vδ2+ T细胞、Vδ3+ T细胞。Vδ1+ T细胞主要分布于黏膜相关淋巴组织中,如呼吸道、胃肠黏膜、泌尿生殖道、真皮组织等,在上皮性淋巴细胞中含量最丰富,同时在维持屏障组织完整性中起重要作用 [7],是机体抵御外界或定植病原体入侵的第一道防线;Vδ2+ T细胞主要分布于外周血和淋巴组织中,高达75%的循环Vδ2+ T细胞表面表达成对的Vδ2/Vγ9 T细胞受体(简称Vγ9δ2T细胞),能在BTN2A1/BTN3A1蛋白的参与下 [8] 识别病原体和感染细胞来源的磷酸抗原分子,并通过细胞杀伤毒性、分泌细胞因子、调节免疫细胞等方式参与脓毒症免疫反应。且Vγ9δ2T细胞在多次感染相同病原体后可以获得记忆效应表型,产生具有抗原特异性记忆细胞的能力 [3];Vδ3+ T细胞在循环血液中含量很少,在肝脏和肠道中含量丰富,与某些慢性病毒感染和血液肿瘤有关。

3. γδT细胞的生物学特性

3.1. 病原微生物的识别及免疫功能

由于炎症因子风暴和随之而来的免疫麻痹,脓毒症病人可以在数小时内进展为多脏器衰竭状态并具有高致死风险,迅速而强大的先天性免疫系统对于机体早期存活至关重要。大多数γδT细胞不受CD4和CD8分子的限制,因此γδTCR以不依赖主要组织相容性复合体(MHC)的方式识别病原体相关的非肽类抗原(主要是磷酸化微生物代谢物)和热休克蛋白 [9],有助于对免疫反应早期阶段的迅速识别。与αβTCR相比,Vγ和Vδ基因重组多样性受到位点数量的限制,而由于γδTCR独特的重组方式 [5],其受体组合多样性与αβTCR相似,以识别自然界中广泛存在的细菌、病毒、寄生虫等外源性抗原。除了TCR介导的激活外,γδT细胞还能通过表达自然杀伤细胞受体NKG2D识别应激诱导分子MICA/B、ULBP或激活Toll样受体TLR3/4的表达识别多种病原体相关分子模式 [10] [11]。激活的γδT细胞可以通过分泌颗粒酶、穿孔素的方式发挥直接细胞毒性作用,同时还能根据病原微生物环境的不同分化为相应的效应谱系 [12] 并分泌大量细胞因子和趋化因子,如IL-2、IL-10、IL-17、TNF-α、INF-γ、CCL-4/5等间接参与免疫反应 [13]。以上这些特性使γδT细胞处于抵抗病原体的前线。

3.2. 先天性免疫与获得性免疫的“桥梁”

γδT细胞不仅在天然免疫应答早期过程中发挥迅速、有效的作用,同时也是连接先天性免疫和获得性免疫的关键“桥梁”。一方面γδT细胞可以间接性调节其他免疫细胞的功能参与抗病原体的感染反应。活化的γδT细胞可以迅速聚集到感染部位并分泌细胞因子IL-17和趋化因子CXCL8等,将中性粒细胞募集到炎症部位并增强其吞噬作用和脱颗粒效率 [14],限制病原菌的繁殖与播散。体外细胞实验证明 [15] γδT细胞通过CD137/CD137L等共刺激信号途径与NK细胞相互作用上调其细胞毒性受体NKG2D,增强NK细胞识别和杀伤受感染细胞的能力。激活的Vδ2+ T细胞和Vδ3+ T细胞能通过分泌TNF-α、INF-γ等细胞因子非接触性促进单核–巨噬细胞激活分化、上调树突状细胞CD40、HLA-DR等受体分子表达水平,增强其抗原提呈能力 [16] [17]。同时,组织内的γδT细胞对炎症细胞的直接杀伤作用也是调节缓和炎症反应的一种机制,避免过量的激活状态炎症细胞聚集而导致脏器损伤,在感染的康复阶段起重要作用 [18] [19]。另一方面与经典树突状细胞功能相似,γδT细胞具有专职抗原提呈功能。被磷酸抗原激活的Vγ9δ2T细胞表面高表达抗原提呈细胞标志物HLA-DR、CD40、CD80和CD86,能摄取和加工MHC I类和II类可溶性抗原并呈递给幼稚αβT细胞,诱导CD4+ αβT和CD8+ αβT细胞增殖和分化,同时抑遏调节性T细胞对αβT细胞的免疫抑制作用 [20] [21] [22]。进一步研究发现 [23] γδT细胞在体液免疫中也具有重要意义,许多共刺激分子如CD28、T细胞可诱导共刺激因子ICOS等在γδT细胞表面表达,通过多种共刺激信号途径与B淋巴细胞相互作用,在没有αβT细胞的辅助下也能促使初始B细胞分化为效应B细胞并分泌免疫球蛋白。γδT细胞与免疫细胞的相互作用同时对γδT细胞也产生重要影响,其自身需要由共刺激分子提供的二级信号来实现最佳的扩增与激活 [24]。

4. γδT细胞与脓毒症免疫功能紊乱

4.1. γδT细胞数量、亚群变化对免疫功能的影响

在脓毒症早期外周血和淋巴组织中γδT细胞不断激活、表达趋化因子受体并向感染部位聚集,足量的γδT细胞对于感染灶的炎症反应是必不可少的 [25]。J Tschöp等人发现 [26] 盲肠结扎穿刺术后γδT细胞缺失的γδ−/−小鼠体内炎症反应减退,会导致比野生型小鼠生存时间更短、脏器损伤更重的结果。体内感染如果得不到有效控制从而进展为脓毒症,高细菌负荷状态对γδT细胞的持续刺激会导致γδT细胞的耗竭。许多临床实验已证实 [2] [27] [28] 在脓毒症病理生理过程中存在大量γδT细胞的凋亡现象导致循环γδT细胞减少,尤其是CD3+CD56+ γδT细胞数量的减少,且与脓毒症患者的严重程度和死亡风险显著相关。脓毒症患者γδT细胞的下降程度比αβT细胞表现得更加显著,同时随着脓毒症病程的进展γδT细胞数量持续性下降,在较长时间内不会恢复到正常水平 [29]。同时有文献报道 [30] γδT细胞数量减少也见于非感染性危重患者,γδT细胞数量水平的改变在感染性和非感染性疾病中相关作用机制有待深入研究。

另一个关键问题是γδT细胞亚群在脓毒症中的作用机制不同,其变化趋势也有明显差异。Vδ2+ T细胞数量的递降和Vδ1+ T细胞数量的增多与脓毒症的严重程度呈正相关 [31],Vδ1+ T细胞和Vδ2+ T细胞亚群的比例失衡反映了γδT细胞在脓毒症中促炎反应和抑炎反应的紊乱。Vδ1+ T细胞数量的变化趋势与已报道的脓毒症中调节性T细胞的变化趋势一致,进一步研究表明,脓毒症患者Vδ1+ T细胞表面CTLA-4和TIM-3等免疫抑制分子的表达显著升高,通过直接性细胞接触发挥免疫抑制作用 [31] [32]。因此,脓毒症诱导的免疫功能障碍与外周血Vδ1+/Vδ2+ T细胞亚群失衡紧密相关 [33]。同时在HIV感染者外周血中也发现γδT细胞亚群发生了相同的变化,且在CD4+/CD8+ T细胞比值倒置之前就检测到了Vδ1+/Vδ2+ T细胞比值的改变 [34],Vδ1+/Vδ2+ T细胞比值可能在监测、预估脓毒症免疫功能状态方面比CD4+/CD8+ T细胞比值更加灵敏。

4.2. γδT细胞功能改变对免疫功能的影响

γδT细胞在脓毒症中的保护作用来源于产生炎症介质的能力,其中IL-17尤为重要,在γδT细胞耗竭后外周血IL-17及其相关的趋化因子水平明显降低,导致病灶细菌负荷量显著增加 [35]。在脓毒症中循环γδT细胞分泌的促炎性细胞因子(如TNF-α,INF-γ,IL-17)和抗炎性细胞因子(如IL-10,TGF-β)的水平均升高 [36],提示γδT细胞在脓毒症病理过程中具有促炎和抗炎的双重作用。为进一步明确在脓毒症病理状态下γδT细胞内在功能是否受到影响,在107位脓毒症病人中发现 [37] 经磷酸抗原体外刺激后的外周血γδT细胞其早期激活标志物CD69、自然杀伤细胞受体NKG2D和细胞因子IFN-γ、IL-17等表达水平降低,在死亡病例中表现更显著。有文献报道 [33] γδT细胞在脓毒症早期表现为低细胞杀伤毒性、INF-γ和IL-10等细胞因子表达水平受限,促炎反应能力在脓毒症后期才逐渐恢复。这些结果均表明脓毒症中的γδT细胞表型和自身功能发生了改变,与脓毒症不良预后有关。此外,γδT细胞的其他功能也受到了脓毒症的负面影响。Helen等人发现 [38] 脓毒症患者循环γδT细胞亚群的增殖能力受损,主要以非增殖性亚群为主。普遍认同抗原提呈功能受损在脓毒症诱导的免疫抑制中起重要作用。尽管在脓毒症中γδT细胞的抗原提呈相关受体表达上调,它们再次激活时并不能有效执行抗原提呈功能,在死亡患者中该功能障碍更加严重 [39]。γδT细胞对免疫功能的调节大部分是通过与其他免疫细胞的双向作用,但γδT细胞在脓毒症的影响下与免疫细胞的双向调节功能也受到损害 [40]。总之,关于γδT细胞表型的改变和内在功能的障碍强烈表明其在脓毒症诱导的免疫抑制中发挥重要作用,均可能与脓毒症患者免疫功能紊乱有关。

5. γδT细胞的治疗的前景

随着脓毒症早期集束化治疗的提出,大多数患者可渡过急性高炎症因子风暴期,而随后进展为的免疫抑制状态成为脓毒症后期主要的死亡原因之一 [27],旨在改善免疫功能的治疗代表着脓毒症新的治疗方向。因其具有先天性免疫和获得性免疫的双重优点,以γδT细胞为基础的治疗在感染控制、炎症免疫调节方面具有独特优势。关于γδT细胞的治疗在动物实验取得了一定进展,如注射低剂量唑来膦酸和IL-2来激活和扩增γδT细胞后可以增强小鼠对结核杆菌的抵抗力 [41];通过阻断抑制性受体PD-1可以改善γδT细胞的增殖能力和细胞因子分泌功能,是γδT细胞潜在的治疗靶点 [42];或经雷帕霉素或IL-18处理后的Vγ9δ2T细胞表面MHC-II、CD80/CD86等受体的表达增加 [43],可以逆转脓毒症中γδT细胞抗原提呈功能的障碍;Kasten等人 [44] 使用免疫调节剂重组人IL-7改善了脓毒症中γδT细胞低IL-17和IFN-γ等细胞因子的分泌水平,在不增加组织损伤的情况下提高了中性粒细胞的募集和细菌清除效率。综上所述,通过刺激γδT细胞扩增、改善γδT细胞内在功能障碍的治疗是有效的,这些尝试可能为脓毒症的免疫支持治疗提供新的治疗方向,而针对γδT细胞的免疫治疗的安全性及能否改善脓毒症病人的预后需要进一步研究。

6. 总结

γδT细胞并不具有独特的作用,但它们可以提供多种功能组合,如细胞毒性作用、细胞因子分泌、抗原递呈功能、与免疫细胞的双向调节作用。γδT细胞数量水平和内在功能的异常与脓毒症免疫功能紊乱密切相关,同时也是γδT细胞免疫治疗的潜在靶点。因此,深入探究γδT细胞在脓毒症中的免疫机制和影响γδT细胞功能的关键因素,有助于使我们进一步理解脓毒症的本质,并发现新的脓毒症治疗策略。

NOTES

*通讯作者。

参考文献

[1] Van Der Poll, T., Shankar-Hari, M. and Wiersinga, W.J. (2021) The Immunology of Sepsis. Immunity, 54, 2450-2464.
https://doi.org/10.1016/j.immuni.2021.10.012
[2] Andreu-Ballester, J.C., Arribas, M.A., Rico, M., et al. (2022) Changes of CD3+CD56+ γδ T Cell Number and Apoptosis during Hospital Admission Are Related to Mortality in Sep-tic Patients. Clinical Immunology, 236, Article ID: 108956.
https://doi.org/10.1016/j.clim.2022.108956
[3] Khairallah, C., Chu, T.H. and Sheridan, B.S. (2018) Tissue Adap-tations of Memory and Tissue-Resident Gamma Delta T Cells. Frontiers in Immunology, 9, Article 2636.
https://doi.org/10.3389/fimmu.2018.02636
[4] Jensen, I.J., Sjaastad, F.V., Griffith, T.S. and Badovinac, V.P. (2018) Sepsis-Induced T Cell Immunoparalysis: The Ins and Outs of Impaired T Cell Immunity. Journal of Immunology, 200, 1543-1553.
[5] Kreslavsky, T., Gleimer, M., Garbe, A.I. and Von Boehmer, H. (2010) αβ versus γδ Fate Choice: Counting the T-Cell Lineages at the Branch Point. Immunological Reviews, 238, 169-181.
https://doi.org/10.1111/j.1600-065X.2010.00947.x
[6] Lalor, S.J. and McLoughlin, R.M. (2016) Memory γδ T Cells—Newly Appreciated Protagonists in Infection and Immunity. Trends in Immunology, 37, 690-702.
https://doi.org/10.1016/j.it.2016.07.006
[7] Andreu-Ballester, J.C., Zamora, V., Garcia-Ballesteros, C., et al. (2018) Anti-Anisakis sp. Antibodies in Serum of Patients with Sepsis and Their Relationship with γδ T Cells and Disease Severity. International Journal for Parasitology, 48, 483-491.
https://doi.org/10.1016/j.ijpara.2017.11.007
[8] Rigau, M., Ostrouska, S., Fulford, T.S., et al. (2020) Butyrophilin 2A1 Is Essential for Phosphoantigen Reactivity by γδ T Cells. Science, 367, eaay5516.
https://doi.org/10.1126/science.aay5516
[9] Lin, L., Chen, Y., Chen, D., et al. (2022) Transient 40˚C-Shock Po-tentiates Cytotoxic Responses of Vδ2+ γδ T Cell via HSP70 Upregulation. Cancer Immunology, Immunotherapy, 71, 2391-2404.
https://doi.org/10.1007/s00262-022-03164-x
[10] Tanaka, Y. (2020) Cancer Immunotherapy Harnessing γδ T Cells and Programmed Death-1. Immunological Reviews, 298, 237-253.
https://doi.org/10.1111/imr.12917
[11] Woo, S.R., Corrales, L. and Gajewski, T.F. (2015) Innate Immune Recognition of Cancer. Annual Review of Immunology, 33, 445-474.
https://doi.org/10.1146/annurev-immunol-032414-112043
[12] Mcginley, A.M., Edwards, S.C., Raverd-eau, M. and Mills, K.H.G. (2018) Th17 Cells, γδ T Cells and Their Interplay in EAE and Multiple Sclerosis. Journal of Autoimmunity, 87, 97-108.
https://doi.org/10.1016/j.jaut.2018.01.001
[13] Vantourout, P. and Hayday, A. (2013) Six-of-the-Best: Unique Contributions of γδ T Cells to Immunology. Nature Reviews Immunology, 13, 88-100.
https://doi.org/10.1038/nri3384
[14] Sabbione, F., Gabelloni, M.L., Ernst, G., et al. (2014) Neutrophils Suppress γδ T-Cell Function. European Journal of Immunology, 44, 819-830.
https://doi.org/10.1002/eji.201343664
[15] David, P.C., Mei-Ling, L., Tyler, L., et al. (2018) Gamma Delta T Cell Therapy for Cancer: It Is Good to Be Local. Frontiers in Immunology, 9, Article 1305.
https://doi.org/10.3389/fimmu.2018.01305
[16] Mangan, B.A., et al. (2013) Cutting Edge: CD1d Restriction and Th1/Th2/Th17 Cytokine Secretion by Human Vδ3 T Cells. Journal of Immunology, 191, 30-34.
https://doi.org/10.4049/jimmunol.1300121
[17] Pinheiro, M.B., Antonelli, L.R., Sathler-Avelar, R., et al. (2012) CD4-CD8-αβ and γδ T Cells Display Inflammatory and Regulatory Potentials during Human Tuberculosis. PLOS ONE, 7, e50923.
https://doi.org/10.1371/journal.pone.0050923
[18] Long, K.M., Ferris, M.T., Whitmore, A.C., et al. (2016) γδ T Cells Play a Protective Role in Chikungunya Virus-Induced Disease. Journal of Virology, 90, 433-443.
https://doi.org/10.1128/JVI.02159-15
[19] Hirsh, M.I. and Junger, W.G. (2008) Roles of Heat Shock Proteins and γδT Cells in Inflammation. American Journal of Respiratory Cell and Molecular Biology, 39, 509-513.
https://doi.org/10.1165/rcmb.2008-0090TR
[20] Barisa, M., Kramer, A.M., Majani, Y., et al. (2017) E. coli Pro-motes Human Vγ9Vδ2 T Cell Transition from Cytokine-Producing Bactericidal Effectors to Professional Phagocytic Killers in a TCR-Dependent Manner. Scientific Reports, 7, Article No. 2805.
https://doi.org/10.1038/s41598-017-02886-8
[21] Zhu, Y., Wang, H., Xu, Y., et al. (2016) Human γδ T Cells Augment Antigen Presentation in Listeria monocytogenes Infection. Molecular Medicine, 22, 737-746.
https://doi.org/10.2119/molmed.2015.00214
[22] Mao, C., Mou, X., Zhou, Y., et al. (2014) Tumor-Activated TCRγδ+ T Cells from Gastric Cancer Patients Induce the Antitumor Immune Response of TCRαβ+ T Cells via Their An-tigen-Presenting Cell-Like Effects. Journal of Immunology Research, 2014, Article ID: 593562.
https://doi.org/10.1155/2014/593562
[23] Rampoldi, F., Ullrich, L. and Prinz, I. (2020) Revisiting the Interaction of γδ T-Cells and B-Cells. Cells, 9, Article 743.
https://doi.org/10.3390/cells9030743
[24] Ribot, J.C., Debarros, A. and Silva-Santos, B. (2011) Searching for “Signal 2”: Costimulation Requirements of γδ T Cells. Cellular and Molecular Life Sciences, 68, 2345-2355.
https://doi.org/10.1007/s00018-011-0698-2
[25] de Souza Costa, M.F., de Negreiros, C.B., Bornstein, V.U., et al. (2015) Murine IL-17+ Vγ4 T Lymphocytes Accumulate in the Lungs and Play a Protective Role during Severe Sepsis. BMC Immunology, 16, Article No. 36.
https://doi.org/10.1186/s12865-015-0098-8
[26] Tschöp, J., Martignoni, A., Goetzman, H.S., et al. (2008) γδ T Cells Mitigate the Organ Injury and Mortality of Sepsis. Journal of Leukocyte Biology, 83, 581-588.
https://doi.org/10.1189/jlb.0707507
[27] Darden, D.B., Kelly, L.S., Fenner, B.P., et al. (2021) Dysregulated Im-munity and Immunotherapy after Sepsis. Journal of Clinical Medicine, 10, Article No. 1742.
https://doi.org/10.3390/jcm10081742
[28] Heffernan, D.S., Monaghan, S.F., Chung, C.S., Cioffi, W.G., Gravenstein, S. and Ayala, A. (2014) A Divergent Response of Innate Regulatory T-Cells to Sepsis in Humans: Circu-lating Invariant Natural Killer T-Cells Are Preserved. Human Immunology, 75, 277-282.
https://doi.org/10.1016/j.humimm.2013.11.004
[29] Andreu-Ballester, J.C., Tormo-Calandin, C., Gar-cia-Ballesteros, C., et al. (2013) Association of γδ T Cells with Disease Severity and Mortality in Septic Patients. Clinical and Vaccine Immunology, 20, 738-746.
https://doi.org/10.1128/CVI.00752-12
[30] Douglas, J.J., Tsang, J.L.Y. and Walley, K.R. (2014) Sepsis and the Innate-Like Response. Intensive Care Medicine, 40, 249-251.
https://doi.org/10.1007/s00134-013-3141-3
[31] Wang, X., Li, W., Zhu, D., et al. (2020) Characterization of Hu-man Peripheral Blood γδ T Cells in Patients with Sepsis. Experimental and Therapeutic Medicine, 19, 3698-3706.
https://doi.org/10.3892/etm.2020.8615
[32] Sabbagh, P., Karkhah, A., Nouri, H.R., Javanian, M. and Ebrahimpour, S. (2018) The Significance Role of Regulatory T Cells in the Persistence of Infections by Intracellular Bacteria. Infection, Genetics and Evolution, 62, 270-274.
https://doi.org/10.1016/j.meegid.2018.05.001
[33] He, W., Xiao, K., Fang, M. and Xie, L. (2021) Immune Cell Number, Phenotype, and Function in the Elderly with Sepsis. Aging and Disease, 12, 277-296.
https://doi.org/10.14336/AD.2020.0627
[34] Clohosey, M.L., Mann, B.T., Ryan, P.L., et al. (2020) Comparable Vδ2 Cell Functional Characteristics in Virally Suppressed People Living with HIV and Uninfected Individuals. Cells, 9, Article No. 2568.
https://doi.org/10.3390/cells9122568
[35] Liu, J., Qu, H., et al. (2013) The Responses of γδ T-Cells against Acute Pseudomonas aeruginosa Pulmonary Infection in Mice via Interleukin-17. Pathogens and Disease, 68, 44-51.
https://doi.org/10.1111/2049-632X.12043
[36] Wu, Y.L., Ding, Y.P., Tanaka, Y., et al. (2014) γδ T Cells and Their Potential for Immunotherapy. International Journal of Biological Sciences, 10, 119-135.
https://doi.org/10.7150/ijbs.7823
[37] Liao, X.L., Feng, T., Zhang J Q, et al. (2017) Phenotypic Changes and Im-paired Function of Peripheral γδ T Cells in Patients with Sepsis. SHOCK, 48, 321-328.
https://doi.org/10.1097/SHK.0000000000000857
[38] Galley, H.F., Lowes, D.A., Thompson, K., et al. (2015) Characterisation of Gamma Delta (γδ) T Cell Populations in Patients with Sepsis. Cell Biology International, 39, 210-216.
https://doi.org/10.1002/cbin.10361
[39] Yang, X.W., Li, H., Feng, T., et al. (2022) Impairment of Anti-gen-Presenting Function of Peripheral γδ T Cells in Patients with Sepsis. Clinical and Experimental Immunology, 207, 104-112.
https://doi.org/10.1093/cei/uxab029
[40] Sacchi, A., Rinaldi, A., Tumino, N., et al. (2014) HIV Infection of Monocytes-Derived Dendritic Cells Inhibits Vγ9Vδ2 T Cells Functions. PLOS ONE, 9, e111095.
https://doi.org/10.1371/journal.pone.0111095
[41] Chen, C.Y., Yao, S., Huang, D., et al. (2013) Phosphoanti-gen/IL2 Expansion and Differentiation of Vγ2Vδ2 T Cells Increase Resistance to Tuberculosis in Nonhuman Primates. PLOS Pathogens, 9, e1003501.
https://doi.org/10.1371/journal.ppat.1003501
[42] Ono, K., Onishi, Y., Kobayashi, M., et al. (2019) γδ T Cell Clonal Proliferation Early after PD-1 Blockade. Annals of Hematology, 98, 219-220.
https://doi.org/10.1007/s00277-018-3406-6
[43] Li, H. and Pauza, C.D. (2011) Rapamycin Increases the Yield and Effector Function of Human γδ T Cells Stimulated in Vitro. Cancer Immunology, Immunotherapy, 60, 361-370.
https://doi.org/10.1007/s00262-010-0945-7
[44] Kasten, K.R., Prakash, P.S., Unsinger, J., et al. (2010) Interleu-kin-7 (IL-7) Treatment Accelerates Neutrophil Recruitment through γδ T-Cell IL-17 Production in a Murine Model of Sepsis. Infection and Immunity, 78, 4714-4722.
https://doi.org/10.1128/IAI.00456-10