脓毒症患者的微循环功能检测技术进展
Progress of Microcirculation Function Detection Technology in Patients with Sepsis
DOI: 10.12677/ACM.2023.131032, PDF, HTML, XML, 下载: 365  浏览: 589  科研立项经费支持
作者: 郭沛雨, 茅 敏, 郭 飞, 单 亮*:青岛大学附属医院重症医学科,山东 青岛;李 秀:青岛大学附属医院门诊部,山东 青岛;单岩笙, 刘 佳, 杨克鑫:青岛大学医学部,山东 青岛
关键词: 脓毒症微循环检测技术Sepsis Microcirculation Detection Technology
摘要: 脓毒症是指由于感染引起的机体反应失调,进而导致的严重的器官功能障碍。微循环功能改变是脓毒症重要的病理生理机制之一,也是影响脓毒症患者预后的重要因素,对于脓毒症患者微循环功能的检测和及时干预治疗是改善预后的关键措施之一,同时也是重症医学领域研究的热点。
Abstract: Sepsis refers to serious organ dysfunction caused by dysregulation of body response caused by in-fection. The change of microcirculation function is an important pathophysiological mechanism of sepsis, and also an important factor affecting the prognosis of patients with sepsis. The detection and timely intervention of microcirculation function in patients with sepsis is one of the key measures to improve the prognosis, and is also a research hotspot in the field of critical care medi-cine.
文章引用:郭沛雨, 李秀, 单岩笙, 茅敏, 郭飞, 刘佳, 杨克鑫, 单亮. 脓毒症患者的微循环功能检测技术进展[J]. 临床医学进展, 2023, 13(1): 206-212. https://doi.org/10.12677/ACM.2023.131032

1. 引言

微循环是循环系统的末梢,分布于所有组织与器官中,是人体重要的组成部分,也是循环系统与各组织器官进行物质交换的基本单位。在疾病的进展中,当组织器官功能出现异常时,微循环就会在一定程度上发生改变 [1]。在脓毒症的诊疗过程中,维持循环灌注是重要的治疗目标之一,但在临床实践过程中,脓毒症患者大循环与微循环不同步状态并不少见,即患者大循环达到复苏指标,但微循环仍然存在功能障碍 [2],Daniel De Backer等人对脓毒症期间的动脉血压及微血管灌注情况进行评价,研究表明,脓毒症期间血压与微血管灌注无相关性,但灌注毛细血管的比例与死亡率有关 [3]。因此,及时对脓毒症患者微循环功能进行检测,既有助于发现早期病变,又在脓毒症的复苏治疗过程中发挥重要指导作用 [4]。大量研究致力于寻找便捷稳定的微循环检测手段,评估微循环功能,以指导脓毒症的复苏治疗。本文将对微循环功能测定方法手段的研究进展进行综述,以飨读者。

2. 常用循环测定指标

2.1. 临床指征:皮肤以及毛细血管再充盈时间

脓毒症患者出现微循环功能障碍时,临床指征是最为简单快捷的判定方式,由于患者微循环功能的下降,外周组织灌注不足,血管收缩,进而导致皮肤温度下降、出现花斑样改变,毛细血管再充盈时间延长 [5]。但此类方法仅能显示皮肤组织灌注,灵敏度差,不能较好的反映其他组织灌注情况,临床上患者若表现出此类症状,常有更为严重的其他组织器官损害 [6]。

2.2. 乳酸及乳酸清除率

严重感染及休克时,组织的氧摄取及利用能力下降从而引起缺氧,葡萄糖无氧酵解引起乳酸的生成增加。研究表明,乳酸清除率对早期脓毒症患者死亡率及预后评价有关 [7] [8]。但乳酸浓度及清除率与众多混杂因素相关,动态连续检测乳酸浓度更有价值 [9]。此外,乳酸主要由肝脏代谢,其浓度与患者肝功能关系密切,高乳酸血症亦存在于肝功能不全患者,而非严重感染患者 [10]。

2.3. 消化道黏膜pH值(pHi)及消化道CO2张力测定

消化道黏膜的pH值可以反映组织的氧合情况。微循环功能发生障碍时,胃肠道黏膜常出现组织细胞缺血缺氧,从而引起H+的释放增加,二氧化碳积累过多,pHi下降,CO2张力升高。临床上通常应用胃黏膜张力计测定获得pHi及CO2张力 [11],有研究证实,危重症患者的pHi及黏膜–动脉PCO2的差值可用于指导复苏以及评估预后,且敏感度高 [12]。

2.4. 混合静脉血氧饱和度(SvO2)及中心静脉血氧饱和度(ScvO2)

混合静脉血氧饱和度及中心静脉血氧饱和度通常用于评估机体氧输送与氧消耗的相对关系,它反映的是机体的摄氧情况。当组织灌注减少,供氧不足,全身的氧需求大于氧的供给,则氧和下降,SvO2及ScvO2下降,此时患者血压、心率、尿量等可能还未出现变化 [13]。混合静脉血氧饱和度常在肺动脉处测量,中心静脉血氧饱和度常在上腔静脉处测量。

3. 微循环检测技术

人们对于微循环的信息获取经历了漫长的过程,微血管管径通常小于100 µm,因此对于其检测技术的要求较高,目前微循环的检测技术发展亦日新月异,主要检测技术如后文所述。

3.1. 组织切片及血管灌注

早期微循环检测技术主要是组织切片及血管灌注。组织切片是最直观的微循环检测方法,可以直接观察到组织中微血管的超微结构。但这种方法的局限性在于,切片仅可获得微循环的某一切面,难以观察其立体结构。血管灌注与组织切片相比弥补了这一不足,它是用特殊材料对微血管进行灌注,使血管硬化,清除周围不需要的组织后,仅留下硬化的微血管,进而获得清晰的立体的微血管结构。这种方法与组织切片相比更为直观且全面,在医学教学方面应用极为广泛。然而上述两种方法均只能用于观察离体的死亡组织,难以检测微循环的血流情况以及动态变化。

3.2. 显微镜技术

显微镜技术在微循环检测中应用极为广泛,它在活体微循环的研究中有重大价值。随着显微镜技术日新月异的发展,激光扫描共聚焦显微镜、双光子显微镜逐渐代替传统光学显微镜,在微循环检测中占据重要地位。传统光学显微镜历史悠久,其对于活体组织的微循环及血流的检测具有重要作用,但它极易收到轴向及侧向杂光干扰,其成像的清晰度和分辨率受到极大限制。激光共聚焦显微镜是利用针孔装置,使入射光源变成点光源,排除杂射光的干扰,从而提高分辨率,它可以对样本进行逐点逐层扫描,因此有“细胞CT”的称号 [14]。双光子显微镜成像技术产生两个光子进行激发,相比单光子激发,双光子显微镜的散射光不会产生荧光,进而较大程度上减少信号的损失,相比于单光子激发的共聚焦显微镜,它的探测深度明显增加,可以观察组织深层结构,具有穿透性深、低光毒性等优点,可以实时地长时程地对活体组织的深部结构及功能进行检测。近年来双子光学显微镜发展迅速,应用逐渐广泛,尤其在脑微循环的检测中优势突出 [15]。

3.3. 近红外光谱技术(Near Infrared Reflectance Spectroscopy, NIRS)

近红外光谱技术是应用波长为700~900 nm的红外光对组织进行检测,利用机体组织中氧合血红蛋白和去氧血红蛋白对此光吸收谱的差异,计算两者的相对浓度,进而获得该组织的血氧饱和度 [16] [17] [18],即为组织血氧饱和度(tissue oxygen saturation, StO2)。随着近红外光谱技术的发展,在检测组织血氧饱和度的基础上衍生出了血管闭塞试验(vascular occlusion test, VOT) [19]。血管闭塞实验是将组织血氧饱和度的监测与血管闭塞结合,模拟外周组织的缺血再灌注情况 [20],通过此过程中组织血氧饱和度的变化情况进一步获得参数。血管闭塞时组织血氧饱和度的下降情况提示组织氧摄取能力的大小,这个时期为缺血期,解除压力时血管开放,为再灌注期,此时组织氧饱和度上升,其上升曲线下面积可作为微血管的反应性指标 [21] [22]。

3.4. 激光多普勒血流仪(Laser Doppler Flowmetry, LDF)

激光多普勒血流仪的原理是激光的多普勒频移效应,组织血流中氧合血红蛋白和去氧血红蛋白具有不同的反射光谱,通过对组织中血流信号的检测,计算出该组织血流速度及血流量。血流灌注量(Perfusion Unit, PU)是指红细胞密度与平均血流速度的乘积,通常用于反映该组织微循环的灌注情况 [23]。激光多普勒血流仪可直接监测皮肤血流,也可以将探头经鼻肠管插入消化道或口腔内,监测组织微循环情况 [11]。激光多普勒血流仪操作便捷、无创、敏感、可重复性较好,可对血流进行动态观察,也可以结合VOT用于微循环储备能力的监测。

3.5. 正交偏振光谱成像技术(Orthogonal Polarization Spectral Imaging, OPS)

正交偏振光谱成像技术的诞生是微循环监测领域的重大突破,它第一次实现了在床旁监测微循环,有无创、可视、实时、可活体监测的优点 [24]。OPS是应用一定波长的偏振光散射在组织中,入射到血管中红细胞的一部分光经过反射、散射后返回,该返回光携带着大量相关的结构信息,从而进一步获得血流情况的图像 [25]。这项技术的出现实现了微血管的可视化,是微循环监测技术史的里程碑。正交偏振光谱成像术相比于普通生物显微镜拥有较好的成像对比度,主要是由于其具有偏振选择的功能特性,可以更有效的过滤周围组织所反射来的背景杂光,进而提高对比度,无需染色剂便可获得高对比度的微血管图像 [26]。该技术为微循环的监测打开了新的技术途径,近年来相关技术飞速发展,现逐渐被其衍生技术取代 [27]。

3.6. 侧流暗场成像技术(Side Stream Dark Field, SDF)

侧流暗场成像技术是正交偏振光谱成像的衍生技术,其原理与正交偏振光谱成像原理基本一样。但SDF进行成像所需要的光源能量比OPS小,它的光源是发光二极管,可照射更深层次的组织,故SDF可检测深层组织的微循环状况 [28]。旁流暗视野成像可直观地展示红细胞的流动及分布状态,进而应用特定软件,可分析微血管密度、灌注等,从而显示毛细血管的血流分布情况 [29]。侧流暗场成像设备更为轻便,检测组织更为深入,图像清晰,实现了微循环检测数据的半自动分析,现已基本取代OPS技术,目前是临床及实验研究中最常用的微循环检测手段。

3.7. 入射暗场成像技术(Incident Dark Field, IDF)

入社暗场成像技术是侧流暗场成像技术的衍生,是第三代微循环监测技术。入射暗场成像技术进一步优化了光源,通过交互模式产生暗场,进而形成成像,具有更高的偏振分辨率 [30]。IDF实现了微循环图像的高分辨率及数据全自动化分析,微循环图像的质量进一步提高,微血管可视化也进一步增强,是先进的微循环检测技术。但此类技术问世晚,设备先进,临床上还未得到广泛运用。

4. 微循环参数

研究表明,舌下微循环与内脏器官微循环具有明显相关性,且舌下微循环可在床旁进行检测观察,临床适用性好,是重要的微循环检测指标 [31] [32]。根据欧洲重症医学学会于2018年通过的专家共识,可通过监测舌下微血管,选取至少3个区域作为观察点,获得相关微循环图像,进而通过应用自动血管分析软件、离线软件自动分析、在线自动分析等方法 [33] 获得相关微循环参数,评估微循环功能 [34]。以下为较常用的检测微循环状态的参数。

4.1. 血流指数(Mean Flow Index, MFI)

血流指数,是即为描述微血管流动性指数的指标。它反映了微循环血管灌注的质量 [27],是舌下微循环图像的半定量分析。应用肉眼观察血管灌注情况,将其分为正常血流、无血流、间断血流、缓慢血流,进而对其进行评分。研究表明 [35],MFI可用于指导脓毒症患者的复苏,对脓毒症患者的预后有预测价值,相比于低MFI,具有高MFI的脓毒症患者住院天数明显缩短,生存率明显升高 [36]。

4.2. 灌注血管比例(Proportion of Perfused Vessels, PPV)

灌注血管比例也可反映灌注血管的质量。灌流血管主要包括血流正常及血流缓慢的血管。灌注血管比例可通过灌注血管长度占总血管长度的比例,或者灌注血管数占总血管数的比例进行计算。有研究表明,PPV是反映脓毒症患者预后的最强预测指标,灌注血管比例可作为脓毒症患者结局的独立预测因子 [37]。

4.3. 总血管密度(Total Vessel Density, TVD)

总血管密度,描述的是象限内所有血管的密度,包括大、中、小血管,计算方式是总的血管长度(Lv)除以总的分析面积(AFOV)。对于血液稀释型的微循环功能异常,由于此时灌注毛细血管数目减少,主要应用TVD进行评估 [38]。另外,总血管密度有助于识别高危患者。

4.4. 灌注血管密度(Perfused Vessel Density, PVD)

灌注血管密度,表示象限内灌注血管的密度,该指标与总血管密度相比更为强调了血管的功能性 [39] [40]。可通过图像中的灌流血管总长度(Lp)与总的分析面积的比值计算得出。查阅相关研究表明,灌注血管密度与脓毒症患者的死亡率密切相关,在一定程度上可预测脓毒症患者的生存率 [41]。

4.5. 异质性指数(Heterogeneity Index, HI)

异质性指数,反映血管灌注的不均一性。计算方式是最大MFI与最小MFI之差与平均MFI的比值。灌注的异质性使灌注的区域与毛细血管流动改变的区域接壤,由此增加的毛细血管和细胞之间的距离使缺氧更容易迅速出现。既往有研究表明,在对脓毒症患者的研究过程中发现,进行早期目标导向性治疗的患者中,死亡患者在治疗期间有更高的异质性指数 [42],这提示了该指数与不良结局的相关性。

5. 总结

机体微循环功能的改变是脓毒症期间重要的病理生理过程,也是引起低血压的重要原因,此外微循环内皮功能障碍涉及机体凝血功能及炎症的激活,相对于全身血流动力学,对外周循环功能的监测与治疗在脓毒症患者的综合治疗中占有举足轻重的地位 [43]。微循环功能的检测可以帮助我们了解机体微血管的改变,这种改变与最终器官功能障碍的不良后果显著相关,对患者的治疗有良好的指导作用 [44]。

基金项目

山东省自然科学基金项目(ZR2021MH093);青岛大学附属医院临床医学+X项目。

NOTES

*通讯作者Email: liangshan123@qdu.edu.cn

参考文献

[1] Ince, C. (2005) The Microcirculation Is the Motor of Sepsis. Critical Care, 9, S13-S19.
https://doi.org/10.1186/cc3753
[2] De Backer, D., Donadello, K., Sakr, Y., et al. (2013) Microcirculatory Altera-tions in Patients with Severe Sepsis: Impact of Time of Assessment and Relationship with Outcome. Critical Care Medi-cine, 41, 791-799.
https://doi.org/10.1097/CCM.0b013e3182742e8b
[3] De Backer, D., Creteur, J., Preiser, J.C., et al. (2002) Mi-crovascular Blood Flow Is Altered in Patients with Sepsis. American Journal of Respiratory and Critical Care Medicine, 166, 98-104.
https://doi.org/10.1164/rccm.200109-016OC
[4] Wijntjens, G.W., Fengler, K., Fuernau, G., et al. (2020) Prog-nostic Implications of Microcirculatory Perfusion versus Macrocirculatory Perfusion in Cardiogenic Shock: A Cul-prit-Shock Substudy. European Heart Journal. Acute Cardiovascular Care, 9, 108-119.
https://doi.org/10.1177/2048872619870035
[5] Hernández, G., Castro, R. and Bakker, J. (2020) Capillary Refill Time: The Missing Link between Macrocirculation and Microcirculation in Septic Shock? Journal of Thoracic Disease, 12, 1127-1129.
https://doi.org/10.21037/jtd.2019.12.102
[6] Zampieri, F.G., Damiani, L.P., Bakker, J., et al. (2020) Effects of a Resuscitation Strategy Targeting Peripheral Perfusion Status versus Serum Lactate Levels among Patients with Septic Shock. A Bayesian Reanalysis of the Andromeda-Shock Trial. American Journal of Respiratory and Critical Care Med-icine, 201, 423-429.
https://doi.org/10.1164/rccm.201905-0968OC
[7] Nguyen, H.B., Rivers, E.P., Knoblich, B.P., et al. (2004) Early Lactate Clearance Is Associated with Improved Outcome in Severe Sepsis and Septic Shock. Critical Care Medicine, 32, 1637-1642.
https://doi.org/10.1097/01.CCM.0000132904.35713.A7
[8] Mallat, J., Pepy, F., Lemyze, M., et al. (2014) Central Venous-to-Arterial Carbon Dioxide Partial Pressure Difference in Early Resuscitation from Septic Shock: A Prospective Observational Study. European Journal of Anaesthesiology, 31, 371-380.
https://doi.org/10.1097/EJA.0000000000000064
[9] Weinberger, J., Klompas, M. and Rhee, C. (2021) What Is the Utility of Measuring Lactate Levels in Patients with Sepsis and Septic Shock? Seminars in Respiratory and Critical Care Medicine, 42, 650-661.
https://doi.org/10.1055/s-0041-1733915
[10] Hernandez, G., Bellomo, R. and Bakker, J. (2019) The Ten Pitfalls of Lactate Clearance in Sepsis. Intensive Care Medicine, 45, 82-85.
https://doi.org/10.1007/s00134-018-5213-x
[11] Luiking, Y.C., Poeze, M. and Deutz, N.E. (2020) A Random-ized-Controlled Trial of Arginine Infusion in Severe Sepsis on Microcirculation and Metabolism. Clinical Nutrition, 39, 1764-1773.
https://doi.org/10.1016/j.clnu.2019.08.013
[12] 阮净, 张淑文, 袁振铎, 靳红, 王莘, 张宝红, 纪华, 罗薇. 动静脉血pH和二氧化碳分压差与胃粘膜pH监测组织氧合相关性的实验研究[J]. 中国危重病急救医学, 2000, 12(2): 109-112.
[13] 刘喜成, 张中军, 任永功. 混合静脉血氧饱和度监测的临床应用[J]. 中国急救医学, 2007, 27(1): 55-58.
[14] Chen, F., Tillberg, P.W. and Boyden, E.S. (2015) Optical Imaging. Expansion Microscopy. Science, 347, 543-548.
https://doi.org/10.1126/science.1260088
[15] Mostany, R., Miquelajauregui, A., Shtrahman, M., et al. (2015) Two-Photon Excitation Microscopy and Its Applications in Neuroscience. Methods in Molecular Biology, 1251, 25-42.
https://doi.org/10.1007/978-1-4939-2080-8_2
[16] Wolf, M., Ferrari, M. and Quaresima, V. (2007) Progress of Near-Infrared Spectroscopy and Topography for Brain and Muscle Clinical Applications. Journal of Biomedical Optics, 12, Article ID: 062104.
https://doi.org/10.1117/1.2804899
[17] Donati, A., Damiani, E., Domizi, R., et al. (2016) Near-Infrared Spectroscopy for Assessing Tissue Oxygenation and Microvascular Reactivity in Critically Ill Patients: A Prospective Observational Study. Critical Care, 20, 311.
https://doi.org/10.1186/s13054-016-1500-5
[18] Mesquida, J., Gruartmoner, G. and Espinal, C. (2013) Skeletal Muscle Oxygen Saturation (StO2) Measured by Near- Infrared Spectroscopy in the Critically Ill Patients. BioMed Re-search International, 2013, Article ID: 502194.
https://doi.org/10.1155/2013/502194
[19] Bickler, P., Feiner, J., Rollins, M. and Meng, L. (2017) Tissue Oximetry and Clinical Outcomes. Anesthesia & Analgesia, 124, 72-82.
https://doi.org/10.1213/ANE.0000000000001348
[20] Domizi, R., Damiani, E., Scorcella, C., et al. (2019) Associ-ation between Sublingual Microcirculation, Tissue Perfusion and Organ Failure in Major Trauma: A Subgroup Analysis of a Prospective Observational Study. PLOS ONE, 14, e0213085.
https://doi.org/10.1371/journal.pone.0213085
[21] Menezes, I.A.C., Cunha, C.L.D., Junior, H.C. and Luy, A.M. (2019) Increase of Perfusion Index during Vascular Occlusion Test Is Paradoxically Associated with Higher Mortality in Septic Shock after Fluid Resuscitation: A Prospective Study. Shock, 51, 605-612.
https://doi.org/10.1097/SHK.0000000000001217
[22] Samraj, R.S., Lopez-Colon, D., Kerrigan, M., et al. (2019) Thenar Muscle Oxygen Saturation Using Vascular Occlusion Test: A Novel Technique to Study Microcirculatory Ab-normalities in Pediatric Heart Failure Patients. Pediatric Cardiology, 40, 1151-1158.
https://doi.org/10.1007/s00246-019-02118-y
[23] Boyle, N.H., Roberts, P.C., Ng, B., et al. (1999) Scanning Laser Doppler Is a Useful Technique to Assess Foot Cutaneous Perfusion during Femoral Artery Cannulation. Critical Care, 3, 95-100.
https://doi.org/10.1186/cc350
[24] O’neil, M.P., Alie, R., Guo, L.R., et al. (2018) Microvascular Respon-siveness to Pulsatile and Nonpulsatile Flow during Cardiopulmonary Bypass. The Annals of Thoracic Surgery, 105, 1745-1753.
https://doi.org/10.1016/j.athoracsur.2018.01.007
[25] Groner, W., Winkelman, J.W., Harris, A.G., et al. (1999) Orthogonal Polarization Spectral Imaging: A New Method for Study of the Microcirculation. Nature Medicine, 5, 1209-1212.
https://doi.org/10.1038/13529
[26] Krupičková, P., Mormanová, Z., Bouček, T., et al. (2018) Micro-vascular Perfusion in Cardiac Arrest: A Review of Microcirculatory Imaging Studies. Perfusion, 33, 8-15.
https://doi.org/10.1177/0267659117723455
[27] Holmgaard, F., Vedel, A.G., Ravn, H.B., et al. (2018) Impact of Mean Arterial Pressure on Sublingual Microcirculation during Cardiopulmonary Bypass-Secondary Outcome from a Randomized Clinical Trial. Microcirculation, 25, e12459.
https://doi.org/10.1111/micc.12459
[28] Rovas, A., Lukasz, A.H., Vink, H., et al. (2018) Bedside Analysis of the Sublingual Microvascular Glycocalyx in the Emergency Room and Intensive Care Unit—The GlycoNurse Study. Scandinavian Journal of Trauma, Resuscitation and Emergen-cy Medicine, 26, 16.
https://doi.org/10.1186/s13049-018-0483-4
[29] Santos, D.M.D., Quintans, J.S.S., Quin-tans-Junior, L.J., et al. (2019) Association between Peripheral Perfusion, Microcirculation and Mortality in Sepsis: A Systematic Review. Brazilian Journal of Anesthesiology, 69, 605-621.
https://doi.org/10.1016/j.bjane.2019.09.005
[30] Van Elteren, H.A., Ince, C., Tibboel, D., et al. (2015) Cutaneous Microcirculation in Preterm Neonates: Comparison between Sidestream Dark Field (SDF) and Incident Dark Field (IDF) Imaging. Journal of Clinical Monitoring and Computing, 29, 543-548.
https://doi.org/10.1007/s10877-015-9708-5
[31] Donati, A., Domizi, R., Damiani, E., et al. (2013) From Macro-hemodynamic to the Microcirculation. Critical Care Research and Practice, 2013, Article ID: 892710.
https://doi.org/10.1155/2013/892710
[32] Tanaka, S., Harrois, A. and Duranteau, J. (2014) Leukodepleted versus Nonleukodepleted Red Blood Cell Transfusion in Septic Patients: A Microcirculatory Vision. Critical Care, 18, 128.
https://doi.org/10.1186/cc13811
[33] Spronk, P.E., Zandstra, D.F. and Ince, C. (2004) Bench-to-Bedside Review: Sepsis Is a Disease of the Microcirculation. Critical Care, 8, 462-468.
https://doi.org/10.1186/cc2894
[34] Ince, C., Boerma, E.C., Cecconi, M., et al. (2018) Second Consensus on the Assessment of Sublingual Microcirculation in Criti-cally Ill Patients: Results from a Task Force of the European Society of Intensive Care Medicine. Intensive Care Medicine, 44, 281-299.
https://doi.org/10.1007/s00134-018-5070-7
[35] Vellinga, N.A., Boerma, E.C., Koopmans, M., et al. (2015) International Study on Microcirculatory Shock Occurrence in Acutely Ill Patients. Critical Care Medicine, 43, 48-56.
https://doi.org/10.1097/CCM.0000000000000553
[36] Van Der Voort, P.H., Van Zanten, M., Bosman, R.J., et al. (2015) Testing a Conceptual Model on Early Opening of the Microcirculation in Severe Sepsis and Septic Shock: A Randomised Controlled Pilot Study. European Journal of Anaesthesiology, 32, 189-198.
https://doi.org/10.1097/EJA.0000000000000126
[37] 汪燕, 虞意华, 刘秉宇, 颜默磊, 严静. 微血管流动指数对老年严重脓毒症患者预后的预测作用[J]. 心脑血管病防治, 2016, 16(3): 197-199+207.
[38] Mohamed, H., Hosny, H., Tawadros, P., et al. (2019) Effect of Dexmedetomidine Infusion on Sublingual Microcirculation in Patients Undergoing On-Pump Coronary Artery Bypass Graft Surgery: A Prospective Randomized Trial. Journal of Cardiotho-racic and Vascular Anesthesia, 33, 334-340.
https://doi.org/10.1053/j.jvca.2018.06.016
[39] Zuccari, S., Damiani, E., Domizi, R., et al. (2020) Changes in Cytokines, Haemodynamics and Microcirculation in Patients with Sepsis/Septic Shock Undergoing Continuous Renal Replacement Therapy and Blood Purification with CytoSorb. Blood Purification, 49, 107-113.
https://doi.org/10.1159/000502540
[40] Donati, A., Damiani, E., Luchetti, M., et al. (2014) Micro-circulatory Effects of the Transfusion of Leukodepleted or Non-Leukodepleted Red Blood Cells in Patients with Sepsis: A Pilot Study. Critical Care, 18, R33.
https://doi.org/10.1186/cc13730
[41] Sakr, Y., Dubois, M.J., De Backer, D., et al. (2004) Persistent Microcircula-tory Alterations Are Associated with Organ Failure and Death in Patients with Septic Shock. Critical Care Medicine, 32, 1825-1831.
https://doi.org/10.1097/01.CCM.0000138558.16257.3F
[42] Trzeciak, S., Glaspey, L.J., Dellinger, R.P, et al. (2014) Randomized Controlled Trial of Inhaled Nitric Oxide for the Treatment of Microcirculatory Dysfunction in Pa-tients with Sepsis. Critical Care Medicine, 42, 2482-2492.
https://doi.org/10.1097/CCM.0000000000000549
[43] Hernandez, G., Bruhn, A. and Ince, C. (2013) Microcircu-lation in Sepsis: New Perspectives. Current Vascular Pharmacology, 11, 161-169.
https://doi.org/10.2174/1570161111311020006
[44] Kanoore Edul, V.S., Dubin, A. and Ince, C. (2011) The Mi-crocirculation as a Therapeutic Target in the Treatment of Sepsis and Shock. Seminars in Respiratory and Critical Care Medicine, 32, 558-568.
https://doi.org/10.1055/s-0031-1287864