小细胞肺癌外周血生物标记物的研究进展
Advances in Peripheral Blood Biomarkers of Small Cell Lung Cancer
摘要: 小细胞肺癌(small cell lung cancer, SCLC)是一种低分化且具有侵袭性的源于支气管粘膜或腺上皮内的神经内分泌肿瘤,其特点包括:生长迅速、侵袭性强、广泛转移、预后差且易复发。SCLC的临床治疗往往因疾病的侵袭性而复杂化,许多患者表现为胸内肿物和/或广泛转移的衰弱症状,且侵袭性强,预后较差,5年生存率 < 7%,所以很大一部分接受顺铂联合依托泊苷治疗的患者总是经历治疗失败和肿瘤复发。而靶向治疗及免疫治疗的问世使得一小部分患者从免疫治疗中获得了新的契机,所以寻找更加快速切且有效的诊断及预后生物标志物,提高肺癌患者生存率及生活质量、延长生存期。但目前尚缺乏对SCLC的诊断及预后有提示意义的简单易得、快速准确的实验室指标,本文将对SCLC患者外周血诊断及预后生物标志物的研究进展作一综述。
Abstract: Small cell lung cancer (SCLC) is a poorly differentiated and invasive neuroendocrine tumor origi-nating from bronchial mucosa or glandular epithelium. It is characterized by rapid growth, strong invasivity, extensive metastasis, poor prognosis, and easy recurrence. The clinical treatment of SCLC is often complicated by the aggressiveness of the disease. Many patients present with debilitating symptoms of intrathoracic masses and/or extensive metastasis with strong aggressiveness, poor prognosis, and 5-year survival rate < 7%. Therefore, a large proportion of patients receiving cispla-tin combined with etoposide always experience treatment failure and tumor recurrence. However, the advent of targeted therapy and immunotherapy has provided a small number of patients with new opportunities from immunotherapy. Therefore, more rapid and effective diagnostic and prog-nostic biomarkers are sought to improve the survival rate and quality of life of lung cancer patients, and prolong the survival period. However, there is still a lack of simple, easy, rapid and accurate la-boratory indicators that have suggestive significance for the diagnosis and prognosis of SCLC. This paper will review the research progress of peripheral blood diagnosis and prognostic biomarkers of SCLC patients.
文章引用:张丽萍. 小细胞肺癌外周血生物标记物的研究进展[J]. 临床医学进展, 2023, 13(1): 492-500. https://doi.org/10.12677/ACM.2023.131073

1. 引言

全球癌症范围内肺癌的患病率及死亡率呈现持续性的攀升趋势 [1],5年生存率 < 7% [2],其中小细胞肺癌属于肺癌中的常见类型,约占所有肺癌的15% [3],据报道,全球每年有25万例SCLC新发病例和至少20万例死亡 [4]。尽管SCLC最初对化疗和放疗敏感,但在治疗后通常会出现复发或者转移,只有大约5%的患者有延长生存期机率即在诊断后存活5年 [5] [6]。对于延长期疾病患者,中位生存期约为10个月。而且SCLC的治疗方案在过去40年几乎没有变化,同时生存率也没有得到改善很大 [7],一部分接受顺铂/依托泊苷治疗的患者总是经历治疗失败和肿瘤复发 [8]。靶向治疗及免疫治疗的问世使得SCLC治疗出现了新的契机,部分患者从免疫治疗及靶向治疗中获得了一定的益处,所以尽早的诊断及干预能够在一定程度上延长患者寿命 [9]。现在肺癌的临床诊断方式主要包括影像学、病理细针穿刺活检、支气管镜等,而小细胞肺癌早期诊断更加局限,体检时影像学不易发现 [10],而病理活检和支气管镜检查虽然能够诊断早期患者,但存在有创、取材不到位导致漏诊的风险 [11] [12]。目前SCLC缺乏采样简单、经济适用且无创伤的对诊断及预后有提示意义的实验室指标,而患者外周血中的生物标记物成为目前较理想的一类肿瘤检测方式,本文将对SCLC患者外周血诊断及预后生物标志物的研究进展作一综述。

2. 外周血炎症指标

1863年Rudolf Virchow等研究中发现肿瘤组织被白细胞浸润,将癌症的起源与炎症联系在一起 [13],随后Dvorak研究进一步证实肿瘤和炎症反应之间紧密相关 [14]。随着肿瘤学研究的深入,越来越多的文献报道,免疫炎症反应在肿瘤发生发展中发挥重要作用,即触发免疫系统的细胞通路导致细胞因子、趋化因子和其他炎症介质的过度释放 [15] [16],但是机体的细胞因子和趋化因子检测方法较为复发,无法用常规简单、经济的方法检测,所以目前提出了3类简化指标来监测机体的炎症反应,其包含血小板与淋巴细胞比值(PLR)、中性粒细胞与淋巴细胞比值(NLR)和格拉斯哥预后评分 [17] [18] [19],通过检测外周血中表达细胞因子和趋化因子的细胞成分如特定的血细胞计数作为标记物进行研究。

2.1. 中性粒细胞计数、淋巴细胞计数及其比值

中性粒细胞产生于位于骨髓静脉窦处的造血索,来源于髓系祖细胞 [20],一直被认为是具有促炎功能的抵抗入侵病原体的第一道防线,现如今研究表明,中性粒细胞具参与急性损伤和修复、慢性炎症、肿瘤及自身免疫的发生等特殊功能的炎症细胞 [21]。组织癌变之后巨噬细胞有了新的身份即肿瘤相关巨噬细胞(TAM),TAM分泌趋化因子使中性粒细胞聚集在“促进基因突变”的肿瘤微环境中,在细胞因子TNF、IL-8等的介导下分化为不同的类型的中性粒细胞,释放活性氧、VEGF以及白介素等物质调控肿瘤细胞的代谢,抑制免疫反应的同时促进肿瘤转移、增值及肿瘤血管的生成 [22] [23]。Manfroi等人研究DLBCL的预后时提出中性粒细胞促进肿瘤的发生转移 [24]。淋巴细胞是由淋巴器官产生的,主要存在于淋巴管中循环的淋巴液中,淋巴细胞作为肿瘤监测和清除的核心在肿瘤免疫微环境能够正负项调节免疫应答;T淋巴细胞通过产生细胞因子、细胞毒性酶穿孔素、颗粒酶B等途径抑制癌细胞增殖、转移 [25]。同时可以分泌免疫抑制因子和生长因子,如IL-6、VEGF等抑制自然杀伤细胞等,从而使肿瘤细胞逃脱免疫监视。Ruan、Silatha Sakamuru等人研究表明当免疫反应被抑制时,可以出现肿瘤治疗相关性和非肿瘤治疗相关性的导致淋巴细胞减少症,均影响小细胞肺癌的预后 [26] [27]。

中性粒细胞与淋巴细胞比值(neutrophil to lymphocyte ratio, NLR)是目前公认的可反映机体全身炎症反应的重要指标,被认为是转化淋巴细胞和中性粒细胞之间的有利或不利影响的替代标志物 [28];当肿瘤细胞侵入机体时产生防御反应,中性粒细胞相对增加或淋巴细胞相对减少,导致外周血高NLR的出现,最终机体的免疫功能难以识别过度增生形成的肿瘤细胞,使肿瘤出现转移或浸润 [29]。Karantanos等的研究表明,非小细胞癌及结直肠癌等实体瘤的生存期及预后不良与外周血的高NLR相关 [29] [30]。

2.2. 血小板计数、淋巴细胞计数及其比值

1865年Armand Trousseau首次研究表明肿瘤可诱发机体形成静脉血栓 [31] [32],揭示癌症和血栓之间的关系。血小板存在于血管外的肿瘤微环境中直接接触癌细胞 [33],激活时分泌转化生长因子β (TGF-β)、血管内皮生长因子(VEGF)等因子诱导肿瘤生长,促进肿瘤新生血管的形成 [34] [35] [36];同时血小板诱导肿瘤细胞MMP-9的表达以及血小板包裹肿瘤细胞,避免在血性转移途径中被免疫系统的监视及杀伤,减少凋亡信号 [37]。Demers、Abdulrahman等人多项研究表明乳腺癌、卵巢癌及肾癌等实体瘤的死亡率和高血小板计数成正相关 [38] [39] [40]。

血小板与淋巴细胞比值(platelets to lymphocytes ratio, PLR)与NLR一样,可以反映机体防御能力与免疫炎症之间的相对变化,一般认为淋巴细胞相对减少或血小板相对增多则出现高PLR值。2014年Templeton等人使用meta分析来结合20项研究探索PLR在12754名实体瘤中的预后,发现高PLR和多种实体瘤的生存率之间成负相关,即PLR值越高说明其抗肿瘤能力越低,肿瘤负荷越重,预后越差 [41]。El Asmar等人研究证实,NLR和PLR是预测实体肿瘤和肿瘤手术不良结局的预后工具 [42];NLR和PLR除了预测肿瘤患者预后不良的结局,还可以用于肿瘤的早期诊断,研究表明在胃癌早期PLR、NLR等炎症指标明显高于胃癌传统指标CA199的值,且表明在男性胃癌患者中NLR、PLR联合检测更能提高诊断效能 [43]。

2.3. C-反应蛋白

C-反应蛋白(C-reactive protein CRP)是机体防御反应时,由肝脏或者上皮细胞合成的、多种促炎症细胞因子(IL-1a、IL-6以及肿瘤坏死因子等)调节合成的保护机体急性时相的一种最主要、最敏感的炎性标记物 [44]。由Tiuett和Francis首次发现急性患者的血清能和肺炎链球菌的荚膜C-多糖发生沉淀反应 [45]。在正常情况下,机体内含量较少,当机体受到炎症及肿瘤性的刺激时产生大量炎症因子,2 h可升高,4~8 h迅速上升达到高峰进一步刺激细胞过度增值,最终损伤DNA复制 [46];同时其介导的炎症反应在正常基因中插入癌基因以此促进肿瘤的发生发展 [47]。有Takaki、杨佳程、Nakayama [48] [49] [50] 等多人的研究表明,肺癌、胰腺癌以及肾癌等多种实体瘤患者的血清CRP水平与肿瘤患者的预后不良相关,血清中 CRP水平越高,患者的预后越差,生存期越短。在临床工作中,我们可以将外周血CRP检测作为评估肿瘤患者诊断及预后的一种常规项目。

血清学肿瘤标记物是目前与临床相关的最常见检测方法,血清学检查在临床上应用较为普遍,检测方法无创且安全、简便且经济,因此NLR、PLR、C-反应蛋白相较于其他炎性指标具有更高的使用价值;但临床上肿瘤单项标记物检测灵敏度低、特异性较差,可在多种实体瘤中检测出来,只能作为辅助指标与SCLC其他生物指标联合检测提高临床恶性肿瘤患者的检出率,从而为SCLC的诊断及预后提供更多的理论依据。

3. 分子生物学标志物

3.1. miRNA

miRNA是由21~23个核苷酸组成的单链非编码 RNA,在1993年Ambros和Ruvkun [51] [52] 报道了第一个miRNA,之后miRNA时代花了8年时间才真正开始,当时有3个小组从线虫、果蝇和人类中鉴定出了数十个小RNA [53] [54] [55]。生物信息学研究预测,超过30%的人类基因是miRNAs9的靶向基因,它们影响一系列不同的生物程序,包括细胞发育、分化、凋亡和增殖,同时调控造血和促癌作用 [56] [57]。现已证明,位于靶基因中的3'非编码区中的单核苷酸可调控miRNA与靶基因的结合,进而调控小细胞肺癌发生、发展 [58]。近年来,随着各种高通量测序平台应用于分析miRNA基因全基因组表达,越来越多的报道已经证明miRNA在癌症中的异常表达表现为成熟或前体miRNA转录本相对于相应正常组织的表达水平上调或下调,且已在淋巴瘤、乳腺、结直肠及前列腺恶性癌症中被发现,具有诊断、预后和治疗潜力 [59] [60] [61] [62]。目前我们已知多种miRNA影响小细胞肺癌的预后,如miR-338、miR-101和miR-98等的高表达,Du [63] 等通过比较支气管表皮细胞、小细胞肺癌细胞和非小细胞肺癌细胞中miR-338、miR-101和miR-98的表达量,小细胞肺癌中表达量最高,因而对异常表达的miRNA进行定量可能成为小细胞肺癌诊断和预后的可靠方法。这种miRNA分子群可能不仅仅在淋巴结组织中存在 [63],在外周血循环中同样可以检测到相应的miRNA,其表达水平同样与小细胞肺癌的预后密切相关。

3.2. 乳酸脱氢酶

乳酸脱氢酶(lactate dehydrogenase, LDH)是一种存在于机体所有组织细胞胞质内的糖酵解酶 [64],通常由肝、脾和骨髓中的巨噬细胞通过受体介导的内吞作用清除 [65],当肿瘤生长过程中肿瘤微环境中的免疫系统发生改变时,可能是导致这些患者血清中LDH水平高的原因。此外,正常细胞在绝大多数情况下进行有氧氧化获得能量,有氧存在使氧化更加充分,效率更高。只在无氧的情况下例如从事剧烈运动才动用不考虑氧气可用性的无氧氧化,效率低,释放能量较少 [65]。而在许多肿瘤细胞中,代谢转移到摄取高葡萄糖和生成高乳酸,取代有氧氧化而不考虑氧的可用性,这种现象被称为“Warburg effect” [66],所以微环境通过诱导营养物质清除机制来维持癌细胞的增值,使肿瘤细胞被迫适应,使其不得不依赖肿瘤细胞的糖酵解,而LDH是糖酵解途径中关键酶之一 [67],常见的有LDH-A和LDH-B两种亚基组成,两种亚基构成五种不同的同工酶(LDH1、LDH2、LDH3、LDH4和LDH5),LDH-A是主要存在于骨骼肌中,对丙酮酸具有较高的亲和力,有利于丙酮酸转化为乳酸;相比之下,LDH-B主要存在于心肌中,将乳酸转化为丙酮酸,丙酮酸在线粒体中进一步氧化,其中心、肾以LDH1为主,肺以LDH3、LDH4为主,骨骼肌以LDH5为主 [68]。相关研究表明,LDH可能与肿瘤负荷在一定程度上存在关联 [69],在弥漫大B细胞瘤国际预后评分指标中,LDH 值被认为是最具有独立预后因素的重要指标之一 [70]。

3.3. 血管内皮因子

1989年VEGF克隆和测序首次描述VEGF蛋白家族引起了巨大的轰动 [71],其成员包括:VEGF (或VEGF-a),VEGF-b,VEGF-c和VEGF-d,VEGF-f,胎盘生长因子(PlGF),及其受体VEGFR-1,VEGFR-2和VEGFR-3 [72]。VEGF-a是正常和异常状态下许多血管生成过程所必需的二聚糖蛋白 [73],是所有VEGF家族成员中最具有特征性的血管生成因子 [74],它至少存在于9种同型二聚体异构体中(含有121、145、148、162、165、165b 183、189或206个氨基酸) [75]。小细胞肺癌患者高转移传播能力与其丰富的血管生长有关,其机理包括:① VEGF具有刺激血管内皮细胞增殖产生组织因子促进增生;② 在低氧情况下,诱导内皮细胞的表达,激发V3因子的释放,改变细胞外基质有利于血管生长;③ VEGF增加血管通透性的能力 [76]。Salven等 [77] 的研究结果表明SCLC患者血清中VEGF表达水平与患者不良预后显著相关,VEGF表达水平越高,患者预后越差,生存期越短;刘军 [76] 等人通过研究42例SCLC患者、良性肺部疾病以及健康人的VEGF的浓度,表明SCLC患者血清VEGF的浓度显著高于良性肺部疾病患者和健康人的血清VEGF的浓度。

4. 展望

近年来,随着SCLC的肿瘤标志物相继报道,多项研究表明NSE和ProGRP作为小细胞肺癌患者肿瘤标志物,它们的灵敏度分别为是42%、76% [78] [79],作为单一的检测指标难以为小细胞肺癌的诊断及预后提供更加精准的预判。NLR、PLR、CRP等外周血炎性指标虽然简单易测、价格易接受,可以在临床上大规模使用,但其易受外界因素干扰,特异性低,需要大样本回顾性或前瞻性研究来进一步确定;而刘军 [72] 等通过实验数据表明,血清VEGF和血清NSE联合检SCLC的阳性率为54.1%,提高了NSE单独检测SCLC的阳性率,所以需要在临床工作中寻找更加具有经济价值和社会价值的生物标记物进行联合检测,提供更加精准的预判,根据疾病分层给予患者个体化、标准化得治疗,提高肺癌患者生存周期及生活质量。

参考文献

[1] Jiménez Ruiz, C.A., Ramos Pinedo, A., Cicero Guerrero, A., et al. (2012) Characteristics of COPD Smokers and Effec-tiveness and Safety of Smoking Cessation Medications. Nicotine & Tobacco Research, 14, 1035-1039.
https://doi.org/10.1093/ntr/nts001
[2] Semenova, E.A., Nagel, R. and Berns, A. (2015) Origins, Genetic Land-scape, and Emerging Therapies of Small Cell Lung Cancer. Genes & Development, 29, 1447-1462.
https://doi.org/10.1101/gad.263145.115
[3] Bray, F., et al. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424.
https://doi.org/10.3322/caac.21492
[4] International Agency for Research on Cancer (2014) Cancer Incidence in Five Continents Volume X (IARC).
[5] Byers, L.A. and Rudin, C.M. (2015) Small Cell Lung Cancer: Where Do We Go from Here? Cancer, 121, 664-672.
https://doi.org/10.1002/cncr.29098
[6] Pillai, R.N. and Owonikoko, T.K. (2014) Small Cell Lung Cancer: Thera-pies and Targets. Seminars in Oncology, 41, 133-142.
https://doi.org/10.1053/j.seminoncol.2013.12.015
[7] Coleman, M.P. and Allemani, C. (2015) Cancer: The Ele-phant in the Room. The Lancet, 385, 1047-1048.
https://doi.org/10.1016/S0140-6736(15)60571-2
[8] Galluzzi, L., Vitale, I., Michels, J., et al. (2014) Systems Bi-ology of Cisplatin Resistance: Past, Present and Future. Cell Death & Disease, 5, e1257.
https://doi.org/10.1038/cddis.2013.428
[9] Paximadis, P., Beebe-Dimmer, J.L., George, J., et al. (2018) Compar-ing Treatment Strategies for Stage I Small-Cell Lung Cancer. Clinical Lung Cancer, 19, e559-e565.
https://doi.org/10.1016/j.cllc.2018.03.017
[10] De Wever, W.V., Erschakelen, J. and Coolen, J. (2014) Role of Imaging in Diagnosis, Staging and Follow-Up of Lung Cancer. Current Opinion in Pulmonary Medicine, 20, 385-392.
https://doi.org/10.1097/MCP.0000000000000066
[11] Lynette, M. and Sholl, M.D. (2016) The Molecular Pathol-ogy of Lung Cancer. Surgical Pathology Clinics, 9, 353-378.
https://doi.org/10.1016/j.path.2016.04.003
[12] Inage, T., Nakajima, T., et al. (2018) Early Lung Cancer Detection. Clinics in Chest Medicine, 39, 45-55.
https://doi.org/10.1016/j.ccm.2017.10.003
[13] 张玉勤. 炎症与癌症[J]. 国外医学情报, 2002(1): 12-17.
[14] 王冬燕, 朱昌, 陈玮, 等. 中性粒细胞与淋巴细胞比值和血小板与淋巴细胞比值在消化系统肿瘤中的应用进展[J]. 胃肠病学和肝病学杂志, 2019, 28(11): 1292-1295.
[15] Kay, J., Thadhani, E., Samson, L., et al. (2019) Inflam-mation-Induced DNA Damage, Mutations and Cancer. DNA Repair (Amst.), 83, Article ID: 102673.
https://doi.org/10.1016/j.dnarep.2019.102673
[16] Qian, B.Z. (2017) Inflammation Fires up Cancer Metastasis L. Seminars in Cancer Biology, 47, 170-176.
https://doi.org/10.1016/j.semcancer.2017.08.006
[17] Yang, L. and Chen, H. (2019) Establishing the Prognostic Value of Platelet-Tolymphocyte Ratio in Cervical Cancer: A Systematic Review and Meta-Analysis. International Jour-nal of Gynecological Cancer, 29, 683-690.
https://doi.org/10.1136/ijgc-2018-000090
[18] Ikeguchi, M., et al. (2014) Inflammation-Based Prognostic Scores and Nutritional Prognostic Index in Patients with Locally-Advanced Unresectable Colorectal Cancer. World Journal of Surgical Oncology, 12, 210.
https://doi.org/10.1186/1477-7819-12-210
[19] Otowa, Y., et al. (2016) Changes in Modified Glasgow Prognostic Score after Neoadjuvant Chemotherapy Is a Prognostic Factor in Clinical Stage Ⅱ/Ⅲ Esophageal Cancer. Diseases of the Esophagus, 29, 146-151.
https://doi.org/10.1111/dote.12316
[20] 徐茵, 王玉月, 徐婷, 等. 中性粒细胞CD64在恶性血液病伴感染诊断中应用的研究进展[J]. 白血病•淋巴瘤, 2020, 29(10): 630-633.
[21] Liew, P.X. and Kubes, P. (2019) The Neutro-phil’s Role during Health and Disease. Physiological Reviews, 99, 1223- 1248.
https://doi.org/10.1152/physrev.00012.2018
[22] Comen, E., Wojnarowicz, P., Seshan, V.E., et al. (2016) TNF Is a Key Cytokine Mediating Neutrophil Cytotoxic Activity in Breast Cancer Patients. NPJ Breast Cancer, 2, 16009.
https://doi.org/10.1038/npjbcancer.2016.9
[23] Ramakrishnan, G., Augustine, T.A., Jagan, S., et al. (2007) Effect of Silymarin on N-Nitrosodiethylamine Induced Hepatocarcinogenesis in Rats. Experimental Oncology, 29, 39-44.
[24] Manfroi, B., Moreaux, J., Righini, C., et al. (2018) Tumor-Associated Neutrophils Correlate with Poor Prognosis in Diffuse Large B-Cell Lymphoma Patients. Blood Cancer Journal, 8, 66.
https://doi.org/10.1038/s41408-018-0099-y
[25] Rahir, G. and Moser, M. (2012) Tumor Microenvironment and Lymphocyte Infiltration. Cancer Immunology, Immunotherapy, 61, 751-759.
https://doi.org/10.1007/s00262-012-1253-1
[26] Sakamuru, S., et al. (2016) Mitochondrial Membrane Potential Assay. Methods in Molecular Biology, 1473, 17-22.
https://doi.org/10.1007/978-1-4939-6346-1_2
[27] Ruan, J.S., Liu, Y.P., Zhang, L., et al. (2012) Luteolin Reduces the Invasive Potential of Malignant Melanoma Cells by Targeting Beta-3-Integrin and the Epithelial-Mesenchymal Transi-tion. Acta Pharmacologica Sinica, 33, 1325-1331.
https://doi.org/10.1038/aps.2012.93
[28] Guthrie, G.J., Charles, K.A., Roxburgh, C.S., et al. (2013) The Systemic Inflammation-Based Neutrophil-Lymphocyte Ratio: Experience in Patients with Cancer. Critical Reviews in Oncolo-gy/Hematology, 88, 218-230.
https://doi.org/10.1016/j.critrevonc.2013.03.010
[29] Karantanos, T., Karanika, S., Seth, B. and Gignac, G. (2019) The Absolute Lymphocyte Count Can Predict the Overall Survival of Patients with Non-Small Cell Lung Cancer on Nivolumab: A Clinical Study. Clinical and Translational Oncology, 21, 206-212.
https://doi.org/10.1007/s12094-018-1908-2
[30] Lawrence, B., Gustafsson, B.I., Chan, A., et al. (2011) The Epi-demiology of Gastroenteropancreatic Neuroendocrine Tumors. Endocrinology & Metabolism Clinics of North America, 40, 1-18.
https://doi.org/10.1016/j.ecl.2010.12.005
[31] Schlesinger, M. (2018) Role of Platelets and Platelet Re-ceptors in Cancer Metastasis. Journal of Hematology & Oncology, 11, 125.
https://doi.org/10.1186/s13045-018-0669-2
[32] Varki, A. (2007) Trousseau’s Syndrome: Multiple Definitions and Multiple Mechanisms. Blood, 110, 1723-1729.
https://doi.org/10.1182/blood-2006-10-053736
[33] Karpatkin, S., Ambrogio, C. and Pearlstein, E. (1988) The Role of Tumor-Induced Platelet Aggregation, Platelet Adhesion and Adhesive Proteins in Tumor Metastasis. Progress in Clinical and Biological Research, 283, 585-606.
[34] Wang, S., Li, Z. and Xu, R. (2018) Human Cancer and Platelet Interaction, a Potential Therapeutic Target. International Journal of Molecular Sciences, 19, 1246.
https://doi.org/10.3390/ijms19041246
[35] Waldmann, T.A. (2018) Cytokines in Cancer Immunotherapy. Cold Spring Harbor Perspectives in Biology, 10, a028472.
https://doi.org/10.1101/cshperspect.a028472
[36] Wojtukiewicz, M.Z., Sierko, E., Hempel, D., Tucker, S.C. and Honn, K.V. (2017) Platelets and Cancer Angiogenesis Nexus. Cancer and Metastasis Reviews, 36, 249-262.
https://doi.org/10.1007/s10555-017-9673-1
[37] Palumbo, J.S., Talmage, K.E., Massari, J.V., et al. (2005) Platelets and Fibrin(ogen) Increase Metastatic Potential by Impeding Natural Killer Cell-Mediated Elimination of Tumor Cells. Blood, 105, 178-185.
https://doi.org/10.1182/blood-2004-06-2272
[38] Schatzberg, D., Yang, J.J., Wagner, D.D., et al. (2011) Increased Efficacy of Breast Cancer Chemotherapy in Thrombocytopenic Mice. Cancer Research, 71, 1540-1549.
https://doi.org/10.1158/0008-5472.CAN-10-2038
[39] Abdulrahman, G.O., Das, N. and Lutchman Singh, K. (2019) The Predictive Role of Thrombocytosis in Benign, Borderline and Malignant Ovarian Tumors. Platelets, 31, 795-800.
https://doi.org/10.1080/09537104.2019.1686755
[40] O’Keefe, S.C., Marshall, F.F., Issa, M.M., Har-mon, M.P. and Petros, J.A. (2002) Thrombocytosis Is Associated with a Significant Increase in the Cancer Specific Death Rate after Radical Nephrectomy. Journal of Urology, 168, 1378- 1380.
https://doi.org/10.1016/S0022-5347(05)64453-9
[41] Templeton, A.J., Ace, O., McNamara, M.G., et al. (2014) Prognostic Role of Platelet to Lymphocyte Ratio in Solid Tumors: A Systematic Review and Meta-Analysis. Cancer Ep-idemiology, Biomarkers & Prevention, 23, 1204-1212.
https://doi.org/10.1158/1055-9965.EPI-14-0146
[42] El Asmar, A., Ghabi, E., Saber, T., et al. (2020) Plate-let-to-Lymphocyte Ratio Is Correlated with a Delay in Feeding Resumption Following a Transhiatal Esophagectomy with Cervical Anastomosis. World Journal of Surgical Oncology, 18, 267.
https://doi.org/10.1186/s12957-020-02035-y
[43] Fang, T., Wang, Y., Yin, X., et al. (2020) Diagnostic Sensitivity of NLR and PLR in Early Diagnosis of Gastric Cancer. Journal of Immunology Research, 2020, Article ID: 9146042.
https://doi.org/10.1155/2020/9146042
[44] Elsberger, B., Lankston, L., McMillan, D.C., et al. (2011) Presence of Tumoural C-Reactive Protein Correlates with Progressive Prostate Cancer. Prostate Cancer and Prostatic Diseases, 14, 122-128.
https://doi.org/10.1038/pcan.2011.5
[45] Tillett, W.S. and Francis, T. (1930) Serological Reactions in Pneumonia with a Non-Protein Somatic Fraction of Pneumococcus. Journal of Experimental Medicine, 52, 561-571.
https://doi.org/10.1084/jem.52.4.561
[46] Cevizci, R., Bezgin, S., Altin, G., et al. (2016) Treatment of Seborrheic Keratosis in Bilateral External Auditory Canal Using Fiber CO2 Laser. Kulak Burun Bogaz Ihtisas Dergisi, 26, 304-306.
https://doi.org/10.5606/kbbihtisas.2016.04810
[47] 陈冲, 葛鹏, 白银鹏, 等. CRP/Alb比值对肺癌患者预后的临床价值[J]. 检验医学, 2017, 32(3): 173-177.
[48] Akamine, T., Takada, K., Toyokawa, G., et al. (2018) Association of Preoperative Serum CRP with PD-L1 Expression in 508 Patients with Non-Small Cell Lung Cancer: A Comprehen-sive Analysis of Systemic Inflammatory Markers. Surgical Oncology, 27, 88-94.
[49] 杨佳程, 蔡讯, 宋卫峰, 等. 晚期胰腺癌患者血清C反应蛋白水平动态变化与化疗疗效及预后的关系分析[J]. 临床肿瘤学杂志, 2014(12): 1097-1102.
[50] Nakayama, T., Saito, K., Kumagai, J., et al. (2018) Higher Serum C-reactive Protein Level Represents the Immunnosuppressive Tumor Microenvironment in Patients with Clear Cell Renal Cell Carcinoma. Clinical Genitou-rinary Cancer, 7, 1-8.
[51] Lee, R.C., Feinbaum, R.L. and Ambros, V. (1993) The C. elegans Heterochronic Gene lin-4 Encodes Small RNAs with Antisense Complementarity to lin-4. Cell, 75, 843-854.
https://doi.org/10.1016/0092-8674(93)90529-Y
[52] Wightman, B., Ha, I. and Ruvkun, G. (1993) Posttranscriptional Regulation of the Heterochronic Gene lin-14 by lin-14 Mediates Temporal Pattern Formation in C. elegans. Cell, 75, 855-862.
https://doi.org/10.1016/0092-8674(93)90530-4
[53] Lagos-Quintana, M., Rauhut, R., Lendeckel, W. and Tuschl, T. (2001) Identification of Novel Genes Coding for Small Expressed RNAs. Science, 294, 853-858.
https://doi.org/10.1126/science.1064921
[54] Lee, R.C. and Ambros, V. (2001) An Extensive Class of Small RNAs in Caenorhabditis elegans. Science, 294, 862-864.
https://doi.org/10.1126/science.1065329
[55] Lau, N.C., Lim, L.P., Weinstein, E.G. and Bartel, D.P. (2001) An Abundant Class of Tiny RNAs with Probable Regu- latory Roles in Caenorhabditis elegans. Science, 294, 858-862.
https://doi.org/10.1126/science.1065062
[56] Mertens-Talcott, S.U., Chintharlapalli, S., Li, X., et al. (2007) The Oncogenic microRNA-27a Targets Genes That Regulate Specificity Protein Transcription Factors and the G2-M Check-point in MDA-MB-231 Breast Cancer Cells. Cancer Research, 67, 11001-11011.
https://doi.org/10.1158/0008-5472.CAN-07-2416
[57] Lal, A., Pan, Y., Navarro, F., et al. (2009) miR-24-Mediated Down Regulation of H2AX Suppresses DNA Repair in Terminally Differentiated Blood Cells. Nature Structural & Molecular Biology, 16, 492-498.
https://doi.org/10.1038/nsmb.1589
[58] Esquela-Kerscher, A. and Slack, F.J. (2006) Oncomirs—microRNAs with a Role in Cancer. Nature Reviews Cancer, 6, 259-269.
https://doi.org/10.1038/nrc1840
[59] Mazan-Mamczarz, K. and Gartenhaus, R.B. (2013) Role of microRNA Deregulation in the Pathogenesis of Diffuse Large B-Cell Lymphoma (DLBCL). Leukemia Research, 37, 1420-1428.
https://doi.org/10.1016/j.leukres.2013.08.020
[60] Ouyang, M., Li, Y., Ye, S., et al. (2014) MicroRNA Profiling Implies New Markers of Chemoresistance of Triple- Negative Breast Can-cer. PLOS ONE, 9, e96228.
https://doi.org/10.1371/journal.pone.0096228
[61] Dong, Y., Wu, W.K.K., Wu, C.W., et al. (2011) MicroRNA Dysregulation in Colorectal Cancer: A Clinical Perspective. British Journal of Cancer, 104, 893-898.
https://doi.org/10.1038/bjc.2011.57
[62] Maugeri-Sacca, M., Coppola, V., Bonci, D. and De Maria, R. (2012) MicroRNA and Prostate Cancer: From Preclinical Research to Translational Oncology. Cancer Journal, 18, 253-261.
https://doi.org/10.1097/PPO.0b013e318258b5b6
[63] Du, L., Schageman, J.J., et al. (2010) MicroRNA Expression Distinguishes SCLC from NSCLC Lung Tumor Cells and Suggests a Possible Pathological Relationship between SCLCs and NSCLCs. Journal of Experimental & Clinical Cancer Research, 29, 75.
https://doi.org/10.1186/1756-9966-29-75
[64] 杨梦珠. 弥漫大B细胞淋巴瘤患者外周血NLR、PLR以及LDH的水平及其临床意义[D]: [硕士学位论文]. 新乡: 新乡医学, 2021.
https://doi.org/10.27434/d.cnki.gxxyc.2021.000083
[65] Smit, M.J., Duursma, A.M., Bouma, J.M. and Gruber, M. (1987) Receptor-Mediated Endocytosis of Lactate Dehydrogenase M4 by Liver Macrophages: A Mechanism for Elimina-tion of Enzymes from Plasma, Evidence for Competition by Creatine Kinase MM, Adenylate Kinase, Malate, and Alcohol Dehydrogenase. Journal of Biological Chemistry, 262, 13020-13026.
https://doi.org/10.1016/S0021-9258(18)45160-5
[66] Pelicano, H., Martin, D.S., Xu, R.H. and Huang, P. (2006) Glycolysis Inhibition for Anticancer Treatment. Oncogene, 25, 4633-4646.
https://doi.org/10.1038/sj.onc.1209597
[67] Ding, J., Karp, J.E. and Emadi, A. (2017) Elevated Lactate Dehydro-genase (LDH) Can Be a Marker of Immune Suppression in Cancer: Interplay between Hematologic and Solid Neoplastic Clones and Their Microenvironments. Cancer Biomark, 19, 353-363.
https://doi.org/10.3233/CBM-160336
[68] Dawson, D.M., et al. (1964) Lactic Dehydrogenases: Functions of the Two Types Rates of Synthesis of the Two Major Forms Can Be Correlated with Metabolic Differentiation. Science, 143, 929-933.
https://doi.org/10.1126/science.143.3609.929
[69] 肖蓉, 姜涛, 万纯黔等. 弥漫大B细胞淋巴瘤治疗后血清β2-MG VEGF与LDH水平变化及其临床意义[J]. 中国肿瘤临床, 2018, 45(19): 994-999.
[70] 黄天骄, 周虹, 刘松涛, 王雪梅, 张睿, 蒋博文, 王晓, 杨雪. 弥漫大B细胞淋巴瘤患者血清中乳酸脱氢酶、β2微球蛋白及尿酸临床意义[J]. 临床血液学杂志, 2021, 34(6): 412-414.
https://doi.org/10.13201/j.issn.1004-2806.2021.06.008
[71] Tischer, E., Gospodarowicz, D., Mitchell, R., et al. (1989) Vascular Endothelial Growth Factor: A New Member of the Platelet-Derived Growth Factor Gene Family. Bio-chemical and Biophysical Research Communications, 165, 1198-1206.
https://doi.org/10.1016/0006-291X(89)92729-0
[72] Tammela, T., Enholm, B., Alitalo, K. and Paavonen, K. (2005) The Biology of Vascular Endothelial Growth Factors. Cardiovascular Research, 65, 550-563.
https://doi.org/10.1016/j.cardiores.2004.12.002
[73] Takahashi, H. and Shibuya, M. (2005) The Vascular Endothe-lial Growth Factor (VEGF)/VEGF Receptor System and Its Role under Physiological and Pathological Conditions. Clin-ical Science (London), 109, 227-241.
https://doi.org/10.1042/CS20040370
[74] Delghanian, F., Hojati, Z. and Kay, M. (2014) New Insights into VEGF-A Alternative Splicing: Key Regulatory Switching in Pathological Process. Avicenna Journal of Medical Biotech-nology, 6, 192-199.
[75] Giacca, M. (2010) Non-Redundant Functions of the Protein Isoforms Arising from Alternative Splicing of the VEGF-A Pre-mRNA. Transcription, 1, 149-153.
https://doi.org/10.4161/trns.1.3.13229
[76] 刘军, 朱晓华. 血管内皮生长因子对小细胞肺癌诊治的应用价值研究[J]. 中国肺癌杂志, 2007(5): 406-410.
[77] Salven, P., Ruotsalainen, T., Mattson, K., et al. (1998) High Pre-Treatment Serum Level of Vascular Endothelial Growth Factor VEGF Is Associated with Poor Outcome in Small Cell Lung Cancer. International Journal of Cancer, 79, 144-146.
https://doi.org/10.1002/(SICI)1097-0215(19980417)79:2<144::AID-IJC8>3.0.CO;2-T
[78] 陆永绥, 张伟民. 临床检验管理与技术规程[M]. 杭州: 浙江大学出版社, 2004: 760-761.
[79] Schneider, J., Philipp, M., Velcovsky, H.G., et al. (2003) Pro-Gastrin-Releasing Peptide (ProGRP), Neuron Specific Enolase (NSE), Carcinoembryonic Anti-gen (CEA) and Cytokeratin 19-Fragments (CYFRA 21-1) in Patients with Lung Cancer in Comparison to Other Lung Diseases. Anticancer Research, 23, 885-893.