布鲁顿酪氨酸激酶(BTK)抑制剂对原发性中枢神经系统淋巴瘤的疗效综述
Review of the Efficacy of Bruton Tyrosine Kinase (BTK) Inhibitors on Primary Central Nervous System Lymphoma
DOI: 10.12677/ACM.2023.131150, PDF, HTML, XML, 下载: 257  浏览: 431 
作者: 周卓如, 高 大*:内蒙古医科大学附属医院,内蒙古 呼和浩特
关键词: 原发性中枢神经系统淋巴瘤布鲁顿酪氨酸激酶BTK抑制剂Primary Central Nervous System Lymphoma Bruton’s Tyrosine Kinase BTK Inhibitor
摘要: 原发性中枢神经系统淋巴瘤(PCNSL)是一种罕见的侵袭性淋巴结外非霍奇金淋巴瘤,目前基于甲氨蝶呤的大剂量化疗是新诊断的PCNSL的标准诱导治疗方案,但其在老年PCNSL的有效治疗仍不明确。随着临床试验的进行,不断出现新的药物和联合治疗方法,较多的临床试验证实BTK抑制剂在PCNSL的治疗中显示出良好的缓解率,本综述将重点介绍BTK抑制剂在PCNSL中的作用机制及现有临床试验结果,以期为真实世界原发性中枢神经系统淋巴瘤患者的个体化治疗提供参考依据。
Abstract: Primary central nervous system lymphoma (PCNSL) is a rare and aggressive extranodal non-Hodg- kin’s lymphoma. Methotrexate-based high-dose chemotherapy is currently the standard induction therapy for newly diagnosed PCNSL, but its effective treatment in elderly PCNSL remains unclear. As clinical trials continue to emerge with new drugs and combination therapies, more clinical trials have confirmed that BTK inhibitors show good remission rates in the treatment of PCNSL. This re-view will focus on the mechanism of action of BTK inhibitors in PCNSL and the results of available clinical trials, with the aim of providing a reference for the individualized treatment of patients with real-world primary central nervous system lymphoma.
文章引用:周卓如, 高大. 布鲁顿酪氨酸激酶(BTK)抑制剂对原发性中枢神经系统淋巴瘤的疗效综述[J]. 临床医学进展, 2023, 13(1): 1083-1091. https://doi.org/10.12677/ACM.2023.131150

1. 引言

原发性中枢神经系统淋巴瘤(primary central nervous system lymphoma, PCNSL)是一种罕见的侵袭性非霍奇金淋巴瘤亚型,位于大脑、脑膜、脊髓、脑脊液或玻璃体视网膜室,无明显系统性疾病 [1] [2]。在所有非霍奇金淋巴瘤病例中占比不足3%,几乎占所有原发性中枢神经系统肿瘤的3% [1]。PCNSL虽然对跨越血脑屏障的放疗或化疗敏感,但经常复发 [4]。现代治疗包括基于大剂量甲氨蝶呤的诱导化疗 [3],具体方案为甲氨蝶呤3.5 g/m2 (0.5 g/m2静滴15分钟,3 g/m2静滴3 h;甲氨蝶呤给药前一日、当日及次日,予水化及碱化治疗,维持24 h尿量至少3000 ml/m2,给药结束后12 h开始亚叶酸钙解救治疗直至甲氨蝶呤药物浓度降至正常),每3周为1疗程,共6个疗程。随后通常是放疗或进一步化疗以进行巩固治疗。然而,神经毒性是放射治疗的一个突出问题,尤其是对于60岁以上的患者。在化疗中加入利妥昔单抗的益处尚不完全清楚,靶向治疗和免疫疗法已在一些患者中有效,并在更大范围内进行了临床试验。在过去的十年中,PCNSL患者的生存率有所提高,但在老年患者中仍然很差。

PNCSL的组织学特征通常是弥漫大B细胞淋巴瘤(DLBCL) [5],在一项大型研究中,几乎89%的肿瘤为非生发中心型 [6],而PCNSL的分子表观机制尚未完全明确。最近的研究表明中枢神经系统DLBCL和系统性DLBCL具有共同的分子表观改变,其中MYD88和CD79B的突变特别激动人心,因为它们在PCNSL中的表达似乎比在系统性DLBCL中更常见 [6]。CD79B是B细胞受体的一个亚基,MYD88在Toll样受体和白细胞介素受体信号传导中起作用,其编码基因突变可导致核因子-κB活性增加 [6] [50] [51] [52] [53] [56] [59],这为BTK抑制剂应用于PCNSL中提供了重要理论参考。本综述通过系统回顾BTK抑制剂临床前及临床数据报道将重点介绍BTK抑制剂在PCNSL中的作用机制及现有临床试验结果,以期为真实世界原发性中枢神经系统淋巴瘤患者的个体化治疗提供参考依据。

2. 布鲁顿酪氨酸激酶(BTK)

布鲁顿酪氨酸激酶(BTK),又称无丙种球蛋白血症酪氨酸激酶(TK),是Tec激酶家族的成员,最初于1993年被Vetrie及其同事鉴定为人类X连锁无丙种球蛋白血症(XLA)的缺陷蛋白 [7] [8]。BTK是一种细胞质非受体TK,在造血谱系的所有细胞中表达,特别是B细胞、肥大细胞和巨噬细胞;相反,它不存在于T细胞、NK细胞和浆细胞中 [9]。这种蛋白质在B细胞淋巴细胞生成中起重要作用,对未成熟B细胞的发育、成熟和分化以及B细胞本身的增殖和存活都很重要 [10] [11]。

BTK是不同B细胞受体(BCR)的基本组成部分,它通过多种细胞表面分子(包括PI3K、MAPK和NF-κB途径)充当多种细胞内信号的调节剂;通过这种方式,它调节产生抗体的浆细胞的活化、增殖和分化 [12] [13]。因此,BTK抑制导致许多B细胞恶性肿瘤(例如,不同类型的白血病和淋巴瘤) [14] 和自身免疫性疾病(例如,类风湿性关节炎RA和多发性硬化MS) [15]。

BTK由五个区域组成:Pleckstrin homology (PH)结构域、Tec homology (TH)结构域、SRC homology 3 (SH3)结构域、SH2结构域,以及从N端到C端的催化结构域 [16] [17] [18]。PH结构域介导蛋白质–磷脂和蛋白质–蛋白质相互作用;TH结构域由两个脯氨酸区(PRR)组成,参与自动调节;而SH2和SH3结构域分别结合磷酸化酪氨酸残基和PRR。在SH3结构域中,存在一个基本的自磷酸化位点(Y223残基)。最后,C端部分包含催化激酶结构域嵌入Y551残基,负责初始BTK激活 [19]。在催化域中,Cys481残基代表了研究最多的BTKI的共价结合位点。

具体而言,BTK由脾脏酪氨酸激酶(Syk)激活,反过来又由BCR激活 [19]。激活后,BTK可磷酸化PLCβ2的Y753和Y759残基,从而刺激和产生IP3、DAG和PKCβ。钙水平升高并触发MAPK/ERK通路,影响与增殖、存活和细胞因子分泌有关的基因的转录表达。同时,BTK可以激活Akt/NfkB信号通路 [20] [21]。此外,活化的BTK是促炎信号的介质,如炎性细胞因子(TNF-α、IL-1b),与炎症反应密切相关 [22]。

3. BTK抑制剂

3.1. BTK抑制剂的作用机制

BTK抑制剂的产生及优化则依赖于上述激酶的结构信息,根据其作用机制和结合方式,BTK抑制剂可分为两类:一类是不可逆抑制剂,其特征是迈克尔受体部分能够与ATP结合位点中保守的Cys481残基形成共价键;另一类则是可逆抑制剂,通过弱可逆相互作用(例如氢键或疏水相互作用)结合到SH3结构域中的特定口袋。具体而言,它们进入BTK的特定SH3口袋,诱导激酶的非活性构象 [23]。

目前批准的大多数BTK抑制剂是不可逆抑制剂 [24]。然而,耐药性突变体(尤其是对伊布替尼,上市的第一种药物)的出现减少了其使用 [25] [26]。特别地,将Cys481等位取代成丝氨酸残基降低了BTK变体对伊布替尼和其他共价抑制剂的反应性,同时降低了化合物效价。例如,伊布替尼对C481S突变体的效价降低了6倍(IC50 = 4.6 nM)。此外,涉及Cys481 (例如,C481R、C481F、C481Y) [27] [28] 和守门人突变Thr474 (T474I、T474S和T474M) [29] 的其他位点突变最近已被证实。尽管伊布替尼仍可与C481S突变体非共价结合,但其可逆作用机制不能保证该突变患者的疗效 [30] [31]。

在这方面,不与Cys481相互作用的非共价抑制剂可以抑制C481R、T474I和T474M突变体,是一种有效的治疗选择 [27]。此外,迄今为止,使用可逆抑制剂似乎更有效地治疗自身免疫性疾病,如类风湿性关节炎(Rheumatoid Arthritis, RA)、不同类型的多发性硬化(Multiple Sclerosis, MS)、慢性移植物抗宿主病(Chronic Graft Versus Host Disease, cGVHD)和系统性红斑狼疮(Systemic Lupus Erythematosus, SLE) [32] [33]。

近年来,一些蛋白水解靶向嵌合体(PROTAC)分子被报道为一种降低BTK活性的新治疗方法 [34]。

3.2. 批准的BTK抑制剂

目前批准用于临床的三种BTK抑制剂分别为伊布替尼、阿卡替尼及泽布替尼。伊布替尼是2013年FDA批准的第一个有效的、选择性的BTK抑制剂作为突破性疗法,其获批具有划时代意义。随后,试图降低脱靶效应的第二代BTK抑制剂阿卡替尼和泽布替尼分别于2017年和2019年获批 [35]。伊布替尼是第一代BTK抑制剂,在1999年发明第一个失败的BTK抑制剂LFM-A13后 [36],于2007年由Celera基因组学科学家设计的化合物PCI-32765最初被选择用于类风湿关节炎的体内模型的临床前开发 [19]。伊布替尼治疗B细胞淋巴瘤的疗效最早由Honigberg等人报道 [37],结果表明口服伊布替尼在八分之三的自发性B细胞非霍奇金淋巴瘤犬中诱导了反应。随后,为了克服伊布替尼的副反应(即皮肤和皮肤病问题 [38]、出血、感染 [39]、头痛和心房颤动)和新出现的耐药性 [30] [40] [41],开发了一些选择性的第二代BTK抑制剂。阿卡替尼,也称为ACP-196,是一种新型的第二代BTK抑制剂,由Acerta Pharma设计 [42]。类似于伊布替尼,Harrington等人选择了B细胞NHL的犬模型来评估阿卡替尼在体外和体内的药效学作用 [43]。结果表明,阿卡替尼可有效抑制BTK的激活,从而抑制犬B细胞淋巴瘤细胞系CLBL1细胞的增殖,总反应率(ORR)为25%,20只狗的中位PFS为22.5天。泽布替尼,也称为BGB-3111,是由BeiGene 2012年开发的新一代BTK抑制剂 [44],它是用结构–活性关系驱动的药物设计策略概念设计的,因为它在OCI-LY10 DLBCL异种移植模型中具有高效、选择性、体外药代动力学和药效学 [45]。它于2019年被批准用于至少接受过一次治疗的套细胞淋巴瘤(MCL)患者,成为FDA历史上第一个赢得批准的中国原产药物。

这三种已批准的BTK抑制剂有相似之处,也有不同之处:所有抑制剂在BTK的ATP结合袋中与半胱氨酸481不可逆地共价结合;伊布替尼是最有效的BTK抑制剂,其次是基于生化结合动力学的泽布替尼和阿卡替尼。阿卡替尼的脱靶率最低,选择性最高,其次是泽布替尼和伊布替尼 [46]。药效学和药代动力学的差异可能会影响临床实践中抑制剂的剂量、效率和不良事件(AE)。阿卡替尼的半衰期比伊布替尼短,伊布替尼每天给药一次,BTK占用率更高,每天两次给药比每天一次给药更高(95.3% vs 87.6%),这意味着该药物需要每天两次给药 [47]。在泽布替尼中,160 mg每天两次的持续完全抑制比320 mg每天一次更频繁,淋巴结中BTK占有率超过95%,因此,选择每天两次160 mg作为进一步研究的推荐剂量 [48]。快速吸收和快速消除之间的平衡可以带来快速的靶点抑制并降低脱靶问题或药物相互作用的潜在风险。阿卡替尼较短的半衰期和选择性特性使其能够实现对BTK的完全和持续抑制,而不会增加抑制替代激酶的毒性作用。全靶点覆盖可降低由BTK酶突变引起的耐药性,也可降低Richter转化率 [49]。

4. BTK抑制剂在PCNSL中的应用

最近,许多研究报道了PCNSL的基因组变化,单核苷酸变异和拷贝数改变是PCNSL中常见的遗传事件,而MYD88、CD79B、CARD11和TNFAIP3是最常见的突变基因 [50]。MYD88是Toll样受体和白细胞介素-1受体信号通路中的一种衔接分子 [51] [52],正如Ngo等报道指出活化B细胞样弥漫大B细胞淋巴瘤(ABC-DLBCL)依赖于MYD88,MYD88 L265P是系统性DLBCL中最常见的MYD88突变体 [52],MYD88在PCNSL经常发生突变,是PCNSL最常见亚型 [53]。CD79B是在PCNSL中发现的第二个频率最高的突变基因 [6] [54] [55] [56] [57],CD79B突变可促进BCR信号转导和NF-κB的活化,它可向肿瘤细胞提供存活信号 [58]。MYD88 L265P和CD79B突变的存在也可用于将DLBCL分类为不同的类别 [59]。CARD11是BCR通路的下游成员,CARD11突变可能参与NF-κB的激活,从而在PCNSL的致病机理中发挥作用 [60]。在几种人B细胞恶性肿瘤中,CARD11突变与对单药伊布替尼的耐药性相关 [30] [40]。

近期大量研究发现涉及BCR和TLR途径的改变导致了PCNSL治疗中最重要的突破。BCR信号通路可以针对不同的信号节点。在上游,该途径可能通过靶向磷脂酰肌醇3激酶(PI3K)进行下调。在下游,来那度胺等免疫调节药物可用于抑制影响NF-κB功能的IRF4。蛋白酶体抑制剂可能会阻止NF-κB释放到细胞核,从而导致基因表达的改变。不幸的是,蛋白酶体抑制剂通常体积太大,无法穿过血脑屏障(BBB) [50]。而布鲁顿酪氨酸激酶(BTK)是该途径的中央信号传导节点,可以用BTK抑制剂靶向。一项针对52例复发/难治性PCNSL患者的前瞻性研究显示每日给予560 mg伊布替尼,缓解率为52% [61];每日840 mg的较高剂量可能会导致脑脊液(CSF)浓度增加,并保持良好的耐受性 [6] [57] [62] [63] [64],尽管这种较高剂量方案的临床益处是未知的,另外的数据表明布鲁顿酪氨酸激酶的IC50与剂量不成比例 [56]。一项“窗口研究”表明,PCNSL患者对伊布替尼的反应迅速发生,在加入进一步化疗之前,单药伊布替尼的反应率至83%仅两周 [56]。值得注意的是,这些高缓解率与系统性淋巴瘤的经验相反,在系统性淋巴瘤中,单药伊布替尼导致的缓解率仅为25% [40]。虽然这可能部分是由于PCNSL (如MYD88)中BCR/TLR改变的发生率较高,但更重要的是,即使在BCR途径中没有明显基因组改变的PCNSL患者也表现出伊布替尼反应 [61]。同样需关注的是,尽管同时发生CD79B和MYD88突变似乎使系统性淋巴瘤对伊布替尼敏感 [40],但相同的组合在中枢神经系统疾病中的反应则较差,这可能是由于中枢神经系统疾病对BCR途径的依赖性降低 [6]。这些突变在约37%的PCNSL病例中重合 [56]。鉴于其在BTK下游的活性,CARD11和TNFAIP3突变是伊布替尼耐药性的潜在来源。虽然这已在系统性淋巴瘤 [40] [65] 和PCNSL用伊布替尼单药治疗 [6] 中得到描述,但在这些患者中观察结果充分反应伊布替尼与细胞毒性化疗药物联合使用时的潜在耐药机制 [57]。

尽管放疗的反应率很高,但伊布替尼单药治疗的无进展生存期不到5个月,表明早期出现耐药性 [6] [57] [61] [62] [63] [64]。通过伊布替尼联合治疗,预治疗患者的PFS延长至约9个月 [57]。目前,多项前瞻性研究正在开展,将伊布替尼与来那度胺(NCT03703167)、考潘利西(NCT03581942)、检查点抑制(NCT04421560、NCT03770416)和传统化疗(NCT04066920、NCT02315326)等药物进行联合治疗,研究结果尚未发表,但为BTK抑制剂应用于PCNSL提供了新的思路及期待。

伊布替尼已被纳入NCCN复发/难治性PCNSL治疗指南。目前正在进行伊布替尼用于新诊断患者的研究,一些新诊断的患者被纳入伊布替尼与替莫唑胺、依托泊苷、脂质体阿霉素、利妥昔单抗和鞘内阿糖胞苷(DA-TEDDI-R)联合应用的研究,但该方案与高毒性率相关,尤其是39%的治疗患者的曲霉菌病 [56]。同样的组合现在也被用于预防性抗真菌药物研究(NCT02203526)。在前期研究中,伊布替尼还与大剂量甲氨蝶呤、长春新碱、甲基苄肼、利妥昔单抗(NCT02315326、NCT04446962)联合使用,并作为诱导治疗后的维持治疗(NCT02623010)进行研究。

目前尚不清楚下一代BTK抑制剂,如替拉布替尼和阿卡替尼是否比伊布替尼更具优势。最近,在日本进行的一项I/II期剂量递增试验中,研究了替拉布替尼治疗复发/难治性PCNSL,虽然PFS仅为2.9个月,但总有效率(ORR)为64%。替拉布替尼对BTK具有高度选择性,理论上可以降低毒性。然而,近一半的患者(47.7%)经历了3级或更严重的不良事件,包括3例3级皮肤反应(2例,多形红斑)和1例5级间质性肺病,以及未接受耶氏肺孢子菌肺炎预防治疗的患者并发的耶氏肺孢子菌肺炎(PJP) [66]。预计将在美国进行二期研究(NCT04947319)。阿卡拉布替尼是另一种第二代BTK抑制剂,目前正在对复发/难治性原发性和继发性中枢神经系统淋巴瘤(NCT04548648, NCT04462328)患者进行研究。

目前BTK抑制剂在PCNSL中的作用尚在临床试验阶段,虽有一部分较好的临床数据,但由于样本量小、非盲、缺乏随机对照及比较,尚具有一定限制性。上述BTK抑制剂治疗PCNSL的III期临床试验尚在试验阶段,我们期待可以有更多证据证实BTK抑制剂对于PCNSL的疗效、安全性及耐药性等优势,以期为真实世界的原发性中枢神经系统淋巴瘤患者的个体化治疗提供依据。

NOTES

*通讯作者。

参考文献

[1] Chukwueke, U.N. and Nayak, L. (2019) Central Nervous System Lymphoma. Hematology/Oncology Clinics of North America, 33, 597-611.
https://doi.org/10.1016/j.hoc.2019.03.008
[2] Ferreri, A.J.M. (2017) Therapy of Primary CNS Lymphoma: Role of Intensity, Radiation, and Novel Agents. Hematology: The American Society of Hematology Education Program, 2017, 565-577.
https://doi.org/10.1182/asheducation-2017.1.565
[3] Ferreri, A.J.M., Reni, M., Foppoli, M., et al. (2009) High-Dose Cytarabine plus High-Dose Methotrexate versus High-Dose Methotrexate Alone in Patients with Primary CNS Lymphoma: A Randomised Phase 2 Trial. Lancet, 374, 1512-1520.
https://doi.org/10.1016/S0140-6736(09)61416-1
[4] Langner-Lemercier, S., Houillier, C., Soussain, C., et al. (2016) Primary CNS Lymphoma at First Relapse/Progression: Characteristics, Management, and Outcome of 256 Pa-tients from the French LOC Network. Neuro-Oncology, 18, 1297-1303.
https://doi.org/10.1093/neuonc/now033
[5] Preusser, M., Woehrer, A., Koperek, O., Rottenfusser, A., Dieckmann, K., Gatterbauer, B., et al. (2010) Primary Central Nervous System Lymphoma: A Clinicopathological Study of 75 Cases. Pathology, 42, 547-552.
https://doi.org/10.3109/00313025.2010.508786
[6] Grommes, C, Pastore, A, Palaskas, N, Tang, S.S., Campos, C., Schartz, D., et al. (2017) Ibrutinib Unmasks Critical Role of Bruton Tyrosine Kinase in Primary CNS Lymphoma. Cancer Discovery, 7, 1018-1029.
https://doi.org/10.1158/2159-8290.CD-17-0613
[7] Vetrie, D., Vorechovsky, I., Sideras, P., Holland, J., Davies, A., Flinter, F., Hammarström, L., Kinnon, C., Levinsky, R., Bobrow, M., et al. (1993) The Gene Involved in X-Linked Agammaglobulinaemia Is a Member of the src Family of Protein-Tyrosine Kinases. Nature, 361, 226-233.
https://doi.org/10.1038/361226a0
[8] Buggy, J.J. and Elias, L. (2012) Bruton Tyrosine Kinase (BTK) and Its Role in B-Cell Malignancy. International Reviews of Immunology, 31, 119-132.
https://doi.org/10.3109/08830185.2012.664797
[9] Byrd, J.C., Furman, R.R., Coutre, S.E., Flinn, I.W., Burger, J.A., Blum, K.A., Grant, B., Sharman, J.P., Coleman, M., Wierda, W.G., et al. (2013) Targeting BTK with Ibrutinib in Relapsed Chronic Lymphocytic Leukemia. New England Journal of Medicine, 369, 32-42.
https://doi.org/10.1056/NEJMoa1215637
[10] Hendriks, R.W., de Bruijn, M.F., Maas, A., Dingjan, G.M., Karis, A. and Grosveld, F. (1996) Inactivation of Btk by Insertion of lacZ Reveals Defects in B Cell Development Only Past the Pre-B Cell Stage. The EMBO Journal, 15, 4862-4872.
https://doi.org/10.1002/j.1460-2075.1996.tb00867.x
[11] Kil, L.P., de Bruijn, M.J., van Nimwegen, M., Corneth, O.B.J., Piet van Hamburg, J., Dingjan, G.M., Thaiss, F., Rimmelzwaan, G.F., Elewaut, D., Delsing, D., et al. (2012) Btk Levels Set the Threshold for B-Cell Activation and Negative Selection of Autoreactive B Cells in Mice. Blood, 119, 3744-3756.
https://doi.org/10.1182/blood-2011-12-397919
[12] Liang, C., Tian, D., Ren, X., Ding, S., Jia, M., Xin, M. and Thareja, S. (2018) The Development of Bruton’s Tyrosine Kinase (BTK) Inhibitors from 2012-2017: A Mini-Review. European Journal of Medicinal Chemistry, 151, 315-326.
https://doi.org/10.1016/j.ejmech.2018.03.062
[13] Dingjan, G.M., Middendorp, S., Dahlenborg, K., Maas, A., Grosveld, F. and Hendriks, R.W. (2001) Bruton’s Tyrosine Kinase Regulates the Activation of Gene Rearrangements at the Lambda Light Chain Locus in Precursor B Cells in the Mouse. Journal of Experimental Medicine, 193, 1169-1178.
https://doi.org/10.1084/jem.193.10.1169
[14] Ysebaerta, L. and Michallet, A.-S. (2014) Bruton’s Tyrosine Kinase Inhibitors: Lessons Learned from Bench-to-Bedside (first) Studies. Current Opinion in Oncology, 26, 463-468.
https://doi.org/10.1097/CCO.0000000000000114
[15] Carnero Contentti, E. and Correale, J. (2020) Bruton’s Ty-rosine Kinase Inhibitors: A Promising Emerging Treatment Option for Multiple Sclerosis. Expert Opinion on Emerging Drugs, 25, 377-381.
https://doi.org/10.1080/14728214.2020.1822817
[16] Wang, B., Deng, Y., Chen, Y., Yu, K., Wang, A., Liang, Q., Wang, W., Chen, C., Wu, H., Hu, C., et al. (2017) Structure-Activity Relationship Investigation for Benzonaphthyridi-none Derivatives as Novel Potent Bruton’s Tyrosine Kinase (BTK) Irreversible Inhibitors. European Journal of Medici-nal Chemistry, 137, 545-557.
https://doi.org/10.1016/j.ejmech.2017.06.016
[17] Yoon, Y. (2014) Small Chemicals with Inhibitory Effects on PtdIns(3,4,5)P3 Bindingof Btk PH Domain. Bioorganic & Medicinal Chemistry Letters, 24, 2334-2339.
https://doi.org/10.1016/j.bmcl.2014.03.068
[18] Jiang, Z., Liang, Z., Shen, B. and Hu, G. (2015) Computational Analysis of the Binding Specificities of PH Domains. BioMed Research International, 2015, Article ID: 792904.
https://doi.org/10.1155/2015/792904
[19] Pan, Z., Scheerens, H., Li, S.J., Schultz, B.E., Sprengeler, P.A., Burrill, L.C., Mendonca, R.V., Sweeney, M.D., Scott, K.C., Grothaus, P.G., et al. (2007) Discovery of Selective Irreversible In-hibitors for Bruton’s Tyrosine Kinase. ChemMedChem, 2, 58-61.
https://doi.org/10.1002/cmdc.200600221
[20] Simar, P.S., Floris, D. and Rudi, W.H. (2018) Role of Bruton’s Tyrosine Kinase in B Cells and Malignancies. Molecular Cancer, 17, Article No. 57.
https://doi.org/10.1186/s12943-018-0779-z
[21] Zuo, Y.Y. and Pan, Z.Y. (2017) Small-Molecule Inhibitors of Bruton’s Tyrosine Kinase. In: Waring, M.J., Ed., Cancer II. Topics in Medicinal Chemistry, Vol. 28, Springer, Cham, 75-104.
https://doi.org/10.1007/7355_2017_6
[22] Burger, J.A. and Wiestner, A. (2018) Targeting B Cell Receptor Signalling in Cancer: Preclinical and Clinical Advances. Nature Reviews Cancer, 18,148-167.
https://doi.org/10.1038/nrc.2017.121
[23] Brullo, C., Villa, C., Tasso, B., Russo, E. and Spallarossa, A. (2021) Btk Inhibitors: A Medicinal Chemistry and Drug Delivery Perspective. International Journal of Molecular Sciences, 22, Ar-ticle No. 7641.
https://doi.org/10.3390/ijms22147641
[24] Wang, X.H., Wong, J., Sevinsky, C.J., Kokabee, L., Khan, F., Sun, Y. and Conklin, D.S. (2016) Bruton’s Tyrosine Kinase Inhibitors Prevent Therapeutic Escape in Breast Cancer Cells. Mo-lecular Cancer Therapeutics, 15, 2198-2208.
https://doi.org/10.1158/1535-7163.MCT-15-0813
[25] Roskoski Jr., R. (2020) Properties of FDA-Approved Small Molecule Protein Kinase Inhibitors: A 2020 Update. Pharmacological Research, 152, Article ID: 104609.
https://doi.org/10.1016/j.phrs.2019.104609
[26] Harris, C.M., Foley, S.E., Goedken, E.R., Michalak, M., Murdock, S. and Wilson, N.S. (2018) Merits and Pitfalls in the Characterization of Covalent Inhibitors of Bruton’s Tyrosine Kinase. SLAS Discovery, 23, 1040-1050.
https://doi.org/10.1177/2472555218787445
[27] Johnson, A.R., Kohli, P.B., Katewa, A., Gogol, E., Belmont, L.D., Choy, R., Penuel, E., Burton, L., Eigenbrot, C., Yu, C., et al. (2016) Battling Btk Mutants with Non Covalent Inhibitors That Overcome Cys481 and Thyr474 Mutation. ACS Chemical Biology, 11, 2897-2907.
https://doi.org/10.1021/acschembio.6b00480
[28] Liu, L.Y., Shi, B.Y., Wan, X.Q. and Xiang, H. (2018) Strategies to Overcome Resistance Mutations of Bruton’s Tyrosine Kinase Inhibitor Ibrutinib. Future Medicinal Chemistry, 10, 343-356.
https://doi.org/10.4155/fmc-2017-0145
[29] Maddocks, K.J., Ruppert, A.S., Lozanski, G., Heerema, N.A., Zhao, W., Abruzzo, L., Lozanski, A., Davis, M., Gordon, A., Smith, L.L., et al. (2015) Etiology of Ibrutinib Therapy Discontinuation and Outcomes in Patients with Chronic Lymphocytic Leukemia. JAMA Oncology, 1, 80-87.
https://doi.org/10.1001/jamaoncol.2014.218
[30] Woyach, J.A., Furman, R.R., Liu, T.M., Ozer, H.G., Zapatka, M., Ruppert, A.S., Xue, L., Li, D.H.H., Steggerda, S.M., Versele, M., et al. (2014) Resistance Mechanisms for the Bruton’s Tyrosine Kinase Inhibitor Ibrutinib. New England Journal of Medicine, 370, 2286-2294.
https://doi.org/10.1056/NEJMoa1400029
[31] Furman, R.R., Cheng, S., Lu, P., Setty, M., Perez, A.R., Guo, A., Racchumi, J., Xu, G., Wu, H., Ma, J., et al. (2014) Ibrutinib Resistance in Chronic Lymphocytic Leukemia. New England Journal of Medicine, 370, 2352-2354.
https://doi.org/10.1056/NEJMc1402716
[32] Feng, Y.F., Duan, W.M., Cu, X.C. and Xin, M.H. (2019) Bruton’s Tyrosine Kinase (BTK) Inhibitors in Treating Cancer: A Patent Review. Expert Opinion on Therapeutic Patents, 29, 217-241.
https://doi.org/10.1080/13543776.2019.1594777
[33] Norman, P. (2016) Investigational Bruton’s Tyrosine Kinase Inhibitors for the Treatment of Rheumatoid Arthritis. Expert Opinion on Investigational Drugs, 25, 891-899.
https://doi.org/10.1080/13543784.2016.1182499
[34] Tinworth, C.P., Lithgow, H., Dittus, L., Bassi, Z.I., Hughes, S.E., Muelbaier, M., Dai, H., Smith, I.E.D., Kerr, W.J., Burley, G.A., et al. (2019) PROTAC-Mediated Degradation of Bruton’s Tyrosine Kinase Is Inhibited by Covalent Binding. ACS Chemical Biology, 14, 342-347.
https://doi.org/10.1021/acschembio.8b01094
[35] Wen, T.Y., Wang, J.S., Shi, Y.K., Qian, H.L. and Liu, P. (2021) Inhibitors Targeting Bruton’s Tyrosine Kinase in Cancers: Drug Development Advances. Leukemia, 35, 312-332.
https://doi.org/10.1038/s41375-020-01072-6
[36] Mahajan, S, Ghosh, S., Sudbeck, E.A., Zheng, Y., Downs, S., Hupke, M., et al. (199) Rational Design and Synthesis of a Novel Anti-Leukemic Agent Targeting Bruton’s Tyrosine Kinase (BTK), LFM-A13 [α-Cyano-β-Hydroxy-β-Methyl- N-(2,5-Dibromophenyl)Propenamide]. Journal of Biological Chemistry, 274, 9587-9599.
https://doi.org/10.1074/jbc.274.14.9587
[37] Honigberg, L.A., Smith, A.M., Sirisawad, M., Verner, E., Loury, D., Chang, B., et al. (2010) The Bruton Tyrosine Kinase Inhibitor PCI-32765 Blocks B-Cell Activation and Is Efficacious in Models of Autoimmune Disease and B-Cell Malignancy. Proceedings of the National Academy of Sciences of the United States of America, 107, 13075-13080.
https://doi.org/10.1073/pnas.1004594107
[38] Sibaud, V., Beylot-Barry, M., Protin, C., Vigarios, E., Recher, C. and Ysebaert, L. (2020) Dermatological Toxicities of Bruton’s Tyrosine Kinase Inhibitors. American Journal of Clinical Dermatology, 21, 799-812.
https://doi.org/10.1007/s40257-020-00535-x
[39] Tillman, B.F., Pauff, J.M., Satyanarayana, G., Talbott, M. and Warner, J.L. (2018) Systematic Review of Infectious Events with the Bruton Tyrosine Kinase Inhibitor Ibrutinib in the Treatment of Hematologic Malignancies. European Journal of Haematology, 100, 325-334.
https://doi.org/10.1111/ejh.13020
[40] Wilson, W.H., Young, R.M., Schmitz, R., Yang, Y., Pittaluga, S., Wright, G., Lih, C.J., Williams, M.P., Shaffer, A.L., Gerecitano, J., et al. (2015) Targeting B Cell Receptor Signaling with Ibru-tinib in Diffuse Large B Cell Lymphoma. Nature Medicine, 21, 922-926.
https://doi.org/10.1038/nm.3884
[41] Xu, L., Tsakmaklis, N., Yang, G., Chen, J.G., Liu, X., Demos, M., Kofides, A., Patterson, C.J., Meid, K., Gustine, J., et al. (2017) Acquired Mutations Associated with Ibrutinib Resistance in Waldenström Macroglobulinemia. Blood, 129, 2519-2525.
https://doi.org/10.1182/blood-2017-01-761726
[42] Da Cunha-Bang, C. and Niemann, C.U. (2018) Targeting Bruton’s Tyrosine Kinase across B-Cell Malignancies. Drugs, 78, 1653-1663.
https://doi.org/10.1007/s40265-018-1003-6
[43] Harrington, B.K., Gardner, H.L., Izumi, R., Hamdy, A., Roth-baum, W., Coombes, K.R., et al. (2016) Preclinical Evaluation of the Novel BTK Inhibitor Acalabrutinib in Canine Mod-els of B-Cell Non-Hodgkin Lymphoma. PLOS ONE, 11, e159607.
https://doi.org/10.1371/journal.pone.0159607
[44] Syed, Y.Y. (2020) Zanubrutinib: first Approval. Drugs, 80, 91-97.
https://doi.org/10.1007/s40265-019-01252-4
[45] Guo, Y.h., Liu, Y., Hu, N., Yu, D.S., Zhou, C.Y., Shi, G.Y., et al. (2019) Discovery of Zanubrutinib (BGB-3111), a Novel, Potent, and Selective Covalent Inhibitor of Bruton’s Tyrosine Kinase. Journal of Medicinal Chemistry, 62, 7923-7940.
https://doi.org/10.1021/acs.jmedchem.9b00687
[46] Kaptein, A., de Bruin, G., Emmelot-van Hoek, M., van de Kar, B., de Jong, A., Gulrajani, M., et al. (2018) Potency and Selectivity of BTK Inhibitors in Clinical Development for B-Cell Malignancies. Blood, 132, 1871.
https://doi.org/10.1182/blood-2018-99-109973
[47] Alsadhan, A., Cheung, J., Gulrajani, M., Gaglione, E.M., Nierman, P., Hamdy, A., et al. (2020) Pharmacodynamic Analysis of BTK Inhibition in Patients with Chronic Lympho-cytic Leukemia Treated with Acalabrutinib. Clinical Cancer Research, 26, 2800-2809.
https://doi.org/10.1158/1078-0432.CCR-19-3505
[48] Tam, C.S., Trotman, J., Opat, S., Burger, J.A., Cull, G., Gottlieb, D., et al. (2019) Phase 1 Study of the Selective BTK Inhibitor Zanubrutinib in B-Cell Malignancies and Safety and Efficacy Evaluation in CLL. Blood, 134, 851-859.
https://doi.org/10.1182/blood.2019001160
[49] Wu, J.J., Zhang, M.Z. and Liu, D.L. (2016) Acalabrutinib (ACP-196): A Selective Second-Generation BTK Inhibitor. Journal of Hematology & Oncology, 9, Article No. 21.
https://doi.org/10.1186/s13045-016-0250-9
[50] Schaff, L.R. and Grommes, C. (2021) Update on Novel Thera-peutics for Primary CNS Lymphoma. Cancers, 13, Article No. 5372.
https://doi.org/10.3390/cancers13215372
[51] Jeelall, Y.S. and Horikawa, K. (2011) Oncogenic MYD88 Mutation Drives Toll Pathway to Lymphoma. Immunology & Cell Biology, 89, 659-660.
https://doi.org/10.1038/icb.2011.31
[52] Ngo, V.N., Young, R.M., Schmitz, R., et al. (2011) Oncogenically Active MYD88 Mutations in Human Lymphoma. Nature, 470, 115-119.
https://doi.org/10.1038/nature09671
[53] Hilal, T., Maguire, A., Kosiorek, H.E., Rimsza, L.M. and Rosenthal, A.C. (2019) Clinical Features and Cell of Origin Subtyp-ing Using Gene Expression Profiling in HIV-Negative Patients with Primary Central Nervous System Lymphoma. Leu-kemia & Lymphoma, 60, 3581-3583.
https://doi.org/10.1080/10428194.2019.1633637
[54] Braggio, E., Van Wier, S., Ojha, J., et al. (2015) Genome-Wide Analysis Uncovers Novel Recurrent Alterations in Primary Central Nervous System Lymphomas. Clinical Cancer Research, 21, 3986-3994.
https://doi.org/10.1158/1078-0432.CCR-14-2116
[55] Nakamura, T., Tateishi, K., Niwa, T., et al. (2016) Recurrent Mutations of CD79B and MYD88 Are the Hallmark of Primary Central Nervous System Lymphomas. Neuropathology and Applied Neurobiology, 42, 279-290.
https://doi.org/10.1111/nan.12259
[56] Lionakis, M.S., Dunleavy, K., Roschewski, M., et al. (2017) Inhibition of B Cell Receptor Signaling by Ibrutinib in Primary CNS Lymphoma. Cancer Cell, 31, 833-843.
https://doi.org/10.1016/j.ccell.2017.04.012
[57] Grommes, C., Tang, S.S., Wolfe, J., et al. (2019) Phase 1b Trial of an Ibrutinib Based Combination Therapy in Recurrent/Refractory CNS Lymphoma. Blood, 133, 436-445.
https://doi.org/10.1182/blood-2018-09-875732
[58] Young, R.M., Shaffer 3rd, A.L., Phelan, J.D. and Staudt, L.M. (2015) B-Cell Receptor Signaling in Diffuse Large B-Cell Lymphoma. Seminars in Hematology, 52, 77-85.
https://doi.org/10.1053/j.seminhematol.2015.01.008
[59] Schmitz, R., Wright, G.W., Huang, D.W., et al. (2018) Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. New England Journal of Medicine, 378, 1396-1407.
https://doi.org/10.1056/NEJMoa1801445
[60] Montesinos-Rongen, M., Schmitz, R., Brunn, A., et al. (2010) Mu-tations of CARD11 but Not TNFAIP3 May Activate the NF-kappaB Pathway in Primary CNS Lymphoma. Acta Neu-ropathologica, 120, 529-535.
https://doi.org/10.1007/s00401-010-0709-7
[61] Soussain, C., Choquet, S., Blonski, M., Leclercq, D., Houillier, C., Rezai, K., Bijou, F., Houot, R., Boyle, E., Gressin, R., et al. (2019) Ibrutinib Monotherapy for Relapse or Refractory Primary CNS Lymphoma and Primary Vitreoretinal Lymphoma: Final Analysis of the Phase II ‘Proof-of-Concept’ iLOC Study by the Lymphoma Study Association (LYSA) and the French Oculo-Cerebral Lymphoma (LOC) Network. Euro-pean Journal of Cancer, 117, 121-130.
https://doi.org/10.1016/j.ejca.2019.05.024
[62] Rubenstein, J.L., Geng, H., Fraser, E.J., Formaker, P., Chen, L., Sharma, J., Killea, P., Choi, K., Ventura, J., Kurhanewicz, J., et al. (2018) Phase 1 Investigation of Lenalido-mide/Rituximab plus Outcomes of Lenalidomide Maintenance in Relapsed CNS Lymphoma. Blood Advances, 2, 1595-1607.
https://doi.org/10.1182/bloodadvances.2017014845
[63] Tun, H.W., Johnston, P.B., DeAngelis, L.M., Atherton, P.J., Pederson, L.D., Koenig, P.A., Reeder, C.B., Omuro, A.M.P., Schiff, D., O’Neill, B., et al. (2018) Phase 1 Study of Pomalidomide and Dexamethasone for Relapsed/Refractory Primary CNS or Vitreoretinal Lymphoma. Blood, 132, 2240-2248.
https://doi.org/10.1182/blood-2018-02-835496
[64] Ghesquieres, H., Chevrier, M., Laadhari, M., Chinot, O., Choquet, S., Moluçon-Chabrot, C., Beauchesne, P., Gressin, R., Morschhauser, F., Schmitt, A., et al. (2019) Lenalidomide in Combination with Intravenous Rituximab (REVRI) in Relapsed/Refractory Primary CNS Lymphoma or Primary Intraocular Lymphoma: A Multicenter Prospective ‘Proof of Concept’ Phase II Study of the French Ocu-lo-Cerebral Lymphoma (LOC) Network and the Lymphoma Study Association (LYSA). Annals of Oncology, 30, 621-628.
https://doi.org/10.1093/annonc/mdz032
[65] Wu, C., de Miranda, N., Chen, L., Wasik, A.M., Mansouri, L., Jurczak, W., Galazka, K., Dlugosz-Danecka, M., Machaczka, M., Zhang, H., et al. (2016) Genetic Heterogeneity in Primary and Relapsed Mantle Cell Lymphomas: Impact of Recurrent CARD11 Mutations. Oncotarget, 7, 38180-38190.
https://doi.org/10.18632/oncotarget.9500
[66] Narita, Y., Nagane, M., Mishima, K., Terui, Y., Arakawa, Y., Yonezawa, H., Asai, K., Fukuhara, N., Sugiyama, K., Shinojima, N., et al. (2020) Phase I/II Study of Tirabrutinib, a Second-Generation Bruton’s Tyrosine Kinase Inhibitor, in Relapsed/Refractory Primary Central Nervous System Lym-phoma. Neuro-Oncology, 23, 122-133.
https://doi.org/10.1093/neuonc/noaa145