糖皮质激素受体引起去势抵抗性前列腺癌耐药的机理及治疗
Mechanism and Treatment of Drug Resistance in Castration-Resistant Prostate Cancer Caused by Glucocorticoid Receptors
摘要: 前列腺癌是威胁男性健康的重要疾病。但在临床上,不同的治疗手段在后期都会引起不同程度的耐药,其中糖皮质激素的过度表达是引起耐药的重要形式。因此,针对雄激素受体和糖皮质激素受体的联合治疗,逐渐成为了治疗前列腺癌的重要方式。本文总结了糖皮质激素受体引起去势抵抗性前列腺癌耐药的机理,以及用于治疗的双靶点化合物。
Abstract: Prostate cancer is an important disease that threatens men’s health. However, clinically, different treatment methods will cause different degrees of drug resistance in the later stage, among which the overexpression of glucocorticoids is an important form of drug resistance. Therefore, combination therapy for androgen receptors and glucocorticoid receptors has gradually become an important way to treat prostate cancer. This paper summarises the mechanisms by which glucocorticoid receptors cause drug resistance in depot-resistant prostate cancer and the dual-target compounds used for treatment.
文章引用:李晨帆, 康晋伟. 糖皮质激素受体引起去势抵抗性前列腺癌耐药的机理及治疗[J]. 药物化学, 2023, 11(1): 18-23. https://doi.org/10.12677/HJMCe.2023.111004

1. 背景介绍

世界上,前列腺癌是威胁男性健康的重要因素,也是全球第五大致命性恶性肿瘤,在我国,前列腺癌严重威胁着男性的健康,对于前列腺癌的治疗成为了当下的研究热点。早期前列腺癌通常采用去势治疗 [1] 。其初期的最佳治疗效果有80%~90%,但随着治疗的深入,人体内的激素分泌代偿性的变化,患者体内雄激素受体会慢慢地恢复表达,促使血清中的前列腺特异性抗原(PSA)的水平持续上升,从而形成去势抵抗性前列腺癌 [2] 。针对去势抵抗性前列腺癌,美国食品和药物管理局(FDA)于2012和2013年 [3] ,批准的两款药物——阿比特龙和恩杂鲁胺用于治疗去势抵抗性前列腺癌,其结构见图1,它们可以抑制去势抵抗性前列腺癌细胞的增殖,并且诱导细胞凋亡,从而延长了去势抵抗性前列腺癌患者的生存时间。临床数据表明,虽然阿比特龙和恩杂鲁胺在前期具有较好的治疗效果,但是早期药物使用后,人体中的激素水平以及其他信号通路会发生代偿性变化,从而对阿比特龙和恩杂鲁胺产生耐药性,导致去势抵抗性前列腺癌产生耐药,形成耐药性去势抵抗性前列腺癌 [4] 。因此,迫切需要探索解决耐药性的新策略。

Figure 1. Structure of abiraterone and enzalutamide

图1. 阿比特龙和恩杂鲁胺的结构

2. 前列腺癌的耐药机理

雄激素受体信号通路的再次恢复和其他信号通路的变化是产生耐药的重要原因。其雄激素受体信号通路变化主要包括以下三点:第一,雄激素受体再激活 [5] ;第二,雄激素受体可变剪接体的产生 [6] [7] ,这会导致雄激素受体的激活无需雄激素的参与;第三,雄激素受体的突变 [8] [9] ,使得雄激素在和拮抗剂结合后,从原本的拮抗构象变为了激动构象。其次,其他信号通路的再次激活会促使细胞产生耐药。糖皮质激素受体的激活 [10] ,糖皮质激素受体会代替雄激素受体介导前列腺癌细胞的生长,从而产生耐药;体内PI3K等信号通路的激活 [4] ,会影响前列腺癌细胞的增殖分化;糖酵解、自噬等途径会影响着细胞的生长等途径,从而产生耐药 [11] [12] ,见图2

Figure 2. Mechanism of drug resistance in prostate cancer

图2. 前列腺癌的耐药机理

3. 糖皮质激素受体引起耐药的机理

3.1. 糖皮质激素受体结构与功能

人体糖皮质激素受体基因位于5号染色体上,是核受体家族中的一员。结构上糖皮质激素受体包含了4个功能域:N-端结合域、DNA结合域、铰链区以及配体结合域,因为GR和AR均是核受体,其两者在结构上具有高度的相似性。糖皮质激素受体几乎在体内每个细胞中均有表达。在人体中,GR与各种伴侣蛋白结合并表现为非激活构象,当GR与糖皮质激素结合时,GR会从非激活构象转变为激活构象,进入细胞核,与DNA上的反应元件作用,调控下游靶基因的转录。

3.2. 糖皮质激素受体引起去势抵抗性前列腺癌耐药的原因

由于雄激素受体和糖皮质激素受体均属于核受体,雄激素受体和糖皮质激素受体共享重叠的转录基因组和胞浆,这使得了糖皮质激素和雄激素受体在结构上具有高度的相似性,调控雄激素受体的下游靶基因,从而影响细胞的增长。2013年,Arora等人发现糖皮质激素受体是前列腺癌对恩杂鲁胺产生耐药的关键,在耐药患者的肿瘤细胞中,GR相对于对照细胞有较高的表达,并且这些细胞的增长是由GR来维持的;而糖皮质激素受体拮抗剂——地塞米松可以恢复细胞对恩杂鲁胺的敏感性。此外,阿比特龙耐药的肿瘤细胞也与GR过度表达有关。在前列腺癌细胞中,GR基因由于受到EZH2多梳复合物和AR结合而抑制;但在耐药肿瘤中,这两种的抑制会随着药物的使用而被逆转,使得GR恢复表达。

3.3. 糖皮质激素受体过度表达引起耐药的治疗

3.3.1. 针对耐药的临床试验

目前,临床上针对因GR过表达而引起耐药的治疗以联合用药为主。2013年,美国芝加哥大学开始了恩扎鲁胺和米非司酮联合使用治疗耐药型去势抵抗性前列腺(NCT 02012296)的临床试验 [13] ,在2022年7月份公布的结果中显示:与全剂量恩杂鲁胺相比,在恩杂鲁胺的基础上加用米非司酮,对前列腺特异抗原并没有显著的影响,故终止该临床试验。2017年12月,科西普治疗开始了一项:联合使用CORT125281和恩杂鲁胺用于治疗转移性去势抵抗性前列腺癌的临床试验(NCT 03437941),目前该试验已进入临床二期。2018年9月,美国芝加哥大学开始了联合使用恩杂鲁胺和瑞可瑞仑用于治疗前列腺癌的临床试验(NCT 03674814),目前该试验在临床一期,结构见图3

Figure 3. Compounds used clinically in combination therapy

图3. 临床上用于联合治疗的化合物

许多研究表明,联合用药虽然有一定的理论意义,但是不同药物进入人体后,存在更加复杂的药代动力学及不可控的药物之间相互作用,这便导致了联合用药在实际应用中存在一定的局限性。

3.3.2. 靶向GR/AR双靶点化合物

一方面,联合用药在实际治疗中有存在的限制;另一方面,有研究表明,在耐药的前列腺细胞中,通过使用GR抑制剂虽然可以抑制GR的表达,但同时也恢复了AR的重新表达 [14] 。因此,寻找GR/AR双靶点抑制剂用于治疗前列腺癌成了当下研究的热点。

Figure 4. Dual target inhibitors of androgen receptor and glucocorticoid receptor

图4. 雄激素受体和糖皮质激素受体双靶点抑制剂

2017年,Kurmis等人 [15] 报道了ARE 1 (图4),吡咯咪唑聚酰胺类化合物,可以抑制雄激素受体和糖皮质激素受体的表达,相对于苯扎鲁胺和比卡鲁胺,具有更好的抑制效果。2018年,Cheng等人 [16] 发现,α-长春花碱(图4)是AR信号通路的抑制剂,并且在去势抵抗性前列腺癌的耐药细胞中,它可以抑制GR的表达,激活AMPK和自噬途径,诱导肿瘤细胞凋亡,抑制细胞的增殖。此外,Kcv对雄激素依赖的细胞有抑制作用,非雄激素依赖的细胞有细胞毒性。2020年,Rosette [17] 发现了一种AR/GR双靶点抑制剂CB-03-10及其体内的代谢物CB-03-05 (图4),两者和AR/GR之间有良好的亲和力和抑制转录的活性,在高浓度下两者并不存在激动活性,CB-03-10和CB-03-05会激活肿瘤凋亡通路,抑制肿瘤的生长。其中,CB-03-10比苯扎鲁胺更有效地抑制前列腺癌的生长。此外,还有化合物A (Cpd A) [18] (图4)在天然产物中分离而来,它不仅是GR和AR双重拮抗剂,而且可以强烈抑制膀胱癌细胞的增殖和集落形成,增加G1期阻滞细胞和细胞凋亡,抑制作用优于地塞米松和氟他胺,对于GR有较好的亲和力。

4. 小结

目前,双靶点药物虽然没有进入临床开始用于治疗耐药型去势抵抗性前列腺癌,但越来越多的数据表明,靶向GR/AR的药物是治疗耐药型去势抵抗性前列腺癌的趋势,其具有广泛的应用前景。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Crona, D.J., and Whang, Y.E. (2017) Androgen Receptor-Dependent and -Independent Mechanisms Involved in Prostate Cancer Therapy Resistance. Cancers (Basel), 9, Article 67.
https://doi.org/10.3390/cancers9060067
[3] Korpal, M., Korn, J.M., Gao, X., et al. (2013) An F876L Mutation in Androgen Receptor Confers Genetic and Phenotypic Resistance to MDV3100 (Enzalutamide). Cancer Discovery, 3, 1030-1043.
https://doi.org/10.1158/2159-8290.CD-13-0142
[4] Branch, J.R., Bush, T.L., Pande, V., et al. (2021) Discovery of JNJ-63576253, a Next-Generation Androgen Receptor Antagonist Active against Wild-Type and Clinically Relevant Ligand Binding Domain Mutations in Metastatic Castration-Resistant Prostate Cancer. Molecular Cancer Therapeutics, 20, 763-774.
https://doi.org/10.1158/1535-7163.MCT-20-0510
[5] Takeda, D.Y., Spisak, S., Seo, J.H., et al. (2018) A Somat-ically Acquired Enhancer of the Androgen Receptor Is a Noncoding Driver in Advanced Prostate Cancer. Cell, 174, 422-432e13.
https://doi.org/10.1016/j.cell.2018.05.037
[6] Bohl, C.E., Gao, W., Miller, D.D., et al. (2005) Struc-tural Basis for Antagonism and Resistance of Bicalutamide in Prostate Cancer. Proceedings of the National Academy of Sciences of the United States of America, 102, 6201-6206.
https://doi.org/10.1073/pnas.0500381102
[7] Bubley, G.J., and Balk, S.P. (2017) Association between Androgen Receptor Splice Variants and Prostate Cancer Resistance to Abiraterone and Enzalutamide. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 35, 2103-2105.
https://doi.org/10.1200/JCO.2017.72.8808
[8] Kocak, A., and Yildiz, M. (2022) Molecular Dynamics Simulations Reveal the Plausible Agonism/Antagonism Mechanism by Steroids on Androgen Receptor Mutations. Journal of Molec-ular Graphics and Modelling, 111, Article ID: 108081.
https://doi.org/10.1016/j.jmgm.2021.108081
[9] Balbas, M.D., Evans, M.J., Hosfield, D.J., et al. (2013) Overcoming Mutation-Based Resistance to Antiandrogens with Rational Drug Design. eLife, 2, e00499.
https://doi.org/10.7554/eLife.00499
[10] Arora, V.K., Schenkein, E., Murali, R., et al. (2013) Glucocorticoid Receptor Confers Resistance to Antiandrogens by Bypassing Androgen Receptor Blockade. Cell, 155, 1309-1322.
https://doi.org/10.1016/j.cell.2013.11.012
[11] Farrow, J.M., Yang, J.C. and Evans, C.P. (2014) Autophagy as a Modulator and Target in Prostate Cancer. Nature Reviews Urology, 11, 508-516.
https://doi.org/10.1038/nrurol.2014.196
[12] Hoshi, S., Meguro, S., Imai, H., et al. (2021) Upregulation of Gluco-corticoid Receptor-Mediated Glucose Transporter 4 in Enzalutamide-Resistant Prostate Cancer. Cancer Science, 112, 1899-1910.
https://doi.org/10.1111/cas.14865
[13] Serritella, A.V., Shevrin, D., Heath, E.I., et al. (2022) Phase I/II Trial of Enzalutamide and Mifepristone, a Glucocorticoid Receptor Antagonist, for Metastatic Castration-Resistant Pros-tate Cancer. Clinical Cancer Research, 28, 1549-1559.
https://doi.org/10.1158/1078-0432.CCR-21-4049
[14] Adelaiye-Ogala, R., Gryder, B.E., Nguyen, Y.T.M., et al. (2020) Targeting the PI3K/AKT Pathway Overcomes Enzalutamide Resistance by Inhibiting Induction of the Glucocor-ticoid Receptor. Molecular Cancer Therapeutics, 19, 1436-1447.
https://doi.org/10.1158/1535-7163.MCT-19-0936
[15] Kurmis, A.A., Yang, F., Welch, T.R., et al. (2017) A Pyr-role-Imidazole Polyamide Is Active against Enzalutamide-Resistant Prostate Cancer. Cancer Research, 77, 2207-2212.
https://doi.org/10.1158/0008-5472.CAN-16-2503
[16] Cheng, K., Liu, X., Chen, L., et al. (2018) Alpha-Viniferin Activates Autophagic Apoptosis and Cell Death by Reducing Glucocorticoid Receptor Expression in Castration-Resistant Prostate Cancer Cells. Medical Oncology, 35, Article No. 105.
https://doi.org/10.1007/s12032-018-1163-y
[17] Rosette, C., Agan, F.J., Rosette, N., et al. (2020) The Dual An-drogen Receptor and Glucocorticoid Receptor Antagonist CB-03-10 as Potential Treatment for Tumors That Have Ac-quired GR-Mediated Resistance to AR Blockade. Molecular Cancer Therapeutics, 19, 2256-2266.
https://doi.org/10.1158/1535-7163.MCT-19-1137
[18] Ide, H., Inoue, S., Mizushima, T., et al. (2020) Compound A Inhibits Urothelial Tumorigenesis via both the Androgen Receptor and Glucocorticoid Receptor Signaling Pathways. American Journal of Translational Research, 12, 1779-1788.