可积函数HÖlder不等式的等价不等式
Equivalent Inequalities of the HÖlder Inequality for Integrable Functions
DOI: 10.12677/AAM.2023.123108, PDF, HTML, 下载: 137  浏览: 248  科研立项经费支持
作者: 沈诗雨, 张盛婕, 张文彬:常熟理工学院,数学与统计学院,江苏 常熟
关键词: HÖlder不等式算术平均-几何平均不等式喜平均不等式等价性HÖlder Inequality AM-GM Inequality Power Average Inequality Equivalence
摘要: HÖlder不等式在分析学和初等不等式理论中扮演着极其重要的角色。作为相关研究的一个重要方面, 它与其它不等式之间的等价关系的研究也越来越受到重视。本文证明了测度空间上积分形式的H¨older不等式与算术平均-几何平均不等式,以及它与喜平均不等式之间的等价关系。这些结果极大地推广了李勇涛等最近建立的离散不等式等价关系。
Abstract: HÖlder inequality plays an extremely important role in analysis and elementary in- equality theory. As an important aspect of related research, the study of its equiva-lence relationship with other inequalities has also received increasing attention. This paper proves the H¨older inequality and the AM-GM inequality in measure space, and its equivalence relationship with the power mean inequality. These results generalize the discrete inequality equivalence relationship recently established by Li etal.
文章引用:沈诗雨, 张盛婕, 张文彬. 可积函数HÖlder不等式的等价不等式[J]. 应用数学进展, 2023, 12(3): 1068-1076. https://doi.org/10.12677/AAM.2023.123108

参考文献

[1] Abramovich, S., Mond, B. and Peˇcari´c, J.E. (1997) Sharpening Jensen’s Inequality and a Majorization Theorem. Journal of Mathematical Analysis and Applications, 214, 721-728.
https://doi.org/10.1006/jmaa.1997.5527
[2] Hardy, G.H., Littlewood, J.E., P´olya, G. and P´olya, G. (1952) Inequalities. Cambridge University Press, Cambridge.
[3] Dragomir, S.S. (2003) A Survey on Cauchy-Bunyakovsky-Schwarz Type Discrete Inequalities. Journal of Inequalities in Pure and Applied Mathematics, 4, Article 63.
[4] Beckenbach, E.F. and Bellman, R. (2012) Inequalities (Vol. 30). Springer Science & Business Media, Berlin.
[5] Mitrinovic, D.S. and Vasic, P.M. (1970) Analytic Inequalities (Vol. 1). Springer-Verlag, Berlin.
[6] Abramovich, S., Mond, B. and Pe´cari´c, J.E. (1997) Sharpening Jensen’s Inequality and a Majorization Theorem. Journal of Mathematical Analysis and Applications, 214, 721-728.
https://doi.org/10.1006/jmaa.1997.5527
[7] Fujii, M., Furuta, T., Nakamoto, R. and Takahashi, S.E. (1997) Operator Inequalities and Covariance in Noncommutative Probability. Mathematica Japonicae, 46, 317-320.
[8] Li, Y.C. and Shaw, S.Y. (2006) A Proof of H¨older’s Inequality Using the Cauchy-Schwarz Inequality. Journal of Inequalities in Pure and Applied Mathematics, 7, Article 62.
[9] Maligranda, L. (2001) Equivalence of the H¨older-Rogers and Minkowski Inequalities. Mathematical Inequalities & Applications, 4, 203-207.
https://doi.org/10.7153/mia-04-18
[10] Maligranda, L. (2012) The AM-GM Inequality Is Equivalent to the Bernoulli Inequality. The Math- ematical Intelligencer, 34, 1-2.
https://doi.org/10.1007/s00283-011-9266-8
[11] Zhang, F. (2001) Equivalence of the Wielandt Inequality and the Kantorovich Inequality. Linear and Multilinear Algebra, 48, 275-279.
https://doi.org/10.1080/03081080108818673
[12] Marshall, A.W., Olkin, I. and Arnold, B.C. (1979) Inequalities: Theory of Majorization and Its Applications (Vol. 143, pp. xx+-569). Academic Press, New York.
[13] Sitnik, S.M. (2010) Generalized Young and Cauchy-Bunyakowsky Inequalities with Applications: A Survey. arXiv preprint.
[14] Lin, M. (2012) The AM-GM Inequality and CBS Inequality Are Equivalent. The Mathematical In- telligencer, 34, 6.
https://doi.org/10.1007/s00283-012-9292-1
[15] Li, Y., Gu, X.M. and Zhao, J. (2018) The Weighted Arithmetic Mean-Geometric Mean Inequality Is E- quivalent to the H¨older Inequality. Symmetry, 10, Article 380.
https://doi.org/10.3390/sym10090380