具有饱和发病率的害虫治理SI模型的动力学研究
Dynamics of an SI Model for Pest Management with Saturated Morbidity
DOI: 10.12677/AAM.2023.123118, PDF, HTML, 下载: 198  浏览: 258 
作者: 周 培, 蒋 杉:长沙理工大学数学与统计学院,湖南 长沙
关键词: Filippov全局稳定SI模型害虫治理Filippov Global Stability SI Model Pest Control
摘要: 本文建立了一个具有饱和发生率的分段光滑SI害虫治理模型,以此刻画只有当易感害虫数量达到经济阁值时才对其进行综合害虫治理的策略。 利用Filippov系统定性分析理论,分析了模型在不同阁值全局动力学,得到地方病平衡点和伪平衡点的全局稳定性。研究表明,在不同的经济阁值范围下,增加染病害虫的投放量以及减少杀虫剂的使用量能避免害虫数量爆发,可以为害虫治理提供策略和方法。
Abstract: In this paper, a piecewise smooth SI pest control model with saturation incidence rate is established, in order to draw the management strategy of chemical control only when the number of susceptible pests reaches the economic threshold. Using the qualitative analysis theory of Filippov system, the global dynamics of the model in different thresholds and parameter ranges are analyzed, and the global stability of endemic equilibrium and pseudo equilibrium is obtained. Particularly, when the parameters and thresholds are properly selected, the two endemic equilibrium points will be bi-stable. The research shows that increasing or decreasing the dosage of pesticides can effectively control the number of pests and avoid economic losses under different economic threshold ranges.
文章引用:周培, 蒋杉. 具有饱和发病率的害虫治理SI模型的动力学研究[J]. 应用数学进展, 2023, 12(3): 1164-1172. https://doi.org/10.12677/AAM.2023.123118

参考文献

[1] United Nations (2019) World Population Prospects 2019: Highlights. United Nations Depart- ment for Economic and Social Affairs, New York.
[2] Peng, H. (2005) Wasps Deliver Deadly Virus to Crop Pests. Virus Research, 114, 80-81.
[3] Costa, M.I. (2010) Integrated Pest Management: Theoretical Insights from a Threshold Policy. Neotropical Entomology, 39, 1-8.
https://doi.org/10.1590/S1519-566X2010000100001
[4] Tang, S., Liang, J., Xiao, Y., et al. (2012) Sliding Bifurcations of Filippov Two Stage Pest Control Models with Economic Thresholds. SIAM Journal on Applied Mathematics, 72, 1061- 1080.
https://doi.org/10.1137/110847020
[5] Liu, L., Xiang, C., Tang, G., et al. (2019) Sliding Dynamics of a Filippov Forest-Pest Model with Threshold Policy Control. Complexity, 2019, Article ID: 2371838.
https://doi.org/10.1155/2019/2371838
[6] Qin, W., Tan, X., Tosato, M., et al. (2019) Threshold Control Strategy for a Non-Smooth Filippov Ecosystem with Group Defense. Applied Mathematics and Computation, 362, Article ID: 124532.
https://doi.org/10.1016/j.amc.2019.06.046
[7] Liu, B., Liu, W., Tao, F., et al. (2015) A Dynamical Analysis of a Piecewise Smooth Pest Control SI Model. International Journal of Bifurcation and Chaos, 25, Article ID: 1550068.
https://doi.org/10.1142/S0218127415500686
[8] Capasso, V. and Serio, G. (1978) A Generalization of the Kermack-McKendrick Deterministic Epidemic Model. Mathematical Biosciences, 42, 43-61.
https://doi.org/10.1016/0025-5564(78)90006-8
[9] 黄立宏, 郭振远, 王佳伏. 右端不连续微分方程理论与应用[M]. 北京: 科学出版社, 2011.